
L
e

c
tu

re
 #

0
3

Multi-Version Concurrency
Control (Design Decisions)
@Andy_Pavlo // 15-721 // Spring 2020

ADVANCED
DATABASE
SYSTEMS

https://15721.courses.cs.cmu.edu/spring2019/
http://db.cs.cmu.edu/
https://twitter.com/andy_pavlo

15-721 (Spring 2020)

MULTI-VERSION CONCURRENCY CONTROL

The DBMS maintains multiple physical versions
of a single logical object in the database:
→ When a txn writes to an object, the DBMS creates a new

version of that object.
→ When a txn reads an object, it reads the newest version

that existed when the txn started.

First proposed in 1978 MIT PhD dissertation.

First implementation was InterBase (Firebird).

Used in almost every new DBMS in last 10 years.

2

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://publications.csail.mit.edu/lcs/specpub.php?id=773
https://firebirdsql.org/

15-721 (Spring 2020)

MULTI-VERSION CONCURRENCY CONTROL

Writers don't block readers.
Readers don't block writers.

Read-only txns can read a consistent snapshot
without acquiring locks or txn ids.
→ Use timestamps to determine visibility.

Easily support time-travel queries.

5

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SNAPSHOT ISOL ATION (SI)

When a txn starts, it sees a consistent snapshot of
the database that existed when that the txn started.
→ No torn writes from active txns.
→ If two txns update the same object, then first writer wins.

SI is susceptible to the Write Skew Anomaly.

4

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

WRITE SKEW ANOMALY

5

Txn #1
Change white marbles
to black.

Txn #2
Change black marbles
to white.

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

WRITE SKEW ANOMALY

5

Txn #1
Change white marbles
to black.

Txn #2
Change black marbles
to white.

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

WRITE SKEW ANOMALY

5

Txn #1
Change white marbles
to black.

Txn #2
Change black marbles
to white.

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

WRITE SKEW ANOMALY

5

Txn #1
Change white marbles
to black.

Txn #2
Change black marbles
to white.

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

WRITE SKEW ANOMALY

5

Txn #1
Change white marbles
to black.

Txn #2
Change black marbles
to white.

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

ISOL ATION LEVEL HIERARCHY

6

REPEATABLE READS SNAPSHOT ISOLATION

READ UNCOMMITTED

SERIALIZABLE

READ COMMITTED

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

ISOL ATION LEVEL HIERARCHY

6

REPEATABLE READS SNAPSHOT ISOLATION

READ UNCOMMITTED

SERIALIZABLE

READ COMMITTED

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MVCC DESIGN DECISIONS

Concurrency Control Protocol

Version Storage

Garbage Collection

Index Management

7

AN EMPIRICAL EVALUATION OF IN-MEMORY
MULTI-VERSION CONCURRENCY CONTROL
VLDB 2017

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2020/papers/03-mvcc1/wu-vldb2017.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/03-mvcc1/wu-vldb2017.pdf

15-721 (Spring 2020)

CONCURRENCY CONTROL PROTOCOL

Approach #1: Timestamp Ordering
→ Assign txns timestamps that determine serial order.
→ Considered to be original MVCC protocol.

Approach #2: Optimistic Concurrency Control
→ Three-phase protocol from last class.
→ Use private workspace for new versions.

Approach #3: Two-Phase Locking
→ Txns acquire appropriate lock on physical version before

they can read/write a logical tuple.

8

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

TUPLE FORMAT

9

Unique Txn
Identifier

Version
Lifetime

Next/Prev
Version

Additional
Meta-data

TXN-ID DATABEGIN-TS END-TS POINTER ...

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

TXN-ID READ-TS BEGIN-TS END-TS

A1 0 1 1 ∞
B1 0 0 1 ∞

TIMESTAMP ORDERING (MV TO)

10

Use read-ts field in the
header to keep track of the
timestamp of the last txn
that read it.

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

TXN-ID READ-TS BEGIN-TS END-TS

A1 0 1 1 ∞
B1 0 0 1 ∞

TIMESTAMP ORDERING (MV TO)

10

Use read-ts field in the
header to keep track of the
timestamp of the last txn
that read it.

READ(A)

WRITE(B)

Thread #1

Tid=10

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

TXN-ID READ-TS BEGIN-TS END-TS

A1 0 1 1 ∞
B1 0 0 1 ∞

TIMESTAMP ORDERING (MV TO)

10

Use read-ts field in the
header to keep track of the
timestamp of the last txn
that read it.

READ(A)

WRITE(B)

Txn can read version if the
latch is unset and its Tid is
between begin-ts and end-ts.

Thread #1

Tid=10

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

TXN-ID READ-TS BEGIN-TS END-TS

A1 0 1 1 ∞
B1 0 0 1 ∞

TIMESTAMP ORDERING (MV TO)

10

Use read-ts field in the
header to keep track of the
timestamp of the last txn
that read it.

READ(A)

WRITE(B)

Txn can read version if the
latch is unset and its Tid is
between begin-ts and end-ts.

Thread #1

Tid=10

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

TXN-ID READ-TS BEGIN-TS END-TS

A1 0 1 1 ∞
B1 0 0 1 ∞

TIMESTAMP ORDERING (MV TO)

10

Use read-ts field in the
header to keep track of the
timestamp of the last txn
that read it.

READ(A)

WRITE(B)

10

Txn can read version if the
latch is unset and its Tid is
between begin-ts and end-ts.

Thread #1

Tid=10

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

TXN-ID READ-TS BEGIN-TS END-TS

A1 0 1 1 ∞
B1 0 0 1 ∞

TIMESTAMP ORDERING (MV TO)

10

Use read-ts field in the
header to keep track of the
timestamp of the last txn
that read it.

READ(A)

WRITE(B)

10

Txn can read version if the
latch is unset and its Tid is
between begin-ts and end-ts.

Txn creates a new version if
no other txn holds latch and
Tid is greater than read-ts.

Thread #1

Tid=10

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

TXN-ID READ-TS BEGIN-TS END-TS

A1 0 1 1 ∞
B1 0 0 1 ∞

TIMESTAMP ORDERING (MV TO)

10

Use read-ts field in the
header to keep track of the
timestamp of the last txn
that read it.

READ(A)

WRITE(B)

10

Txn can read version if the
latch is unset and its Tid is
between begin-ts and end-ts.

Txn creates a new version if
no other txn holds latch and
Tid is greater than read-ts.

Thread #1

Tid=10

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

TXN-ID READ-TS BEGIN-TS END-TS

A1 0 1 1 ∞
B1 0 0 1 ∞

TIMESTAMP ORDERING (MV TO)

10

Use read-ts field in the
header to keep track of the
timestamp of the last txn
that read it.

READ(A)

WRITE(B)

10

Txn can read version if the
latch is unset and its Tid is
between begin-ts and end-ts.

Txn creates a new version if
no other txn holds latch and
Tid is greater than read-ts.

10

Thread #1

Tid=10

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

TXN-ID READ-TS BEGIN-TS END-TS

A1 0 1 1 ∞
B1 0 0 1 ∞

TIMESTAMP ORDERING (MV TO)

10

Use read-ts field in the
header to keep track of the
timestamp of the last txn
that read it.

READ(A)

WRITE(B)

10

Txn can read version if the
latch is unset and its Tid is
between begin-ts and end-ts.

Txn creates a new version if
no other txn holds latch and
Tid is greater than read-ts.

10

B2 10 0 10 ∞

Thread #1

Tid=10

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

TXN-ID READ-TS BEGIN-TS END-TS

A1 0 1 1 ∞
B1 0 0 1 ∞

TIMESTAMP ORDERING (MV TO)

10

Use read-ts field in the
header to keep track of the
timestamp of the last txn
that read it.

READ(A)

WRITE(B)

10

Txn can read version if the
latch is unset and its Tid is
between begin-ts and end-ts.

Txn creates a new version if
no other txn holds latch and
Tid is greater than read-ts.

10

B2 10 0 10 ∞
10

Thread #1

Tid=10

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

TXN-ID READ-TS BEGIN-TS END-TS

A1 0 1 1 ∞
B1 0 0 1 ∞

TIMESTAMP ORDERING (MV TO)

10

Use read-ts field in the
header to keep track of the
timestamp of the last txn
that read it.

READ(A)

WRITE(B)

10

Txn can read version if the
latch is unset and its Tid is
between begin-ts and end-ts.

Txn creates a new version if
no other txn holds latch and
Tid is greater than read-ts.

B2 10 0 10 ∞
10

0

Thread #1

Tid=10

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

TXN-ID READ-CNT BEGIN-TS END-TS

A1 0 0 1 ∞
B1 0 0 1 ∞

TWO-PHASE LOCKING (MV2PL)

11

Txns use the tuple's read-
cnt field as SHARED lock.
Use txn-id and read-cnt
together as EXCLUSIVE
lock.

READ(A)

WRITE(B)

Thread #1

Tid=10

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

TXN-ID READ-CNT BEGIN-TS END-TS

A1 0 0 1 ∞
B1 0 0 1 ∞

TWO-PHASE LOCKING (MV2PL)

11

Txns use the tuple's read-
cnt field as SHARED lock.
Use txn-id and read-cnt
together as EXCLUSIVE
lock.

READ(A)

WRITE(B)

If txn-id is zero, then the
txn acquires the SHARED
lock by incrementing the
read-cnt field.

Thread #1

Tid=10

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

TXN-ID READ-CNT BEGIN-TS END-TS

A1 0 0 1 ∞
B1 0 0 1 ∞

TWO-PHASE LOCKING (MV2PL)

11

Txns use the tuple's read-
cnt field as SHARED lock.
Use txn-id and read-cnt
together as EXCLUSIVE
lock.

READ(A)

WRITE(B)

1

If txn-id is zero, then the
txn acquires the SHARED
lock by incrementing the
read-cnt field.

Thread #1

Tid=10

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

TXN-ID READ-CNT BEGIN-TS END-TS

A1 0 0 1 ∞
B1 0 0 1 ∞

TWO-PHASE LOCKING (MV2PL)

11

Txns use the tuple's read-
cnt field as SHARED lock.
Use txn-id and read-cnt
together as EXCLUSIVE
lock.

READ(A)

WRITE(B)

1

If txn-id is zero, then the
txn acquires the SHARED
lock by incrementing the
read-cnt field.

Thread #1

Tid=10

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

TXN-ID READ-CNT BEGIN-TS END-TS

A1 0 0 1 ∞
B1 0 0 1 ∞

TWO-PHASE LOCKING (MV2PL)

11

Txns use the tuple's read-
cnt field as SHARED lock.
Use txn-id and read-cnt
together as EXCLUSIVE
lock.

READ(A)

WRITE(B)

1

If txn-id is zero, then the
txn acquires the SHARED
lock by incrementing the
read-cnt field.

If both txn-id and read-cnt
are zero, then txn acquires
the EXCLUSIVE lock by
setting both of them.

Thread #1

Tid=10

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

TXN-ID READ-CNT BEGIN-TS END-TS

A1 0 0 1 ∞
B1 0 0 1 ∞

TWO-PHASE LOCKING (MV2PL)

11

Txns use the tuple's read-
cnt field as SHARED lock.
Use txn-id and read-cnt
together as EXCLUSIVE
lock.

READ(A)

WRITE(B)

1

If txn-id is zero, then the
txn acquires the SHARED
lock by incrementing the
read-cnt field.

If both txn-id and read-cnt
are zero, then txn acquires
the EXCLUSIVE lock by
setting both of them.

10 1

Thread #1

Tid=10

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

TXN-ID READ-CNT BEGIN-TS END-TS

A1 0 0 1 ∞
B1 0 0 1 ∞

TWO-PHASE LOCKING (MV2PL)

11

Txns use the tuple's read-
cnt field as SHARED lock.
Use txn-id and read-cnt
together as EXCLUSIVE
lock.

READ(A)

WRITE(B)

1

If txn-id is zero, then the
txn acquires the SHARED
lock by incrementing the
read-cnt field.

If both txn-id and read-cnt
are zero, then txn acquires
the EXCLUSIVE lock by
setting both of them.

10

B2 10 0 10 ∞
1

Thread #1

Tid=10

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

TXN-ID READ-CNT BEGIN-TS END-TS

A1 0 0 1 ∞
B1 0 0 1 ∞

TWO-PHASE LOCKING (MV2PL)

11

Txns use the tuple's read-
cnt field as SHARED lock.
Use txn-id and read-cnt
together as EXCLUSIVE
lock.

READ(A)

WRITE(B)

1

If txn-id is zero, then the
txn acquires the SHARED
lock by incrementing the
read-cnt field.

If both txn-id and read-cnt
are zero, then txn acquires
the EXCLUSIVE lock by
setting both of them.

10

B2 10 0 10 ∞
101

Thread #1

Tid=10

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

TXN-ID READ-CNT BEGIN-TS END-TS

A1 0 0 1 ∞
B1 0 0 1 ∞

TWO-PHASE LOCKING (MV2PL)

11

Txns use the tuple's read-
cnt field as SHARED lock.
Use txn-id and read-cnt
together as EXCLUSIVE
lock.

READ(A)

WRITE(B)

If txn-id is zero, then the
txn acquires the SHARED
lock by incrementing the
read-cnt field.

If both txn-id and read-cnt
are zero, then txn acquires
the EXCLUSIVE lock by
setting both of them.

B2 10 0 10 ∞
10

0

Thread #1

Tid=10

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

TXN-ID READ-TS BEGIN-TS END-TS

A1 0 - 99999 ∞

OBSERVATION

12

If the DBMS reaches the max value for its
timestamps, it will have to wrap around and
restart at one. This will make all previous versions
be in the "future" from new transactions.

Thread #1

Tid=231-1
WRITE(A)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

TXN-ID READ-TS BEGIN-TS END-TS

A1 0 - 99999 ∞

OBSERVATION

12

If the DBMS reaches the max value for its
timestamps, it will have to wrap around and
restart at one. This will make all previous versions
be in the "future" from new transactions.

Thread #1

Tid=231-1
WRITE(A) 231-1

A2 0 - 231-1 ∞231-1

231-1

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

TXN-ID READ-TS BEGIN-TS END-TS

A1 0 - 99999 ∞

OBSERVATION

12

If the DBMS reaches the max value for its
timestamps, it will have to wrap around and
restart at one. This will make all previous versions
be in the "future" from new transactions.

Thread #1

Tid=231-1
WRITE(A) 231-1

A2 0 - 231-1 ∞

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

TXN-ID READ-TS BEGIN-TS END-TS

A1 0 - 99999 ∞

OBSERVATION

12

If the DBMS reaches the max value for its
timestamps, it will have to wrap around and
restart at one. This will make all previous versions
be in the "future" from new transactions.

Thread #1

Tid=231-1

Thread #2

Tid=1
WRITE(A)

231-1

A2 0 - 231-1 ∞

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

TXN-ID READ-TS BEGIN-TS END-TS

A1 0 - 99999 ∞

OBSERVATION

12

If the DBMS reaches the max value for its
timestamps, it will have to wrap around and
restart at one. This will make all previous versions
be in the "future" from new transactions.

A3 0 - 1 ∞1

Thread #1

Tid=231-1

Thread #2

Tid=1
WRITE(A)

231-1

A2 0 - 231-1 ∞11

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

TXN-ID READ-TS BEGIN-TS END-TS

A1 0 - 99999 ∞

OBSERVATION

12

If the DBMS reaches the max value for its
timestamps, it will have to wrap around and
restart at one. This will make all previous versions
be in the "future" from new transactions.

A3 0 - 1 ∞

Thread #1

Tid=231-1

Thread #2

Tid=1

231-1

A2 0 - 231-1 ∞1

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

POSTGRES TXN ID WRAPAROUND

Set a flag in each tuple header that says that it is
"frozen" in the past. Any new txn id will always be
newer than a frozen version.

Runs the vacuum before the system gets close to
this upper limit.

Otherwise it must stop accepting new commands
when the system gets close to the max txn id.

13

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

VERSION STORAGE

The DBMS uses the tuples’ pointer field to create a
latch-free version chain per logical tuple.
→ This allows the DBMS to find the version that is visible

to a particular txn at runtime.
→ Indexes always point to the “head” of the chain.

Different storage schemes determine where/what
to store for each version.

14

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

VERSION STORAGE

Approach #1: Append-Only Storage
→ New versions are appended to the same table space.

Approach #2: Time-Travel Storage
→ Old versions are copied to separate table space.

Approach #3: Delta Storage
→ The original values of the modified attributes are copied

into a separate delta record space.

15

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

APPEND-ONLY STORAGE

All the physical versions of a logical
tuple are stored in the same table
space. The versions are mixed
together.

On every update, append a new
version of the tuple into an empty
space in the table.

16

Main Table

VALUE

A0 $111

POINTER

A1 $222 Ø

B1 $10 Ø

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

APPEND-ONLY STORAGE

All the physical versions of a logical
tuple are stored in the same table
space. The versions are mixed
together.

On every update, append a new
version of the tuple into an empty
space in the table.

16

Main Table

VALUE

A0 $111

POINTER

A1 $222 Ø

A2 $333 Ø

B1 $10 Ø

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

APPEND-ONLY STORAGE

All the physical versions of a logical
tuple are stored in the same table
space. The versions are mixed
together.

On every update, append a new
version of the tuple into an empty
space in the table.

16

Main Table

VALUE

A0 $111

POINTER

A1 $222

A2 $333 Ø

B1 $10 Ø

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

VERSION CHAIN ORDERING

Approach #1: Oldest-to-Newest (O2N)
→ Append every new version to end of the chain.
→ Must traverse chain on look-ups.

Approach #2: Newest-to-Oldest (N2O)
→ Must update index pointers for every new version.
→ Don’t have to traverse chain on look ups.

The ordering of the chain has different
performance trade-offs.

17

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

TIME-TRAVEL STORAGE

18

Main Table

VALUE

A2 $222

POINTER

B1 $10

Time-Travel Table

VALUE

A1 $111

POINTER

Ø

On every update, copy the
current version to the time-
travel table. Update pointers.

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

TIME-TRAVEL STORAGE

18

Main Table

VALUE

A2 $222

POINTER

B1 $10

Time-Travel Table

VALUE

A1 $111

POINTER

A2 $222

Ø

On every update, copy the
current version to the time-
travel table. Update pointers.

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

TIME-TRAVEL STORAGE

18

Overwrite master version in
the main table and update
pointers.

Main Table

VALUE

A2 $222

POINTER

B1 $10

Time-Travel Table

VALUE

A1 $111

POINTER

A2 $222

Ø

On every update, copy the
current version to the time-
travel table. Update pointers.

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

TIME-TRAVEL STORAGE

18

Overwrite master version in
the main table and update
pointers.

Main Table

VALUE

A2 $222

POINTER

B1 $10

A3 $333

Time-Travel Table

VALUE

A1 $111

POINTER

A2 $222

Ø

On every update, copy the
current version to the time-
travel table. Update pointers.

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

TIME-TRAVEL STORAGE

18

Overwrite master version in
the main table and update
pointers.

Main Table

VALUE

A2 $222

POINTER

B1 $10

A3 $333

Time-Travel Table

VALUE

A1 $111

POINTER

A2 $222

Ø

On every update, copy the
current version to the time-
travel table. Update pointers.

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

TIME-TRAVEL STORAGE

18

Overwrite master version in
the main table and update
pointers.

Main Table

VALUE

A2 $222

POINTER

B1 $10

A3 $333

Time-Travel Table

VALUE

A1 $111

POINTER

A2 $222

Ø

On every update, copy the
current version to the time-
travel table. Update pointers.

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

DELTA STORAGE

19

Main Table

VALUE

A1 $111

POINTER

B1 $10

Delta Storage Segment

On every update, copy only
the values that were modified
to the delta storage and
overwrite the master version.

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

DELTA STORAGE

19

Main Table

VALUE

A1 $111

POINTER

B1 $10

Delta Storage Segment

DELTA POINTER

A1 (VALUE→$111) Ø

On every update, copy only
the values that were modified
to the delta storage and
overwrite the master version.

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

DELTA STORAGE

19

Main Table

VALUE

A1 $111

POINTER

B1 $10

Delta Storage Segment

DELTA POINTER

A1 (VALUE→$111) ØA2 $222

On every update, copy only
the values that were modified
to the delta storage and
overwrite the master version.

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

DELTA STORAGE

19

Main Table

VALUE

A1 $111

POINTER

B1 $10

Delta Storage Segment

DELTA POINTER

A2 (VALUE→$222)

A1 (VALUE→$111) ØA2 $222

On every update, copy only
the values that were modified
to the delta storage and
overwrite the master version.

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

DELTA STORAGE

19

Txns can recreate old
versions by applying the delta
in reverse order.

Main Table

VALUE

A1 $111

POINTER

B1 $10

Delta Storage Segment

DELTA POINTER

A2 (VALUE→$222)

A1 (VALUE→$111) ØA2 $222A3 $333

On every update, copy only
the values that were modified
to the delta storage and
overwrite the master version.

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

NON-INLINE AT TRIBUTES

20

INT_VAL

A1 $100

Variable-Length Data

A1

STR_VAL MY_LONG_STRING

Main Table

Reuse pointers to variable-
length pool for values that do
not change between versions.

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

NON-INLINE AT TRIBUTES

20

INT_VAL

A1 $100

A2 $90

Variable-Length Data

A1

STR_VAL

MY_LONG_STRING

MY_LONG_STRING

Main Table

Reuse pointers to variable-
length pool for values that do
not change between versions.

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

NON-INLINE AT TRIBUTES

20

Requires reference counters
to know when it is safe to
free memory. Unable to
relocate memory easily.

INT_VAL

A1 $100

A2 $90

Variable-Length Data

MY_LONG_STRINGRefs=1

A1

STR_VAL

Main Table

Reuse pointers to variable-
length pool for values that do
not change between versions.

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

NON-INLINE AT TRIBUTES

20

Requires reference counters
to know when it is safe to
free memory. Unable to
relocate memory easily.

INT_VAL

A1 $100

A2 $90

Variable-Length Data

MY_LONG_STRINGRefs=1

A1

STR_VAL Refs=2

Main Table

Reuse pointers to variable-
length pool for values that do
not change between versions.

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

GARBAGE COLLECTION

The DBMS needs to remove reclaimable physical
versions from the database over time.
→ No active txn in the DBMS can “see” that version (SI).
→ The version was created by an aborted txn.

Three additional design decisions:
→ How to look for expired versions?
→ How to decide when it is safe to reclaim memory?
→ Where to look for expired versions?

21

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

GARBAGE COLLECTION

Approach #1: Tuple-level
→ Find old versions by examining tuples directly.
→ Background Vacuuming vs. Cooperative Cleaning

Approach #2: Transaction-level
→ Txns keep track of their old versions so the DBMS does

not have to scan tuples to determine visibility.

22

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Thread #1

Tid=12

Thread #2

Tid=25

BEGIN-TS END-TS

A100 1 9

B100 1 9

B101 10 20

TUPLE-LEVEL GC

23

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

Vacuum

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Thread #1

Tid=12

Thread #2

Tid=25

BEGIN-TS END-TS

A100 1 9

B100 1 9

B101 10 20

TUPLE-LEVEL GC

23

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

Vacuum

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Thread #1

Tid=12

Thread #2

Tid=25

BEGIN-TS END-TS

A100 1 9

B100 1 9

B101 10 20

TUPLE-LEVEL GC

23

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

Vacuum

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Thread #1

Tid=12

Thread #2

Tid=25

BEGIN-TS END-TS

A100 1 9

B100 1 9

B101 10 20

TUPLE-LEVEL GC

23

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

Vacuum

D
irty B

lock B
itM

ap

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Thread #1

Tid=12

Thread #2

Tid=25

BEGIN-TS END-TS

A100 1 9

B100 1 9

B101 10 20

TUPLE-LEVEL GC

23

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

Vacuum

D
irty B

lock B
itM

ap

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Thread #1

Tid=12

Thread #2

Tid=25

BEGIN-TS END-TS

A100 1 9

B100 1 9

B101 10 20

TUPLE-LEVEL GC

23

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

Vacuum

D
irty B

lock B
itM

ap

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Thread #1

Tid=12

Thread #2

Tid=25

TUPLE-LEVEL GC

23

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

Cooperative Cleaning:
Worker threads identify
reclaimable versions as they
traverse version chain. Only
works with O2N.

A2 A3

B0 B1 B2 B3

INDEX
A0 A1

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Thread #1

Tid=12

Thread #2

Tid=25

TUPLE-LEVEL GC

23

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

Cooperative Cleaning:
Worker threads identify
reclaimable versions as they
traverse version chain. Only
works with O2N.

A2 A3

B0 B1 B2 B3

INDEX
A0 A1GET(A)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Thread #1

Tid=12

Thread #2

Tid=25

TUPLE-LEVEL GC

23

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

Cooperative Cleaning:
Worker threads identify
reclaimable versions as they
traverse version chain. Only
works with O2N.

A2 A3

B0 B1 B2 B3

INDEX
A0 A1GET(A)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Thread #1

Tid=12

Thread #2

Tid=25

TUPLE-LEVEL GC

23

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

Cooperative Cleaning:
Worker threads identify
reclaimable versions as they
traverse version chain. Only
works with O2N.

A2 A3

B0 B1 B2 B3

INDEX
A0 A1XGET(A)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Thread #1

Tid=12

Thread #2

Tid=25

TUPLE-LEVEL GC

23

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

Cooperative Cleaning:
Worker threads identify
reclaimable versions as they
traverse version chain. Only
works with O2N.

A2 A3

B0 B1 B2 B3

INDEX
A0 A1X XGET(A)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Thread #1

Tid=12

Thread #2

Tid=25

TUPLE-LEVEL GC

23

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

Cooperative Cleaning:
Worker threads identify
reclaimable versions as they
traverse version chain. Only
works with O2N.

A2 A3

B0 B1 B2 B3

INDEX

GET(A)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

TRANSACTION-LEVEL GC

Each txn keeps track of its read/write set.

The DBMS determines when all versions created
by a finished txn are no longer visible.

May still require multiple threads to reclaim the
memory fast enough for the workload.

24

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

INDEX MANAGEMENT

PKey indexes always point to version chain head.
→ How often the DBMS must update the pkey index

depends on whether the system creates new versions
when a tuple is updated.

→ If a txn updates a tuple’s pkey attribute(s), then this is
treated as a DELETE followed by an INSERT.

Secondary indexes are more complicated…

25

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

INDEX MANAGEMENT

PKey indexes always point to version chain head.
→ How often the DBMS must update the pkey index

depends on whether the system creates new versions
when a tuple is updated.

→ If a txn updates a tuple’s pkey attribute(s), then this is
treated as a DELETE followed by an INSERT.

Secondary indexes are more complicated…

25

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://eng.uber.com/mysql-migration/

15-721 (Spring 2020)

SECONDARY INDEXES

Approach #1: Logical Pointers
→ Use a fixed identifier per tuple that does not change.
→ Requires an extra indirection layer.
→ Primary Key vs. Tuple Id

Approach #2: Physical Pointers
→ Use the physical address to the version chain head.

26

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

INDEX POINTERS

27

PRIMARY INDEX SECONDARY INDEX

A4 A3 A2 A1

GET(A)

Append-Only
Newest-to-Oldest

Physical
Address

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

INDEX POINTERS

27

PRIMARY INDEX SECONDARY INDEX

A4 A3 A2 A1
Append-Only
Newest-to-Oldest

GET(A)

Physical
Address

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SECONDARY INDEX

SECONDARY INDEX

SECONDARY INDEX

INDEX POINTERS

27

PRIMARY INDEX SECONDARY INDEX

A4 A3 A2 A1
Append-Only
Newest-to-Oldest

GET(A)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

INDEX POINTERS

27

PRIMARY INDEX SECONDARY INDEX

A4 A3 A2 A1
Append-Only
Newest-to-Oldest

GET(A)

Physical
Address

Primary
Key

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

INDEX POINTERS

27

PRIMARY INDEX SECONDARY INDEX

A4 A3 A2 A1
Append-Only
Newest-to-Oldest

GET(A)

TupleId→Address

TupleId

Physical
Address

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MVCC INDEXES

MVCC DBMS indexes (usually) do not store
version information about tuples with their keys.
→ Exception: Index-organized tables (e.g., MySQL)

Every index must support duplicate keys from
different snapshots:
→ The same key may point to different logical tuples in

different snapshots.

28

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MVCC DUPLICATE KEY PROBLEM

29

Index

A1

BEGIN-TS END-TS

1 ∞
POINTER

Ø

READ(A)

Thread #1
Begin @ 10

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MVCC DUPLICATE KEY PROBLEM

29

Index

Thread #2
Begin @ 20

A1

BEGIN-TS END-TS

1 ∞
POINTER

Ø

UPDATE(A)

READ(A)

Thread #1
Begin @ 10

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MVCC DUPLICATE KEY PROBLEM

29

Index

Thread #2
Begin @ 20

A1

BEGIN-TS END-TS

1 ∞
POINTER

Ø

UPDATE(A)

A2 20 ∞ Ø

20

READ(A)

Thread #1
Begin @ 10

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MVCC DUPLICATE KEY PROBLEM

29

Index

DELETE(A)

Thread #2
Begin @ 20

A1

BEGIN-TS END-TS

1 ∞
POINTER

Ø

UPDATE(A)

A2 20 ∞ Ø

20

READ(A)

Thread #1
Begin @ 10

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MVCC DUPLICATE KEY PROBLEM

29

Index

DELETE(A)

Thread #2
Begin @ 20

A1

BEGIN-TS END-TS

1 ∞
POINTER

Ø

UPDATE(A)

A2 20 ∞ Ø

20

READ(A)

Thread #1
Begin @ 10

Commit @ 25

25 25

25

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MVCC DUPLICATE KEY PROBLEM

29

Index

DELETE(A)

Thread #2
Begin @ 20

INSERT(A)

Thread #3
Begin @ 30

A1

BEGIN-TS END-TS

1 ∞
POINTER

Ø

UPDATE(A)

A2 20 ∞ Ø

20

A1 30 ∞ Ø

READ(A)

Thread #1
Begin @ 10

Commit @ 25

25 25

25

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MVCC DUPLICATE KEY PROBLEM

29

Index

DELETE(A)

Thread #2
Begin @ 20

INSERT(A)

Thread #3
Begin @ 30

A1

BEGIN-TS END-TS

1 ∞
POINTER

Ø

UPDATE(A)

A2 20 ∞ Ø

20

A1 30 ∞ Ø

READ(A)

Thread #1
Begin @ 10

Commit @ 25

25 25

25

READ(A)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MVCC INDEXES

Each index's underlying data structure must
support the storage of non-unique keys.

Use additional execution logic to perform
conditional inserts for pkey / unique indexes.
→ Atomically check whether the key exists and then insert.

Workers may get back multiple entries for a single
fetch. They then must follow the pointers to find
the proper physical version.

30

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MVCC EVALUATION PAPER

We implemented all the design decisions in the
Peloton DBMS as part of 15-721 in Spring 2016.

Two categories of experiments:
→ Evaluate each of the design decisions in isolation to

determine their trade-offs.
→ Compare configurations of real-world MVCC systems.

31

AN EMPIRICAL EVALUATION OF IN-MEMORY
MULTI-VERSION CONCURRENCY CONTROL
VLDB 2017

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://github.com/cmu-db/peloton
https://15721.courses.cs.cmu.edu/spring2019/papers/03-mvcc1/wu-vldb2017.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/03-mvcc1/wu-vldb2017.pdf

15-721 (Spring 2020)

MVCC DESIGN DECISIONS

CC Protocol: Inconclusive results…

Version Storage: Deltas

Garbage Collection: Tuple-Level Vacuuming

Indexes: Logical Pointers

32

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MVCC CONFIGURATION EVALUATION

33

Protocol Version Storage Garbage Collection Indexes

Oracle MV2PL Delta Vacuum Logical

Postgres MV-2PL/MV-TO Append-Only Vacuum Physical

MySQL-InnoDB MV-2PL Delta Vacuum Logical

HYRISE MV-OCC Append-Only – Physical

Hekaton MV-OCC Append-Only Cooperative Physical

MemSQL MV-OCC Append-Only Vacuum Physical

SAP HANA MV-2PL Time-travel Hybrid Logical

NuoDB MV-2PL Append-Only Vacuum Logical

HyPer MV-OCC Delta Txn-level Logical

CMU's TBD MV-OCC Delta Txn-level Logical

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://github.com/cmu-db/terrier

15-721 (Spring 2020)

MVCC CONFIGURATION EVALUATION

34

0

25

50

75

100

0 8 16 24 32 40

T
hr

ou
gh

pu
t (

tx
n

/s
ec

)

Threads

 Oracle/MySQL

 NuoDB

HyPer

HYRISE

MemSQL

 HANA

HEKATON

 Postgres

Database: TPC-C Benchmark (40 Warehouses)
Processor: 4 sockets, 10 cores per socket

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MVCC CONFIGURATION EVALUATION

34

0

25

50

75

100

0 8 16 24 32 40

T
hr

ou
gh

pu
t (

tx
n

/s
ec

)

Threads

 Oracle/MySQL

 NuoDB

HyPer

HYRISE

MemSQL

 HANA

HEKATON

 Postgres

Database: TPC-C Benchmark (40 Warehouses)
Processor: 4 sockets, 10 cores per socket

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://rhaas.blogspot.com/2018/01/do-or-undo-there-is-no-vacuum.html

15-721 (Spring 2020)

PROJECT #1

Identify bottlenecks in the DBMS's sequential scan
implementation using profiling tools and refactor
the system to remove it.

This project is meant to teach you how to work in
a highly concurrent system.

100

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

YET-TO-BE-NAMED DBMS

CMU’s new in-memory hybrid relational DBMS
→ HyPer-style MVCC column store
→ Multi-threaded architecture
→ Latch-free Bw-Tree Index
→ Native support for Apache Arrow format
→ Vectorized Execution Engine
→ MemSQL-style LLVM-based Query Compilation
→ Cascades-style Query Optimizer
→ Postgres Wire Protocol / Catalog Compatible

Long term vision is to build a "self-driving" system

101

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://blog.acolyer.org/2017/01/17/self-driving-database-management-systems/

15-721 (Spring 2020)

PROJECT #1 TESTING

We are providing you with a suite of C++
benchmarks for you check your implementation.
→ Focus on the ConcurrentSlotIterators microbenchmark but

you will want to run all of them to make sure your code
works.

We strongly encourage you to do your own
additional testing.
→ Different workloads
→ Different # of threads
→ Different access patterns

102

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://github.com/cmu-db/terrier/blob/master/benchmark/storage/data_table_benchmark.cpp#L319

15-721 (Spring 2020)

PROJECT #1 GRADING

We will run additional tests beyond what we
provided you for grading.

We will also use Google's Sanitizers when testing
your code.

All source code must pass ClangFormat +
ClangTidy syntax formatting checker.
→ See documentation for formatting guidelines

103

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://github.com/google/sanitizers
https://github.com/cmu-db/terrier/wiki/Before-You-Start#comments-formatting-and-libraries

15-721 (Spring 2020)

DEVELOPMENT ENVIRONMENT

The DBMS builds on Ubuntu 18.04+ and OSX.
→ You can also do development on docker or VM.

This is CMU so I’m going to assume that each of
you can get access to a machine.

Important: You will not be able to identify the
bottleneck on a machine with less than 8 cores.

104

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

TESTING ENVIRONMENT

Every student will receive $50 of Amazon AWS
credits to run experiments on EC2.
→ Setup monitoring + alerts to prevent yourself from

burning through your credits.
→ Use spot instances whenever possible.

Target EC2 Instance: c5.9xlarge
→ On Demand: $1.53/hr
→ Spot Instance: $0.34/hr (as of Jan 2020)

105

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PROJECT #1

Due Date: February 16th @ 11:59pm

Source code + final report will be turned in using
Gradescope but graded using a different machine.

Full description and instructions:

https://15721.courses.cs.cmu.edu/spring2020/proj
ect1.html

106

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2020/project1.html

15-721 (Spring 2020)

PARTING THOUGHTS

MVCC is the best approach for supporting txns in
mixed workloads.

We mostly only discussed MVCC for OLTP.
→ Design decisions may be different for HTAP

35

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

NEXT CL ASS

Modern MVCC Implementations
→ TUM HyPer
→ CMU Cicada
→ Microsoft Hekaton

36

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

