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15-721 (Spring 2020)

MULTI-VERSION CONCURRENCY CONTROL

The DBMS maintains multiple physical versions 
of a single logical object in the database:
→ When a txn writes to an object, the DBMS creates a new 

version of that object. 
→ When a txn reads an object, it reads the newest version 

that existed when the txn started.

First proposed in 1978 MIT PhD dissertation.

First implementation was InterBase (Firebird).

Used in almost every new DBMS in last 10 years.
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MULTI-VERSION CONCURRENCY CONTROL

Writers don't block readers.
Readers don't block writers.

Read-only txns can read a consistent snapshot
without acquiring locks or txn ids.
→ Use timestamps to determine visibility.

Easily support time-travel queries.
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SNAPSHOT ISOL ATION (SI )

When a txn starts, it sees a consistent snapshot of 
the database that existed when that the txn started.
→ No torn writes from active txns.
→ If two txns update the same object, then first writer wins.

SI is susceptible to the Write Skew Anomaly.
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WRITE SKEW ANOMALY

5

Txn #1
Change white marbles 
to black.

Txn #2
Change black marbles 
to white.
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ISOL ATION LEVEL HIERARCHY
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REPEATABLE READS SNAPSHOT ISOLATION

READ UNCOMMITTED
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READ COMMITTED
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MVCC DESIGN DECISIONS

Concurrency Control Protocol

Version Storage

Garbage Collection

Index Management
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AN EMPIRICAL EVALUATION OF IN-MEMORY 
MULTI-VERSION CONCURRENCY CONTROL
VLDB 2017
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CONCURRENCY CONTROL PROTOCOL

Approach #1: Timestamp Ordering
→ Assign txns timestamps that determine serial order.
→ Considered to be original MVCC protocol.

Approach #2: Optimistic Concurrency Control
→ Three-phase protocol from last class.
→ Use private workspace for new versions.

Approach #3: Two-Phase Locking
→ Txns acquire appropriate lock on physical version before 

they can read/write a logical tuple.
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TUPLE FORMAT

9

Unique Txn
Identifier

Version
Lifetime

Next/Prev
Version

Additional
Meta-data

TXN-ID DATABEGIN-TS END-TS POINTER ...
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TXN-ID READ-TS BEGIN-TS END-TS

A1 0 1 1 ∞
B1 0 0 1 ∞

TIMESTAMP ORDERING (MV TO)

10

Use read-ts field in the 
header to keep track of the 
timestamp of the last txn
that read it.
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10

Use read-ts field in the 
header to keep track of the 
timestamp of the last txn
that read it.

READ(A)

WRITE(B)

Thread #1

Tid=10
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together as EXCLUSIVE 
lock.

READ(A)
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TXN-ID READ-TS BEGIN-TS END-TS

A1 0 - 99999 ∞

OBSERVATION

12

If the DBMS reaches the max value for its 
timestamps, it will have to wrap around and 
restart at one. This will make all previous versions 
be in the "future" from new transactions.

Thread #1

Tid=231-1
WRITE(A)
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POSTGRES TXN ID WRAPAROUND

Set a flag in each tuple header that says that it is 
"frozen" in the past. Any new txn id will always be 
newer than a frozen version.

Runs the vacuum before the system gets close to 
this upper limit.

Otherwise it must stop accepting new commands 
when the system gets close to the max txn id.
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VERSION STORAGE

The DBMS uses the tuples’ pointer field to create a 
latch-free version chain per logical tuple.
→ This allows the DBMS to find the version that is visible 

to a particular txn at runtime.
→ Indexes always point to the “head” of the chain.

Different storage schemes determine where/what 
to store for each version.

14
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VERSION STORAGE

Approach #1: Append-Only Storage
→ New versions are appended to the same table space.

Approach #2: Time-Travel Storage
→ Old versions are copied to separate table space.

Approach #3: Delta Storage
→ The original values of the modified attributes are copied 

into a separate delta record space.

15
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APPEND-ONLY STORAGE

All the physical versions of a logical 
tuple are stored in the same table 
space. The versions are mixed 
together.

On every update, append a new 
version of the tuple into an empty 
space in the table.

16

Main Table

VALUE

A0 $111

POINTER

A1 $222 Ø

B1 $10 Ø
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VERSION CHAIN ORDERING

Approach #1: Oldest-to-Newest (O2N)
→ Append every new version to end of the chain.
→ Must traverse chain on look-ups. 

Approach #2: Newest-to-Oldest (N2O)
→ Must update index pointers for every new version.
→ Don’t have to traverse chain on look ups. 

The ordering of the chain has different 
performance trade-offs.

17
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TIME-TRAVEL STORAGE

18

Main Table

VALUE

A2 $222

POINTER

B1 $10

Time-Travel Table

VALUE

A1 $111

POINTER

Ø

On every update, copy the 
current version to the time-
travel table. Update pointers.
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travel table. Update pointers.
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TIME-TRAVEL STORAGE

18

Overwrite master version in 
the main table and update 
pointers.

Main Table

VALUE

A2 $222

POINTER

B1 $10

Time-Travel Table

VALUE

A1 $111

POINTER

A2 $222

Ø

On every update, copy the 
current version to the time-
travel table. Update pointers.
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TIME-TRAVEL STORAGE

18

Overwrite master version in 
the main table and update 
pointers.

Main Table

VALUE

A2 $222

POINTER

B1 $10

A3 $333

Time-Travel Table

VALUE

A1 $111

POINTER

A2 $222

Ø

On every update, copy the 
current version to the time-
travel table. Update pointers.
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TIME-TRAVEL STORAGE

18

Overwrite master version in 
the main table and update 
pointers.

Main Table

VALUE

A2 $222

POINTER

B1 $10

A3 $333

Time-Travel Table

VALUE

A1 $111

POINTER

A2 $222

Ø

On every update, copy the 
current version to the time-
travel table. Update pointers.
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DELTA STORAGE

19

Main Table

VALUE

A1 $111

POINTER

B1 $10

Delta Storage Segment

On every update, copy only 
the values that were modified 
to the delta storage and 
overwrite the master version.
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DELTA STORAGE

19

Txns can recreate old 
versions by applying the delta 
in reverse order.

Main Table

VALUE

A1 $111

POINTER

B1 $10

Delta Storage Segment

DELTA POINTER

A2 (VALUE→$222)

A1 (VALUE→$111) ØA2 $222A3 $333

On every update, copy only 
the values that were modified 
to the delta storage and 
overwrite the master version.
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NON-INLINE AT TRIBUTES

20

INT_VAL

A1 $100

Variable-Length Data

A1

STR_VAL MY_LONG_STRING

Main Table

Reuse pointers to variable-
length pool for values that do 
not change between versions.
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INT_VAL
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Main Table
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NON-INLINE AT TRIBUTES

20

Requires reference counters 
to know when it is safe to 
free memory. Unable to 
relocate memory easily.

INT_VAL

A1 $100

A2 $90

Variable-Length Data

MY_LONG_STRINGRefs=1

A1

STR_VAL

Main Table

Reuse pointers to variable-
length pool for values that do 
not change between versions.
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NON-INLINE AT TRIBUTES

20

Requires reference counters 
to know when it is safe to 
free memory. Unable to 
relocate memory easily.

INT_VAL

A1 $100

A2 $90

Variable-Length Data

MY_LONG_STRINGRefs=1

A1

STR_VAL Refs=2

Main Table

Reuse pointers to variable-
length pool for values that do 
not change between versions.
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GARBAGE COLLECTION

The DBMS needs to remove reclaimable physical 
versions from the database over time.
→ No active txn in the DBMS can “see” that version (SI).
→ The version was created by an aborted txn.

Three additional design decisions:
→ How to look for expired versions?
→ How to decide when it is safe to reclaim memory?
→ Where to look for expired versions?

21
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GARBAGE COLLECTION

Approach #1: Tuple-level
→ Find old versions by examining tuples directly.
→ Background Vacuuming vs. Cooperative Cleaning

Approach #2: Transaction-level
→ Txns keep track of their old versions so the DBMS does 

not have to scan tuples to determine visibility.

22
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Thread #1

Tid=12

Thread #2

Tid=25

BEGIN-TS END-TS

A100 1 9

B100 1 9

B101 10 20

TUPLE-LEVEL GC

23

Background Vacuuming:
Separate thread(s) periodically 
scan the table and look for 
reclaimable versions. Works 
with any storage.

Vacuum
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Thread #1

Tid=12

Thread #2

Tid=25

TUPLE-LEVEL GC

23

Background Vacuuming:
Separate thread(s) periodically 
scan the table and look for 
reclaimable versions. Works 
with any storage.

Cooperative Cleaning:
Worker threads identify 
reclaimable versions as they 
traverse version chain. Only 
works with O2N.

A2 A3

B0 B1 B2 B3

INDEX
A0 A1
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Background Vacuuming:
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with any storage.

Cooperative Cleaning:
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Tid=12

Thread #2

Tid=25

TUPLE-LEVEL GC
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Background Vacuuming:
Separate thread(s) periodically 
scan the table and look for 
reclaimable versions. Works 
with any storage.

Cooperative Cleaning:
Worker threads identify 
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Thread #1

Tid=12

Thread #2

Tid=25

TUPLE-LEVEL GC

23

Background Vacuuming:
Separate thread(s) periodically 
scan the table and look for 
reclaimable versions. Works 
with any storage.

Cooperative Cleaning:
Worker threads identify 
reclaimable versions as they 
traverse version chain. Only 
works with O2N.

A2 A3

B0 B1 B2 B3

INDEX

GET(A)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

TRANSACTION-LEVEL GC

Each txn keeps track of its read/write set.

The DBMS determines when all versions created 
by a finished txn are no longer visible.

May still require multiple threads to reclaim the 
memory fast enough for the workload.

24
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INDEX MANAGEMENT

PKey indexes always point to version chain head.
→ How often the DBMS must update the pkey index 

depends on whether the system creates new versions 
when a tuple is updated.

→ If a txn updates a tuple’s pkey attribute(s), then this is 
treated as a DELETE followed by an INSERT.

Secondary indexes are more complicated…

25
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SECONDARY INDEXES

Approach #1: Logical Pointers
→ Use a fixed identifier per tuple that does not change.
→ Requires an extra indirection layer.
→ Primary Key vs. Tuple Id

Approach #2: Physical Pointers
→ Use the physical address to the version chain head.

26
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INDEX POINTERS

27

PRIMARY INDEX SECONDARY INDEX

A4 A3 A2 A1

GET(A)

Append-Only
Newest-to-Oldest

Physical 
Address
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INDEX POINTERS
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Append-Only
Newest-to-Oldest

GET(A)
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INDEX POINTERS

27

PRIMARY INDEX SECONDARY INDEX

A4 A3 A2 A1
Append-Only
Newest-to-Oldest

GET(A)

TupleId→Address

TupleId

Physical 
Address
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MVCC INDEXES

MVCC DBMS indexes (usually) do not store 
version information about tuples with their keys.
→ Exception: Index-organized tables (e.g., MySQL)

Every index must support duplicate keys from 
different snapshots:
→ The same key may point to different logical tuples in 

different snapshots.

28
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MVCC DUPLICATE KEY PROBLEM

29

Index

A1

BEGIN-TS END-TS

1 ∞
POINTER

Ø

READ(A)

Thread #1
Begin @ 10
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Thread #1
Begin @ 10
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MVCC DUPLICATE KEY PROBLEM
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MVCC DUPLICATE KEY PROBLEM

29

Index

DELETE(A)

Thread #2
Begin @ 20

A1

BEGIN-TS END-TS

1 ∞
POINTER

Ø

UPDATE(A)

A2 20 ∞ Ø

20

READ(A)

Thread #1
Begin @ 10

Commit @ 25

25 25

25
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MVCC DUPLICATE KEY PROBLEM

29

Index

DELETE(A)

Thread #2
Begin @ 20

INSERT(A)

Thread #3
Begin @ 30

A1

BEGIN-TS END-TS

1 ∞
POINTER

Ø

UPDATE(A)

A2 20 ∞ Ø

20

A1 30 ∞ Ø

READ(A)

Thread #1
Begin @ 10

Commit @ 25

25 25
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MVCC DUPLICATE KEY PROBLEM
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Index

DELETE(A)

Thread #2
Begin @ 20

INSERT(A)

Thread #3
Begin @ 30

A1

BEGIN-TS END-TS

1 ∞
POINTER

Ø

UPDATE(A)

A2 20 ∞ Ø

20

A1 30 ∞ Ø

READ(A)

Thread #1
Begin @ 10

Commit @ 25

25 25

25

READ(A)
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MVCC INDEXES

Each index's underlying data structure must 
support the storage of non-unique keys. 

Use additional execution logic to perform 
conditional inserts for pkey / unique indexes.
→ Atomically check whether the key exists and then insert.

Workers may get back multiple entries for a single 
fetch. They then must follow the pointers to find 
the proper physical version.

30
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MVCC EVALUATION PAPER

We implemented all the design decisions in the 
Peloton DBMS as part of 15-721 in Spring 2016.

Two categories of experiments:
→ Evaluate each of the design decisions in isolation to 

determine their trade-offs.
→ Compare configurations of real-world MVCC systems.

31

AN EMPIRICAL EVALUATION OF IN-MEMORY 
MULTI-VERSION CONCURRENCY CONTROL
VLDB 2017
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MVCC DESIGN DECISIONS

CC Protocol: Inconclusive results…

Version Storage: Deltas

Garbage Collection: Tuple-Level Vacuuming

Indexes: Logical Pointers

32
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MVCC CONFIGURATION EVALUATION

33

Protocol Version Storage Garbage Collection Indexes

Oracle MV2PL Delta Vacuum Logical

Postgres MV-2PL/MV-TO Append-Only Vacuum Physical

MySQL-InnoDB MV-2PL Delta Vacuum Logical

HYRISE MV-OCC Append-Only – Physical

Hekaton MV-OCC Append-Only Cooperative Physical

MemSQL MV-OCC Append-Only Vacuum Physical

SAP HANA MV-2PL Time-travel Hybrid Logical

NuoDB MV-2PL Append-Only Vacuum Logical

HyPer MV-OCC Delta Txn-level Logical

CMU's TBD MV-OCC Delta Txn-level Logical

https://db.cs.cmu.edu/
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MVCC CONFIGURATION EVALUATION

34
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PROJECT #1

Identify bottlenecks in the DBMS's sequential scan 
implementation using profiling tools and refactor 
the system to remove it.

This project is meant to teach you how to work in 
a highly concurrent system.

100
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YET-TO-BE-NAMED DBMS

CMU’s new in-memory hybrid relational DBMS
→ HyPer-style MVCC column store
→ Multi-threaded architecture
→ Latch-free Bw-Tree Index
→ Native support for Apache Arrow format
→ Vectorized Execution Engine
→ MemSQL-style LLVM-based Query Compilation
→ Cascades-style Query Optimizer
→ Postgres Wire Protocol / Catalog Compatible

Long term vision is to build a "self-driving" system

101
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PROJECT #1 TESTING

We are providing you with a suite of C++ 
benchmarks for you check your implementation.
→ Focus on the ConcurrentSlotIterators microbenchmark but 

you will want to run all of them to make sure your code 
works.

We strongly encourage you to do your own 
additional testing.
→ Different workloads
→ Different # of threads
→ Different access patterns

102
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PROJECT #1 GRADING

We will run additional tests beyond what we 
provided you for grading.

We will also use Google's Sanitizers when testing 
your code.

All source code must pass ClangFormat + 
ClangTidy syntax formatting checker.
→ See documentation for formatting guidelines
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DEVELOPMENT ENVIRONMENT

The DBMS builds on Ubuntu 18.04+ and OSX.
→ You can also do development on docker or VM.

This is CMU so I’m going to assume that each of 
you can get access to a machine.

Important: You will not be able to identify the 
bottleneck on a machine with less than 8 cores.
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TESTING ENVIRONMENT

Every student will receive $50 of Amazon AWS 
credits to run experiments on EC2.
→ Setup monitoring + alerts to prevent yourself from 

burning through your credits.
→ Use spot instances whenever possible.

Target EC2 Instance: c5.9xlarge
→ On Demand: $1.53/hr
→ Spot Instance: $0.34/hr (as of Jan 2020)
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PROJECT #1

Due Date: February 16th @ 11:59pm

Source code + final report will be turned in using 
Gradescope but graded using a different machine.

Full description and instructions:

https://15721.courses.cs.cmu.edu/spring2020/proj
ect1.html
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PARTING THOUGHTS

MVCC is the best approach for supporting txns in 
mixed workloads.

We mostly only discussed MVCC for OLTP.
→ Design decisions may be different for HTAP

35
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NEXT CL ASS

Modern MVCC Implementations
→ TUM HyPer
→ CMU Cicada
→ Microsoft Hekaton

36
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