
L
e

c
tu

re
 #

0
5

Multi-Version Concurrency
Control (Garbage Collection)
@Andy_Pavlo // 15-721 // Spring 2020

ADVANCED
DATABASE
SYSTEMS

https://15721.courses.cs.cmu.edu/spring2019/
http://db.cs.cmu.edu/
https://twitter.com/andy_pavlo

15-721 (Spring 2020)

MVCC GARBAGE COLLECTION

A MVCC DBMS needs to remove reclaimable
physical versions from the database over time.
→ No active txn in the DBMS can “see” that version (SI).
→ The version was created by an aborted txn.

The DBMS uses the tuples' version meta-data to
decide whether it is visible.

2

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

OBSERVATION

We have assumed that queries / txns will complete
in a short amount of time. This means that the
lifetime of an obsolete version is short as well.

But HTAP workloads may have long running
queries that access old snapshots.

Such queries block the traditional garbage
collection methods that we have discussed.

3

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PROBLEMS WITH OLD VERSIONS

Increased Memory Usage

Memory Allocator Contention

Longer Version Chains

Garbage Collector CPU Spikes

Poor Time-based Version Locality

4

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MVCC Deletes

Garbage Collection

Block Compaction

5

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MVCC DELETES

The DBMS physically deletes a tuple from the
database only when all versions of a logically
deleted tuple are not visible.
→ If a tuple is deleted, then there cannot be a new version of

that tuple after the newest version.
→ No write-write conflicts / first-writer wins

We need a way to denote that tuple has been
logically delete at some point in time.

6

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MVCC DELETES

Approach #1: Deleted Flag
→ Maintain a flag to indicate that the logical tuple has been

deleted after the newest physical version.
→ Can either be in tuple header or a separate column.

Approach #2: Tombstone Tuple
→ Create an empty physical version to indicate that a logical

tuple is deleted.
→ Use a separate pool for tombstone tuples with only a

special bit pattern in version chain pointer to reduce the
storage overhead.

7

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

GC DESIGN DECISIONS

Index Clean-up

Version Tracking Level

Frequency

Granularity

Comparison Unit

8

HYBRID GARBAGE COLLECTION FOR MULTI-VERSION
CONCURRENCY CONTROL IN SAP HANA
SIGMOD 2016

SCALABLE GARBAGE COLLECTION FOR IN-MEMORY
MVCC SYSTEMS
VLDB 2019

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2020/papers/05-mvcc3/p1307-lee.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/05-mvcc3/p1307-lee.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/05-mvcc3/p128-bottcher.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/05-mvcc3/p128-bottcher.pdf

15-721 (Spring 2020)

GC INDEX CLEAN-UP

The DBMS must remove a tuples' keys from
indexes when their corresponding versions are no
longer visible to active txns.

Track the txn's modifications to individual indexes
to support GC of older versions on commit and
removal modifications on abort.

9

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PELOTON MISTAKE

10

Thread #1
Begin @ 10

Index

VERSION

A1

BEGIN-TS END-TS

1 ∞
KEY

111

key=222

UPDATE(A)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PELOTON MISTAKE

10

Thread #1
Begin @ 10

Index

VERSION

A1

BEGIN-TS END-TS

1 ∞
KEY

111

A2 10 ∞ 222

10

key=222

UPDATE(A)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PELOTON MISTAKE

10

Thread #1
Begin @ 10

Index

VERSION

A1

BEGIN-TS END-TS

1 ∞
KEY

111

A2 10 ∞ 222

10

key=222 key=333

UPDATE(A) UPDATE(A)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PELOTON MISTAKE

10

Thread #1
Begin @ 10

Index

VERSION

A1

BEGIN-TS END-TS

1 ∞
KEY

111

A2 10 ∞ 222

10

key=222 key=333

A3 333

UPDATE(A) UPDATE(A)

If a txn writes to same tuple
more than once, then it just
overwrites its previous version.

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PELOTON MISTAKE

10

Thread #1
Begin @ 10

Index

VERSION

A1

BEGIN-TS END-TS

1 ∞
KEY

111

A2 10 ∞ 222

10

key=222 key=333

A3 333

UPDATE(A) UPDATE(A)

key=444

UPDATE(A)

A4 444

If a txn writes to same tuple
more than once, then it just
overwrites its previous version.

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PELOTON MISTAKE

10

Thread #1
Begin @ 10

Index

VERSION

A1

BEGIN-TS END-TS

1 ∞
KEY

111

A2 10 ∞ 222

10

key=222 key=333

ABORT

A3 333

UPDATE(A) UPDATE(A)

key=444

UPDATE(A)

A4 444

If a txn writes to same tuple
more than once, then it just
overwrites its previous version.

Upon rollback, the DBMS did
not know what keys it added to
the index in previous versions.

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

GC VERSION TRACKING

Approach #1: Tuple-level
→ Find old versions by examining tuples directly.
→ Background Vacuuming vs. Cooperative Cleaning

Approach #2: Transaction-level
→ Txns keep track of their old versions so the DBMS does

not have to scan tuples to determine visibility.

Approach #3: Epochs
→ Group multiple txns togethers into an epoch and then

11

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

GC VERSION TRACKING

12

Thread #1

UPDATE(A)
Begin @ 10

A2

B6

BEGIN-TS END-TS

1 ∞
8 ∞

DATA

-

-

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

GC VERSION TRACKING

12

Thread #1

UPDATE(A)
Begin @ 10

A2

B6

BEGIN-TS END-TS

1 ∞
8 ∞

DATA

-

-

A3 10 ∞ -

10

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

GC VERSION TRACKING

12

Thread #1

UPDATE(A)
Begin @ 10

Old Versions

A2

A2

B6

BEGIN-TS END-TS

1 ∞
8 ∞

DATA

-

-

A3 10 ∞ -

10

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

GC VERSION TRACKING

12

UPDATE(B)

Thread #1

UPDATE(A)
Begin @ 10

Old Versions

A2

A2

B6

BEGIN-TS END-TS

1 ∞
8 ∞

DATA

-

-

A3 10 ∞ -

10

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

GC VERSION TRACKING

12

UPDATE(B)

Thread #1

UPDATE(A)
Begin @ 10

Old Versions

A2

A2

B6

BEGIN-TS END-TS

1 ∞
8 ∞

DATA

-

-

A3 10 ∞ -

B7 10 ∞ -

10

10

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

GC VERSION TRACKING

12

UPDATE(B)

Thread #1

UPDATE(A)
Begin @ 10

Old Versions

A2

B6

A2

B6

BEGIN-TS END-TS

1 ∞
8 ∞

DATA

-

-

A3 10 ∞ -

B7 10 ∞ -

10

10

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

GC VERSION TRACKING

12

UPDATE(B)

Thread #1

UPDATE(A)
Begin @ 10

Old Versions

A2

B6

A2

B6

BEGIN-TS END-TS

1 ∞
8 ∞

DATA

-

-

A3 10 ∞ -

B7 10 ∞ -

10

10
Commit @ 15 15

15

15

15

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

GC VERSION TRACKING

12

UPDATE(B)

Thread #1

UPDATE(A)
Begin @ 10

Vacuum

Old Versions

A2

B6

A2

B6

BEGIN-TS END-TS

1 ∞
8 ∞

DATA

-

-

A3 10 ∞ -

B7 10 ∞ -

10

10

TS<15

Commit @ 15 15

15

15

15

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

GC FREQUENCY

How often the DBMS should invoke the GC
procedure to remove versions.

Need to balance many factors:
→ Too frequent will waste cycles and slow down txns.
→ Too infrequent will cause storage overhead to increase

and increase the length of version chains.

13

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

GC FREQUENCY

Approach #1: Periodically
→ Run the GC at fixed intervals or when some threshold

has been met (e.g., epoch, memory limits).
→ Some DBMSs can adjust this interval based on load.

Approach #2: Continuously
→ Run the GC as part of the regular txn processing (e.g., on

commit, during query execution).

14

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

GC GRANUL ARIT Y

How should the DBMS internally organize the
expired versions that it needs to check to
determine whether they are reclaimable.

Trade-off between the ability to reclaim versions
sooner versus computational overhead.

15

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

GC GRANUL ARIT Y

Approach #1: Single Version
→ Track the visibility of individual versions and reclaim

them separately.
→ More fine-grained control, but higher overhead.

Approach #2: Group Version
→ Organize versions into groups and reclaim all of them

together.
→ Less overhead but may delay reclamations.

16

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

GC GRANUL ARIT Y

Approach #3: Tables
→ Reclaim all versions from a table if the DBMS determines

that active txns will never access it.
→ Special case for stored procedures and prepared

statements since it requires the DBMS knowing what
tables a txn will access in advance.

17

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

GC COMPARISON UNIT

How should the DBMS determine whether
version(s) are reclaimable.

Examining the list of active txns and reclaimable
versions should be latch-free.
→ It is okay if the GC misses a recently committed txn. It

will find it in the next round.

18

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

GC COMPARISON UNIT

Approach #1: Timestamp
→ Use a global minimum timestamp to determine whether

versions are safe to reclaim.
→ Easiest to implement and execute.

Approach #2: Interval
→ Excise timestamp ranges that are not visible.
→ More difficult to identify ranges.

19

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

GC COMPARISON UNIT

32

UPDATE(A)

Thread #1

A1

BEGIN-TS END-TS

1 ∞
DATA

-

A2 20 ∞ -

A3 30 ∞ -

20READ(A)

Thread #2

Thread #3

UPDATE(A)

Begin @ 10

Begin @ 20

Begin @ 30

30

Commit @ 25

25

25

Commit @ 35

35

35

Timestamp
→ GC cannot reclaim A2 because the lowest active

txn TS (10) is less than END-TS.

Interval
→ GC can reclaim A2 because no active txn TS

intersects the interval [25,35].

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

GC INTERVAL DELTA RECORDS

33

Main Data Table

ATTR1

Tupac

ATTR2

$100

Version
Vector

Delta Storage

Thread #1
Begin @ 15

A60

(ATTR2→$99)A50

(ATTR2→$88)A40

(ATTR2→$77)A30

(ATTR2→$66) ØA10

(ATTR1→Andy)A20
Thread #2
Begin @ 55

(ATTR1→Andy,
ATTR2→$99)

A50

Consolidated Delta

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

OBSERVATION

If the application deletes a tuple, then what should
the DBMS do with the slots occupied by that
tuple's versions?
→ Always reuse variable-length data slots.
→ More nuanced for fixed-length data slots.

What if the application deletes many (but not all)
tuples in a table in a short amount of time?

34

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MVCC DELETED TUPLES

Approach #1: Reuse Slot
→ Allow workers to insert new tuples in the empty slots.
→ Obvious choice for append-only storage since there is no

distinction between versions.
→ Destroys temporal locality of tuples in delta storage.

Approach #2: Leave Slot Unoccupied
→ Workers can only insert new tuples in slots that were not

previously occupied.
→ Ensures that tuples in the same block were inserted into

the database at around the same time.
→ Need an extra mechanism to fill holes.

35

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

BLOCK COMPACTION

Consolidating less-than-full blocks into fewer
blocks and then returning memory to the OS.
→ Move data using DELETE + INSERT to ensure

transactional guarantees during consolidation.

Ideally the DBMS will want to store tuples that are
likely to be accessed together within a window of
time together in the same block.
→ This will matter more when we talk about compression

and moving cold data out to disk.

36

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

BLOCK COMPACTION TARGETS

Approach #1: Time Since Last Update
→ Leverage the BEGIN-TS in each tuple.

Approach #2: Time Since Last Access
→ Expensive to maintain unless tuple has READ-TS.

Approach #3: Application-level Semantics
→ Tuples from the same table that are related to each other

according to some higher-level construct.
→ Difficult to figure out automatically.

37

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

BLOCK COMPACTION TRUNCATE

TRUNCATE operation removes all tuples in a table.
→ Think of it like a DELETE without a WHERE clause.

Fastest way to execute is to drop the table and then
create it again.
→ Do not need to track the visibility of individual tuples.
→ The GC will free all memory when there are no active

txns that exist before the drop operation.
→ If the catalog is transactional, then this easy to do.

38

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PARTING THOUGHTS

Classic storage vs. compute trade-off.

My impression is that people want to reduce the
memory footprint of the DBMS and are willing to
pay a (small) computational overhead for more
aggressive GC.

39

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

40

ANDY’S

TIPS FOR
PROFILING

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MOTIVATION

Consider a program with functions foo and bar.

How can we speed it up with only a debugger ?
→ Randomly pause it during execution
→ Collect the function call stack

41

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

RANDOM PAUSE METHOD

Consider this scenario
→ Collected 10 call stack samples
→ Say 6 out of the 10 samples were in foo

What percentage of time was spent in foo?
→ Roughly 60% of the time was spent in foo
→ Accuracy increases with # of samples

42

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Say we optimized foo to run two times faster

What’s the expected overall speedup ?
→ 60% of time spent in foo drops in half
→ 40% of time spent in bar unaffected

By Amdahl’s law, overall speedup =
1

𝒑

𝒔
+(1−𝒑)

→ p = percentage of time spent in optimized task
→ s = speed up for the optimized task

→ Overall speedup =
1

0.6

2
+0.4

= 1.4 times faster

43

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PROFILING TOOLS FOR REAL

Choice #1: Valgrind
→ Heavyweight binary instrumentation framework with

different tools to measure different events.

Choice #2: Perf
→ Lightweight tool that uses hardware counters to capture

events during execution.

44

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CHOICE #1: VALGRIND

Instrumentation framework for building dynamic
analysis tools.
→ memcheck: a memory error detector
→ callgrind: a call-graph generating profiler
→ massif: memory usage tracking.

45

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Using callgrind to profile the target benchmark
and the overall DBMS in general:

Profile data visualization tool:
$ kcachegrind callgrind.out.12345

KCACHEGRIND

46

$ export TERRIER_BENCHMARK_THREADS=16
$ valgrind --tool=callgrind --trace-children=yes
./relwithdebinfo/slot_iterator_benchmark

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Using callgrind to profile the target benchmark
and the overall DBMS in general:

Profile data visualization tool:
$ kcachegrind callgrind.out.12345

KCACHEGRIND

46

$ export TERRIER_BENCHMARK_THREADS=16
$ valgrind --tool=callgrind --trace-children=yes
./relwithdebinfo/slot_iterator_benchmark

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Using callgrind to profile the target benchmark
and the overall DBMS in general:

Profile data visualization tool:
$ kcachegrind callgrind.out.12345

KCACHEGRIND

46

$ export TERRIER_BENCHMARK_THREADS=16
$ valgrind --tool=callgrind --trace-children=yes
./relwithdebinfo/slot_iterator_benchmark

Cumulative Time
Distribution

Callgraph View

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CHOICE #2: PERF

Tool for using the performance counters
subsystem in Linux.
→ -e = sample the event cycles at the user level only
→ -c = collect a sample every 2000 occurrences of event

Uses counters for tracking events
→ On counter overflow, the kernel records a sample
→ Sample contains info about program execution

47

$ export TERRIER_BENCHMARK_THREADS=16
$ perf record -e cycles:u -c 2000
./relwithdebinfo/slot_iterator_benchmark

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PERF VISUALIZATION

We can also use perf to visualize the generated
profile for our application.

There are also third-party visualization tools:
→ Hotspot

48

$ perf report

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://github.com/KDAB/hotspot

15-721 (Spring 2020)

PERF VISUALIZATION

We can also use perf to visualize the generated
profile for our application.

There are also third-party visualization tools:
→ Hotspot

48

$ perf report

Cumulative Event
Distribution

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://github.com/KDAB/hotspot

15-721 (Spring 2020)

PERF VISUALIZATION

We can also use perf to visualize the generated
profile for our application.

There are also third-party visualization tools:
→ Hotspot

48

$ perf report

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://github.com/KDAB/hotspot

15-721 (Spring 2020)

PERF VISUALIZATION

We can also use perf to visualize the generated
profile for our application.

There are also third-party visualization tools:
→ Hotspot

48

$ perf report

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://github.com/KDAB/hotspot

15-721 (Spring 2020)

PERF VISUALIZATION

We can also use perf to visualize the generated
profile for our application.

There are also third-party visualization tools:
→ Hotspot

48

$ perf report

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://github.com/KDAB/hotspot

15-721 (Spring 2020)

PERF EVENTS

Supports several other events like:
→ L1-dcache-load-misses
→ branch-misses

To see a list of events:

Another usage example:

49

$ perf list

$ perf record -e cycles,LLC-load-misses -c 2000
./relwithdebinfo/slot_iterator_benchmark

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

REFERENCES

Valgrind
→ The Valgrind Quick Start Guide
→ Callgrind
→ Kcachegrind
→ Tips for the Profiling/Optimization process

Perf
→ Perf Tutorial
→ Perf Examples
→ Perf Analysis Tools

50

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://valgrind.org/docs/manual/quick-start.html
http://valgrind.org/docs/manual/cl-manual.html
https://kcachegrind.github.io/html/Usage.html
https://kcachegrind.github.io/html/Tips.html
https://perf.wiki.kernel.org/index.php/Tutorial
http://www.brendangregg.com/perf.html
https://github.com/brendangregg/perf-tools

15-721 (Spring 2020)

NEXT CL ASS

Index Locking + Latching

T-Trees (1980s / TimesTen)

Bw-Tree (Hekaton)

51

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

