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L ATCH IMPLEMENTATION GOALS

Small memory footprint.

Fast execution path when no contention.

Deschedule thread when it has been waiting for 
too long to avoid burning cycles.

Each latch should not have to implement their 
own queue to track waiting threads.
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L ATCH IMPLEMENTATIONS

Test-and-Set Spinlock

Blocking OS Mutex

Adaptive Spinlock

Queue-based Spinlock

Reader-Writer Locks
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L ATCH IMPLEMENTATIONS

Choice #1: Test-and-Set Spinlock (TaS)
→ Very efficient (single instruction to lock/unlock)
→ Non-scalable, not cache friendly, not OS friendly.
→ Example: std::atomic<T>

5

std::atomic_flag latch;
⋮

while (latch.test_and_set(…)) {
// Yield? Abort? Retry?

}
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L ATCH IMPLEMENTATIONS

Choice #2: Blocking OS Mutex
→ Simple to use
→ Non-scalable (about 25ns per lock/unlock invocation)
→ Example: std::mutex

6

std::mutex m;
⋮

m.lock();
// Do something special...
m.unlock();
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L ATCH IMPLEMENTATIONS

Choice #3: Adaptive Spinlock
→ Thread spins on a userspace lock for a brief time.
→ If they cannot acquire the lock, they then get descheduled

and stored in a global "parking lot".
→ Threads check to see whether other threads are "parked" 

before spinning and then park themselves.
→ Example: Apple's WTF::ParkingLot
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L ATCH IMPLEMENTATIONS

Choice #4: Queue-based Spinlock (MCS)
→ More efficient than mutex, better cache locality
→ Non-trivial memory management
→ Example: std::atomic<Latch*>
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L ATCH IMPLEMENTATIONS

Choice #5: Reader-Writer Locks
→ Allows for concurrent readers.
→ Must manage read/write queues to avoid starvation.
→ Can be implemented on top of spinlocks.
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B+TREE

A B+Tree is a self-balancing tree 
data structure that keeps data 
sorted and allows searches, 
sequential access, insertions, and 
deletions in O(log n).  
→ Generalization of a binary search tree 

in that a node can have more than two 
children. 

→ Optimized for systems that read and 
write large blocks of data.
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L ATCH CRABBING /COUPLING

Acquire and release latches on B+Tree nodes when 
traversing the data structure.

A thread can release latch on a parent node if its 
child node considered safe.
→ Any node that won’t split or merge when updated.
→ Not full (on insertion)
→ More than half-full (on deletion)

11
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L ATCH CRABBING

Search: Start at root and go down; repeatedly,
→ Acquire read (R) latch on child
→ Then unlock the parent node.

Insert/Delete: Start at root and go down, 
obtaining write (W) latches as needed.
Once child is locked, check if it is safe:
→ If child is safe, release all locks on ancestors.

12
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EXAMPLE #1:  SEARCH 23
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EXAMPLE #2:  DELETE 44
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EXAMPLE #3:  INSERT 40
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BET TER L ATCH CRABBING

The basic latch crabbing algorithm always takes a 
write latch on the root for any update.
→ This makes the index essentially single threaded.

A better approach is to optimistically assume that 
the target leaf node is safe.
→ Take R latches as you traverse the tree to reach it and 

verify.
→ If leaf is not safe, then do previous algorithm.

17
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EXAMPLE #4:  DELETE 44
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VERSIONED L ATCH COUPLING

Optimistic crabbing scheme where writers are not 
blocked on readers.

Every node now has a version number (counter).
→ Writers increment counter when they acquire latch.
→ Readers proceed if a node’s latch is available but then do 

not acquire it.
→ It then checks whether the latch’s counter has changed 

from when it checked the latch.

Relies on epoch GC to ensure pointers are valid.
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VERSIONED L ATCHES:  SEARCH 44

20

A

B

D G

20

10 35

6 12 23 38 44

C

E F

v3

v5

v6 v9v4

v4

v5

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

VERSIONED L ATCHES:  SEARCH 44

20

A

B

D G

20

10 35

6 12 23 38 44

C

E F

A: Read v3

v3

v5

v6 v9v4

v4

v5

@A

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

VERSIONED L ATCHES:  SEARCH 44

20

A

B

D G

20

10 35

6 12 23 38 44

C

E F

A: Read v3
A: Examine Node

v3

v5

v6 v9v4

v4

v5

@A

@B

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

VERSIONED L ATCHES:  SEARCH 44

20

A

B

D G

20

10 35

6 12 23 38 44

C

E F

A: Read v3
A: Examine Node

v3

v5

v6 v9v4

v4

v5

B: Read v5

@A

@B

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

VERSIONED L ATCHES:  SEARCH 44

20

A

B

D G

20

10 35

6 12 23 38 44

C

E F

A: Read v3
A: Examine Node

v3

v5

v6 v9v4

v4

v5

B: Read v5
A: Recheck v3

@A

@B

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

VERSIONED L ATCHES:  SEARCH 44

20

A

B

D G

20

10 35

6 12 23 38 44

C

E F

A: Read v3
A: Examine Node

v3

v5

v6 v9v4

v4

v5

B: Read v5
A: Recheck v3
B: Examine Node

@A

@B

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

VERSIONED L ATCHES:  SEARCH 44

20

A

B

D G

20

10 35

6 12 23 38 44

C

E F

A: Read v3
A: Examine Node

v3

v5

v6 v9v4

v4

v5

B: Read v5
A: Recheck v3
B: Examine Node

C: Read v9

@A

@B

@C

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

VERSIONED L ATCHES:  SEARCH 44

20

A

B

D G

20

10 35

6 12 23 38 44

C

E F

A: Read v3
A: Examine Node

v3

v5

v6 v9v4

v4

v5

B: Read v5
A: Recheck v3
B: Examine Node

C: Read v9
B: Recheck v5
C: Examine Node

@A

@B

@C

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

VERSIONED L ATCHES:  SEARCH 44

20

A

B

D G

20

10 35

6 12 23 38 44

C

E F

A: Read v3
A: Examine Node

v3

v5

v6 v9v4

v4

v5

B: Read v5
A: Recheck v3
B: Examine Node

C: Read v9
B: Recheck v5
C: Examine Node

@A

@B

@C

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

VERSIONED L ATCHES:  SEARCH 44

20

A

B

D G

20

10 35

6 12 23 38 44

C

E F

A: Read v3
A: Examine Node

v3

v5

v6 v9v4

v4

v5

B: Read v5
A: Recheck v3
B: Examine Node

@A

@B

@C

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

VERSIONED L ATCHES:  SEARCH 44

20

A

B

D G

20

10 35

6 12 23 38 44

C

E F

A: Read v3
A: Examine Node

v3

v5

v6 v9v4

v4

v5

B: Read v5
A: Recheck v3
B: Examine Node

C: Read v9

@A

@B

@C

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

VERSIONED L ATCHES:  SEARCH 44

20

A

B

D G

20

10 35

6 12 23 38 44

C

E F

A: Read v3
A: Examine Node

v3

v5

v6 v9v4

v4

v5

B: Read v5
A: Recheck v3
B: Examine Node

C: Read v9
v6

@A

@B

@C

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

VERSIONED L ATCHES:  SEARCH 44

20

A

B

D G

20

10 35

6 12 23 38 44

C

E F

A: Read v3
A: Examine Node

v3

v5

v6 v9v4

v4

v5

B: Read v5
A: Recheck v3
B: Examine Node

C: Read v9
B: Recheck v5v6

@A

@B

@C

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

VERSIONED L ATCHES:  SEARCH 44

20

A

B

D G

20

10 35

6 12 23 38 44

C

E F

A: Read v3
A: Examine Node

v3

v5

v6 v9v4

v4

v5

B: Read v5
A: Recheck v3
B: Examine Node

C: Read v9
B: Recheck v5v6

@A

@B

@C

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

OBSERVATION

The inner node keys in a B+tree cannot tell you 
whether a key exists in the index. You always must 
traverse to the leaf node.

This means that you could have (at least) one 
cache miss per level in the tree.

21

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

TRIE INDEX

Use a digital representation of keys 
to examine prefixes one-by-one 
instead of comparing entire key.
→ Also known as Digital Search Tree, 

Prefix Tree.

22

Keys:  HELLO, HAT, HAVE

L
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¤

¤ E

¤
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A E
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TRIE INDEX PROPERTIES

Shape only depends on key space and lengths.
→ Does not depend on existing keys or insertion order.
→ Does not require rebalancing operations.

All operations have O(k) complexity where k is the 
length of the key.
→ The path to a leaf node represents the key of the leaf
→ Keys are stored implicitly and can be reconstructed from 

paths.

23
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TRIE KEY SPAN

The span of a trie level is the number of bits that 
each partial key / digit represents.
→ If the digit exists in the corpus, then store a pointer to the 

next level in the trie branch. Otherwise, store null.

This determines the fan-out of each node and the 
physical height of the tree.
→ n-way Trie = Fan-Out of n

24
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TRIE KEY SPAN

Keys:  K10,K25,K31

25

K10→ 00000000 00001010

K25→ 00000000 00011001

K31→ 00000000 00011111

1-bit Span Trie

0 ¤ 1 Ø

0 ¤ 1 Ø

0 ¤ 1 ¤

0 ¤ 1 Ø

0 Ø 1 ¤

0 ¤ 1 Ø

0 ¤ 1 Ø

0 Ø 1 ¤

0 Ø 1 ¤ 0 Ø 1 ¤

0 ¤ 1 ¤

0 Ø 1 ¤

0 Ø 1 ¤

←Repeat 10x

Tuple 
Pointer

Node 
Pointer
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RADIX TREE

Omit all nodes with only a single 
child.
→ Also known as Patricia Tree.

Can produce false positives, so the 
DBMS always checks the original 
tuple to see whether a key matches.

26

1-bit Span Radix Tree

¤ Ø

¤ Ø

¤ ¤

Ø ¤

¤ ¤

Repeat 10x

Tuple 
Pointer

Node 
Pointer
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TRIE VARIANTS

Judy Arrays (HP)

ART Index (HyPer)

Masstree (Silo)

27
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JUDY ARRAYS

Variant of a 256-way radix tree. First known radix 
tree that supports adaptive node representation.

Three array types
→ Judy1: Bit array that maps integer keys to true/false.
→ JudyL: Map integer keys to integer values.
→ JudySL: Map variable-length keys to integer values.

Open-Source Implementation (LGPL).
Patented by HP in 2000. Expires in 2022.
→ Not an issue according to authors.
→ http://judy.sourceforge.net/

28
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JUDY ARRAYS 

Do not store meta-data about node in its header.
→ This could lead to additional cache misses.

Pack meta-data about a node in 128-bit "Judy 
Pointers" stored in its parent node.
→ Node Type
→ Population Count
→ Child Key Prefix / Value (if only one child below)
→ 64-bit Child Pointer

29

A COMPARISON OF ADAPTIVE RADIX TREES 
AND HASH TABLES
ICDE 2015
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JUDY ARRAYS:  NODE T YPES 

Every node can store up to 256 digits.

Not all nodes will be 100% full though.

Adapt node's organization based on its keys.
→ Linear Node: Sparse Populations
→ Bitmap Node: Typical Populations
→ Uncompressed Node: Dense Population

30

A COMPARISON OF ADAPTIVE RADIX TREES 
AND HASH TABLES
ICDE 2015
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JUDY ARRAYS:  LINEAR NODES

Store sorted list of partial prefixes 
up to two cache lines.
→ Original spec was one cache line

Store separate array of pointers to 
children ordered according to 
prefix sorted.

31

Linear Node

K0 K2 K8 ¤ ¤ ¤

0 1 5

... ...

0 1 5
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JUDY ARRAYS:  LINEAR NODES

Store sorted list of partial prefixes 
up to two cache lines.
→ Original spec was one cache line

Store separate array of pointers to 
children ordered according to 
prefix sorted.

31

Linear Node

K0 K2 K8 ¤ ¤ ¤

0 1 5

... ...

0 1 5

Sorted Digits Child Pointers

6 × 1-byte = 
6 bytes

6 × 16-bytes = 
96 bytes

102 bytes
128 bytes (padded)
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JUDY ARRAYS:  BITMAP NODES

256-bit map to mark whether a 
prefix is present in node.

Bitmap is divided into eight 
segments, each with a pointer to a 
sub-array with pointers to child 
nodes.

32

Bitmap Node

01000110 ¤

0-7 8-15 248-255

00000000 ¤ ... 00100100 ¤

...¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤
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JUDY ARRAYS:  BITMAP NODES
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JUDY ARRAYS:  BITMAP NODES

256-bit map to mark whether a 
prefix is present in node.

Bitmap is divided into eight 
segments, each with a pointer to a 
sub-array with pointers to child 
nodes.
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Child Pointers
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ADAPATIVE RADIX TREE (ART)

Developed for TUM HyPer DBMS in 2013.

256-way radix tree that supports different node 
types based on its population.
→ Stores meta-data about each node in its header.

Concurrency support was added in 2015.

33

THE ADAPTIVE RADIX TREE: ARTFUL INDEXING FOR 
MAIN-MEMORY DATABASES
ICDE 2013
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ART vs .  JUDY

Difference #1: Node Types
→ Judy has three node types with different organizations.
→ ART has four nodes types that (mostly) vary in the 

maximum number of children.

Difference #2: Purpose
→ Judy is a general-purpose associative array. It "owns" the 

keys and values.
→ ART is a table index and does not need to cover the full 

keys. Values are pointers to tuples.

34
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ART:  INNER NODE T YPES (1)

Store only the 8-bit digits that exist 
at a given node in a sorted array.

The offset in sorted digit array 
corresponds to offset in value 
array.

35

Node16

K0 K2 K8 ¤ ¤ ¤

0 1 15

... ...

0 1 15

Node4

K0 K2 K3 K8 ¤ ¤ ¤ ¤

0 1 2 3 0 1 2 3
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ART:  INNER NODE T YPES (2)

Instead of storing 1-byte digits, 
maintain an array of 1-byte offsets 
to a child pointer array that is 
indexed on the digit bits.

36

Node48

K0

... ¤ ¤ ¤...

0 1 47K1 K2 K255

¤ Ø ¤ ¤

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

ART:  INNER NODE T YPES (2)

Instead of storing 1-byte digits, 
maintain an array of 1-byte offsets 
to a child pointer array that is 
indexed on the digit bits.

36

Node48

K0

... ¤ ¤ ¤...

0 1 47K1 K2 K255

¤ Ø ¤ ¤

Pointer Array Offsets

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

ART:  INNER NODE T YPES (2)

Instead of storing 1-byte digits, 
maintain an array of 1-byte offsets 
to a child pointer array that is 
indexed on the digit bits.

36

Node48

K0

... ¤ ¤ ¤...

0 1 47K1 K2 K255

¤ Ø ¤ ¤

Pointer Array Offsets

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

ART:  INNER NODE T YPES (2)

Instead of storing 1-byte digits, 
maintain an array of 1-byte offsets 
to a child pointer array that is 
indexed on the digit bits.

36

Node48

K0

... ¤ ¤ ¤...

0 1 47K1 K2 K255

¤ Ø ¤ ¤

256 × 1-byte = 
256 bytes

48 × 8-bytes = 
384 bytes

640 bytes

Pointer Array Offsets
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ART:  INNER NODE T YPES (3)

Store an array of 256 pointers to 
child nodes. This covers all 
possible values in 8-bit digits.

Same as the Judy Array's 
Uncompressed Node.

37

Node256

K0

...

K1 K2 K255

¤ Ø ¤ ¤

K3 K4 K5

¤ Ø ¤

K6

Ø
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Store an array of 256 pointers to 
child nodes. This covers all 
possible values in 8-bit digits.

Same as the Judy Array's 
Uncompressed Node.
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256 × 8-byte = 
2048 bytes

K3 K4 K5

¤ Ø ¤
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Ø
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ART:  BINARY COMPARABLE KEYS 

Not all attribute types can be decomposed into 
binary comparable digits for a radix tree.
→ Unsigned Integers: Byte order must be flipped for little 

endian machines.
→ Signed Integers: Flip two’s-complement so that negative 

numbers are smaller than positive.
→ Floats: Classify into group (neg vs. pos, normalized vs. 

denormalized), then store as unsigned integer.
→ Compound: Transform each attribute separately.

38
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ART:  BINARY COMPARABLE KEYS 

39

Hex Key:  0A 0B 0C 0D

Int Key:  168496141 0A

0B

0C

0D
Big

Endian

0D

0C

0B

0A

Little
Endian

0A

0F0B

0B 1D0C ¤

¤ ¤0D0B

¤ ¤

8-bit Span Radix Tree
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0D
Big
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MASSTREE

Instead of using different layouts 
for each trie node based on its size, 
use an entire B+Tree.
→ Each B+tree represents 8-byte span.
→ Optimized for long keys.
→ Uses a latching protocol that is similar 

to versioned latches.

Part of the Harvard Silo project.
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CACHE CRAFTINESS FOR FAST MULTICORE 
KEY-VALUE STORAGE
EUROSYS 2012

Masstree
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http://15721.courses.cs.cmu.edu/
https://dbdb.io/db/silo
https://dl.acm.org/citation.cfm?id=2168855
https://dl.acm.org/citation.cfm?id=2168855
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PARTING THOUGHTS

Andy was wrong about the Bw-Tree and latch-
free indexes.

Radix trees have interesting properties, but a well-
written B+tree is still a solid design choice.
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NEXT CL ASS

System Catalogs

Data Layout

Storage Models
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