
L
e

c
tu

re
 #

0
9

Database Compression

@Andy_Pavlo // 15-721 // Spring 2020

ADVANCED
DATABASE
SYSTEMS

https://15721.courses.cs.cmu.edu/spring2019/
http://db.cs.cmu.edu/
https://twitter.com/andy_pavlo

15-721 (Spring 2020)

UPCOMING DATABASE EVENTS

Oracle Tech Talk
→ Wednesday Feb 12th @ 4:30pm
→ NSH 4305

2

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://db.cs.cmu.edu/events/spring-2020-aurosish-mishra-oracle/

15-721 (Spring 2020)

L AST CL ASS

3

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://docs.memsql.com/sql-reference/v6.8/datatypes/

15-721 (Spring 2020)

Compression Background

Naïve Compression

OLAP Columnar Compression

OLTP Index Compression

4

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

OBSERVATION

I/O is the main bottleneck if the DBMS has to
fetch data from disk.

In-memory DBMSs are more complicated.

Key trade-off is speed vs. compression ratio
→ In-memory DBMSs (always?) choose speed.
→ Compressing the database reduces DRAM requirements

and processing.

5

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

REAL-WORLD DATA CHARACTERISTICS

Data sets tend to have highly skewed
distributions for attribute values.
→ Example: Zipfian distribution of the Brown Corpus

Data sets tend to have high correlation between
attributes of the same tuple.
→ Example: Zip Code to City, Order Date to Ship Date

6

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://en.wikipedia.org/wiki/Brown_Corpus

15-721 (Spring 2020)

DATABASE COMPRESSION

Goal #1: Must produce fixed-length values.
→ Only exception is var-length data stored in separate pool.

Goal #2: Postpone decompression for as long as
possible during query execution.
→ Also known as late materialization.

Goal #3: Must be a lossless scheme.

7

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

LOSSLESS VS. LOSSY COMPRESSION

When a DBMS uses compression, it is always
lossless because people don’t like losing data.

Any kind of lossy compression must be performed
at the application level.

Reading less than the entire data set during query
execution is sort of like of compression…

8

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

DATA SKIPPING

Approach #1: Approximate Queries (Lossy)
→ Execute queries on a sampled subset of the entire table to

produce approximate results.
→ Examples: BlinkDB, SnappyData, XDB, Oracle (2017)

Approach #2: Zone Maps (Loseless)
→ Pre-compute columnar aggregations per block that allow

the DBMS to check whether queries need to access it.
→ Examples: Oracle, Vertica, MemSQL, Netezza

9

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://blinkdb.org/
http://www.snappydata.io/
https://initialdlab.github.io/XDB/
https://oracle-base.com/articles/12c/approximate-query-processing-12cr2
https://docs.oracle.com/database/121/DWHSG/zone_maps.htm
http://www.dbms2.com/2006/09/20/netezza-vs-conventional-data-warehousing-rdbms/

15-721 (Spring 2020)

ZONE MAPS

Pre-computed aggregates for blocks of data.

DBMS can check the zone map first to decide
whether it wants to access the block.

10

Zone Map

val

100

400

280

1400

type

MIN
MAX
AVG
SUM

5COUNT

Original Data

val

100

200

300
400

400

SELECT * FROM table
WHERE val > 600

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

OBSERVATION

If we want to add compression to our DBMS, the
first question we have to ask ourselves is what is
what do want to compress.

This determines what compression schemes are
available to us…

11

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

COMPRESSION GRANUL ARIT Y

Choice #1: Block-level
→ Compress a block of tuples for the same table.

Choice #2: Tuple-level
→ Compress the contents of the entire tuple (NSM-only).

Choice #3: Attribute-level
→ Compress a single attribute value within one tuple.
→ Can target multiple attributes for the same tuple.

Choice #4: Column-level
→ Compress multiple values for one or more attributes

stored for multiple tuples (DSM-only).

12

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

NAÏVE COMPRESSION

Compress data using a general purpose algorithm.
Scope of compression is only based on the data
provided as input.
→ LZO (1996), LZ4 (2011), Snappy (2011), Brotli (2013),

Oracle OZIP (2014), Zstd (2015)

Considerations
→ Computational overhead
→ Compress vs. decompress speed.

13

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Oberhumer
https://en.wikipedia.org/wiki/LZ4_(compression_algorithm)
https://en.wikipedia.org/wiki/Snappy_(software)
https://en.wikipedia.org/wiki/Brotli
https://patents.google.com/patent/US9697221B2/en
https://en.wikipedia.org/wiki/Zstandard

15-721 (Spring 2020)

MYSQL INNODB COMPRESSION

15

16 KB

[1,2,4,8] KB

Source: MySQL 5.7 Documentation

Buffer Pool Disk Pages

Uncompressed
page0

Compressed page0

mod log

Compressed page0

mod log

Compressed page1

mod log

Compressed page2

mod log

Updates

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://dev.mysql.com/doc/refman/5.7/en/innodb-compression-internals.html

15-721 (Spring 2020)

NAÏVE COMPRESSION

The DBMS must decompress data first before it
can be read and (potentially) modified.
→ This limits the “scope” of the compression scheme.

These schemes also do not consider the high-level
meaning or semantics of the data.

16

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

OBSERVATION

We can perform exact-match comparisons and
natural joins on compressed data if predicates and
data are compressed the same way.
→ Range predicates are trickier…

17

SELECT * FROM users
WHERE name = 'Andy'

SELECT * FROM users
WHERE name = XX

NAME SALARY

Andy 99999

Matt 88888

NAME SALARY

XX AA
YY BB

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

COLUMNAR COMPRESSION

Null Supression

Run-length Encoding

Bitmap Encoding

Delta Encoding

Incremental Encoding

Mostly Encoding

Dictionary Encoding

18

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

NULL SUPPRESSION

Consecutive zeros or blanks in the data are
replaced with a description of how many there
were and where they existed.
→ Example: Oracle’s Byte-Aligned Bitmap Codes (BBC)

Useful in wide tables with sparse data.

19

DATABASE COMPRESSION
SIGMOD RECORD 1993

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=163096
http://dl.acm.org/citation.cfm?id=163096

15-721 (Spring 2020)

RUN-LENGTH ENCODING

Compress runs of the same value in a single
column into triplets:
→ The value of the attribute.
→ The start position in the column segment.
→ The # of elements in the run.

Requires the columns to be sorted intelligently to
maximize compression opportunities.

20

DATABASE COMPRESSION
SIGMOD RECORD 1993

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=163096
http://dl.acm.org/citation.cfm?id=163096

15-721 (Spring 2020)

RUN-LENGTH ENCODING

21

Compressed Data

id

2

1

4

3

7

6

9

8

sex

(F,3,1)

(M,0,3)

(F,5,1)

(M,4,1)

(M,6,2)

Original Data

id

2

1

4

3

7

6

9

8

sex

M

M

F

M

F

M

M

M
RLE Triplet
- Value
- Offset
- Length

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

RUN-LENGTH ENCODING

21

Compressed Data

id

2

1

4

3

7

6

9

8

sex

(F,3,1)

(M,0,3)

(F,5,1)

(M,4,1)

(M,6,2)

RLE Triplet
- Value
- Offset
- Length

SELECT sex, COUNT(*)
FROM users
GROUP BY sex

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

RUN-LENGTH ENCODING

21

Compressed Data

id

2

1

4

3

7

6

9

8

sex

(F,3,1)

(M,0,3)

(F,5,1)

(M,4,1)

(M,6,2)

Original Data

id

2

1

4

3

7

6

9

8

sex

M

M

F

M

F

M

M

M
RLE Triplet
- Value
- Offset
- Length

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

RUN-LENGTH ENCODING

21

Compressed DataSorted Data

id

2

1

6

3

9

8

7

4

sex

M

M

M

M

M

M

F

F

id

2

1

6

3

9

8

7

4

sex

(F,7,2)

(M,0,6)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

BITMAP ENCODING

Store a separate bitmap for each unique value for
an attribute where an offset in the vector
corresponds to a tuple.
→ The ith position in the Bitmap corresponds to the ith tuple

in the table.
→ Typically segmented into chunks to avoid allocating large

blocks of contiguous memory.

Only practical if the value cardinality is low.

22

MODEL 204 ARCHITECTURE AND PERFORMANCE
HIGH PERFORMANCE TRANSACTION SYSTEMS 1987

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dx.doi.org/10.1007/3-540-51085-0_42
http://dx.doi.org/10.1007/3-540-51085-0_42

15-721 (Spring 2020)

BITMAP ENCODING

23

Compressed DataOriginal Data

id

2

1

4

3

7

6

9

8

sex

M

M

F

M

F

M

M

M

id

2

1

4

3

7

6

9

8

M

1

1

0

1

0

1

1

1

F

0

0

1

0

1

0

0

0

sex

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

BITMAP ENCODING

23

Compressed DataOriginal Data

id

2

1

4

3

7

6

9

8

sex

M

M

F

M

F

M

M

M

id

2

1

4

3

7

6

9

8

M

1

1

0

1

0

1

1

1

F

0

0

1

0

1

0

0

0

sex

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

BITMAP ENCODING

23

Compressed DataOriginal Data

id

2

1

4

3

7

6

9

8

sex

M

M

F

M

F

M

M

M

id

2

1

4

3

7

6

9

8

M

1

1

0

1

0

1

1

1

F

0

0

1

0

1

0

0

0

sex

9 × 8-bits =
72 bits

9 × 2-bits =
18 bits

2 × 8-bits =
16 bits

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

BITMAP ENCODING: EXAMPLE

Assume we have 10 million tuples.
43,000 zip codes in the US.
→ 10000000 × 32-bits = 40 MB
→ 10000000 × 43000 = 53.75 GB

Every time a txn inserts a new
tuple, the DBMS must extend
43,000 different bitmaps.

24

CREATE TABLE customer_dim (
id INT PRIMARY KEY,
name VARCHAR(32),
email VARCHAR(64),
address VARCHAR(64),
zip_code INT

);

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

BITMAP ENCODING: COMPRESSION

Approach #1: General Purpose Compression
→ Use standard compression algorithms (e.g., LZ4, Snappy).
→ Have to decompress before you can use it to process a

query. Not useful for in-memory DBMSs.

Approach #2: Byte-aligned Bitmap Codes
→ Structured run-length encoding compression.

25

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

ORACLE BY TE-ALIGNED BITMAP CODES

Divide bitmap into chunks that contain different
categories of bytes:
→ Gap Byte: All the bits are 0s.
→ Tail Byte: Some bits are 1s.

Encode each chunk that consists of some Gap
Bytes followed by some Tail Bytes.
→ Gap Bytes are compressed with RLE.
→ Tail Bytes are stored uncompressed unless it consists of

only 1-byte or has only one non-zero bit.

26

BYTE-ALIGNED BITMAP COMPRESSION
DATA COMPRESSION CONFERENCE 1995

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dx.doi.org/10.1109/DCC.1995.515586
http://dx.doi.org/10.1109/DCC.1995.515586

15-721 (Spring 2020)

ORACLE BY TE-ALIGNED BITMAP CODES

27

Source: Brian Babcock

00000000 00000000 00010000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 01000000 00100010

Bitmap

Compressed Bitmap

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://web.stanford.edu/class/cs345/slides/Lecture9.ppt

15-721 (Spring 2020)

ORACLE BY TE-ALIGNED BITMAP CODES

27

Source: Brian Babcock

00000000 00000000 00010000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 01000000 00100010

Bitmap

Compressed Bitmap

Gap Bytes Tail Bytes

#1

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://web.stanford.edu/class/cs345/slides/Lecture9.ppt

15-721 (Spring 2020)

ORACLE BY TE-ALIGNED BITMAP CODES

27

Source: Brian Babcock

00000000 00000000 00010000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 01000000 00100010

Bitmap

Compressed Bitmap

Gap Bytes Tail Bytes

#1

#2

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://web.stanford.edu/class/cs345/slides/Lecture9.ppt

15-721 (Spring 2020)

ORACLE BY TE-ALIGNED BITMAP CODES

27

Chunk #1 (Bytes 1-3)

Header Byte:
→ Number of Gap Bytes (Bits 1-3)
→ Is the tail special? (Bit 4)
→ Number of verbatim bytes (if Bit 4=0)
→ Index of 1 bit in tail byte (if Bit 4=1)

No gap length bytes since gap length < 7

No verbatim bytes since tail is special.

Source: Brian Babcock

00000000 00000000 00010000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 01000000 00100010

Bitmap

Compressed Bitmap

(010)(1)(0100)#1

#1

1-3 4 5-7

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://web.stanford.edu/class/cs345/slides/Lecture9.ppt

15-721 (Spring 2020)

ORACLE BY TE-ALIGNED BITMAP CODES

27

Source: Brian Babcock

00000000 00000000 00010000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 01000000 00100010

Bitmap

Compressed Bitmap

Chunk #2 (Bytes 4-18)

Header Byte:
→ 13 gap bytes, two tail bytes
→ # of gaps is > 7, so have to use extra byte

One gap length byte gives gap length = 13

Two verbatim bytes for tail.

(010)(1)(0100)#1

(111)(0)(0010) 00001101
01000000 00100010

#2

#2

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://web.stanford.edu/class/cs345/slides/Lecture9.ppt

15-721 (Spring 2020)

ORACLE BY TE-ALIGNED BITMAP CODES

27

Source: Brian Babcock

00000000 00000000 00010000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 01000000 00100010

Bitmap

Compressed Bitmap

Chunk #2 (Bytes 4-18)

Header Byte:
→ 13 gap bytes, two tail bytes
→ # of gaps is > 7, so have to use extra byte

One gap length byte gives gap length = 13

Two verbatim bytes for tail.

(010)(1)(0100)#1

(111)(0)(0010) 00001101
01000000 00100010

#2

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://web.stanford.edu/class/cs345/slides/Lecture9.ppt

15-721 (Spring 2020)

ORACLE BY TE-ALIGNED BITMAP CODES

27

Source: Brian Babcock

00000000 00000000 00010000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 01000000 00100010

Bitmap

Compressed Bitmap

Chunk #2 (Bytes 4-18)

Header Byte:
→ 13 gap bytes, two tail bytes
→ # of gaps is > 7, so have to use extra byte

One gap length byte gives gap length = 13

Two verbatim bytes for tail.

(010)(1)(0100)#1

(111)(0)(0010) 00001101
01000000 00100010

#2
Gap Length

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://web.stanford.edu/class/cs345/slides/Lecture9.ppt

15-721 (Spring 2020)

ORACLE BY TE-ALIGNED BITMAP CODES

27

Source: Brian Babcock

00000000 00000000 00010000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 01000000 00100010

Bitmap

Compressed Bitmap

Chunk #2 (Bytes 4-18)

Header Byte:
→ 13 gap bytes, two tail bytes
→ # of gaps is > 7, so have to use extra byte

One gap length byte gives gap length = 13

Two verbatim bytes for tail.

(010)(1)(0100)#1

(111)(0)(0010) 00001101
01000000 00100010

#2

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://web.stanford.edu/class/cs345/slides/Lecture9.ppt

15-721 (Spring 2020)

ORACLE BY TE-ALIGNED BITMAP CODES

27

Source: Brian Babcock

00000000 00000000 00010000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 01000000 00100010

Bitmap

Compressed Bitmap

Chunk #2 (Bytes 4-18)

Header Byte:
→ 13 gap bytes, two tail bytes
→ # of gaps is > 7, so have to use extra byte

One gap length byte gives gap length = 13

Two verbatim bytes for tail.

(010)(1)(0100)#1

(111)(0)(0010) 00001101
01000000 00100010

#2

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://web.stanford.edu/class/cs345/slides/Lecture9.ppt

15-721 (Spring 2020)

ORACLE BY TE-ALIGNED BITMAP CODES

27

Source: Brian Babcock

00000000 00000000 00010000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 01000000 00100010

Bitmap

Compressed Bitmap

Chunk #2 (Bytes 4-18)

Header Byte:
→ 13 gap bytes, two tail bytes
→ # of gaps is > 7, so have to use extra byte

One gap length byte gives gap length = 13

Two verbatim bytes for tail.

(010)(1)(0100)#1

(111)(0)(0010) 00001101
01000000 00100010

#2

Verbatim
Tail Bytes

Original: 18 bytes

BBC Compressed: 5 bytes.

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://web.stanford.edu/class/cs345/slides/Lecture9.ppt

15-721 (Spring 2020)

OBSERVATION

Oracle's BBC is an obsolete format.
→ Although it provides good compression, it is slower than

recent alternatives due to excessive branching.
→ Word-Aligned Hybrid (WAH) encoding is a patented

variation on BBC that provides better performance.

None of these support random access.
→ If you want to check whether a given value is present,

you have to start from the beginning and decompress the
whole thing.

28

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://sdm.lbl.gov/fastbit/compression.html

15-721 (Spring 2020)

DELTA ENCODING

Recording the difference between values that
follow each other in the same column.
→ Store base value in-line or in a separate look-up table.
→ Combine with RLE to get even better compression ratios.

29

Original Data

time

12:01
12:00

12:03
12:02

12:04

temp

99.4
99.5

99.6
99.5

99.4

Compressed Data

time

+1
12:00

+1
+1

+1

temp

-0.1
99.5

+0.1
+0.1

-0.2

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

DELTA ENCODING

Recording the difference between values that
follow each other in the same column.
→ Store base value in-line or in a separate look-up table.
→ Combine with RLE to get even better compression ratios.

29

Original Data

time

12:01
12:00

12:03
12:02

12:04

temp

99.4
99.5

99.6
99.5

99.4

Compressed Data

time

+1
12:00

+1
+1

+1

temp

-0.1
99.5

+0.1
+0.1

-0.2

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

DELTA ENCODING

Recording the difference between values that
follow each other in the same column.
→ Store base value in-line or in a separate look-up table.
→ Combine with RLE to get even better compression ratios.

29

Original Data

time

12:01
12:00

12:03
12:02

12:04

temp

99.4
99.5

99.6
99.5

99.4

Compressed Data

time

(+1,4)
12:00

temp

-0.1
99.5

+0.1
+0.1

-0.2

Compressed Data

time

+1
12:00

+1
+1

+1

temp

-0.1
99.5

+0.1
+0.1

-0.2

32-bits + (4 × 16-bits)
= 96 bits

5 × 32-bits
= 160 bits

32-bits + (2 × 16-bits)
= 64 bits

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

INCREMENTAL ENCODING

Type of delta encoding that avoids duplicating
common prefixes/suffixes between consecutive
tuples. This works best with sorted data.

30

Original Data

rob

robbed

robbing

robot

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

INCREMENTAL ENCODING

Type of delta encoding that avoids duplicating
common prefixes/suffixes between consecutive
tuples. This works best with sorted data.

30

Original Data

rob

robbed

robbing

robot

Common Prefix

-

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

INCREMENTAL ENCODING

Type of delta encoding that avoids duplicating
common prefixes/suffixes between consecutive
tuples. This works best with sorted data.

30

Original Data

rob

robbed

robbing

robot

Common Prefix

-

rob

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

INCREMENTAL ENCODING

Type of delta encoding that avoids duplicating
common prefixes/suffixes between consecutive
tuples. This works best with sorted data.

30

Original Data

rob

robbed

robbing

robot

Common Prefix

-

rob

robb

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

INCREMENTAL ENCODING

Type of delta encoding that avoids duplicating
common prefixes/suffixes between consecutive
tuples. This works best with sorted data.

30

Original Data

rob

robbed

robbing

robot

Common Prefix

-

rob

robb

rob

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

INCREMENTAL ENCODING

Type of delta encoding that avoids duplicating
common prefixes/suffixes between consecutive
tuples. This works best with sorted data.

30

Original Data

rob

robbed

robbing

robot

Common Prefix

-

rob

robb

rob

Compressed Data

rob

bed

ing

ot

0

3

4

3

Prefix
Length

Suffix

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

INCREMENTAL ENCODING

Type of delta encoding that avoids duplicating
common prefixes/suffixes between consecutive
tuples. This works best with sorted data.

30

Original Data

rob

robbed

robbing

robot

Common Prefix

-

rob

robb

rob

Compressed Data

rob

bed

ing

ot

0

3

4

3

Prefix
Length

Suffix

3 × 8-bits = 24 bits

6 × 8-bits = 48 bits

7 × 8-bits = 56 bits

5 × 8-bits = 40 bits

= 168 bits

3 × 8-bits = 24 bits

3 × 8-bits = 24 bits

3 × 8-bits = 24 bits

2 × 8-bits = 16 bits

= 88 bits

4 × 8-bits = 32 bits

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MOSTLY ENCODING

When values for an attribute are “mostly” less than
the largest size, store them as smaller data type.
→ The remaining values that cannot be compressed are

stored in their raw form.

31

Source: Redshift Documentation

Original Data

int64

4
2

6
99999999

8

Compressed Data

mostly8

4
2

6
XXX

8

offset
3

value
999999995 × 64-bits =

320 bits

(5 × 8-bits) +
16-bits + 64-bits
= 120 bits

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://docs.aws.amazon.com/redshift/latest/dg/c_MostlyN_encoding.html

15-721 (Spring 2020)

DICTIONARY COMPRESSION

Replace frequent patterns with smaller codes.

Most pervasive compression scheme in DBMSs.

Need to support fast encoding and decoding.

Need to also support range queries.

32

ADAPTIVE STRING DICTIONARY COMPRESSION IN
IN-MEMORY COLUMN-STORE DATABASE SYSTEMS
EDBT 2014

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2020/papers/09-compression/muller-edbt2014.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/09-compression/muller-edbt2014.pdf

15-721 (Spring 2020)

DICTIONARY COMPRESSION

When to construct the dictionary?

What is the scope of the dictionary?

What data structure do we use for the dictionary?

What encoding scheme to use for the dictionary?

33

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

DICTIONARY CONSTRUCTION

Choice #1: All At Once
→ Compute the dictionary for all the tuples at a given point

of time.
→ New tuples must use a separate dictionary or the all

tuples must be recomputed.

Choice #2: Incremental
→ Merge new tuples in with an existing dictionary.
→ Likely requires re-encoding to existing tuples.

34

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

DICTIONARY SCOPE

Choice #1: Block-level
→ Only include a subset of tuples within a single table.
→ Potentially lower compression ratio, but can add new

tuples more easily.

Choice #2: Table-level
→ Construct a dictionary for the entire table.
→ Better compression ratio, but expensive to update.

Choice #3: Multi-Table
→ Can be either subset or entire tables.
→ Sometimes helps with joins and set operations.

35

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MULTI-AT TRIBUTE ENCODING

Instead of storing a single value per dictionary
entry, store entries that span attributes.
→ I’m not sure any DBMS implements this.

36

Original Data Compressed Data

202

val2

101
202

101
202

101

val1

B
A

C
A

B
A

101C
101B

val2

101
202

101

val1

B
A

C

code

YY
XX

ZZ

val1+val2

YY
XX

ZZ
XX

YY

ZZ
XX

YY

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

ENCODING / DECODING

A dictionary needs to support two operations:
→ Encode/Locate: For a given uncompressed value,

convert it into its compressed form.
→ Decode/Extract: For a given compressed value, convert

it back into its original form.

No magic hash function will do this for us.

37

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

ORDER-PRESERVING ENCODING

The encoded values need to support sorting in the
same order as original values.

38

SELECT * FROM users
WHERE name LIKE 'And%'

Original Data

name

Andrea

Prashanth

Andy

Matt

Compressed Data

code
10

20

30

40

value
Andrea

Andy

Matt

Prashanth

name
10

40

20

30

SELECT * FROM users
WHERE name BETWEEN 10 AND 20

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

ORDER-PRESERVING ENCODING

39

SELECT name FROM users
WHERE name LIKE 'And%' ???

Original Data

name

Andrea

Prashanth

Andy

Matt

Compressed Data

code
10

20

30

40

value
Andrea

Andy

Matt

Prashanth

name
10

40

20

30

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

ORDER-PRESERVING ENCODING

39

SELECT name FROM users
WHERE name LIKE 'And%'

Still must perform seq scan

Original Data

name

Andrea

Prashanth

Andy

Matt

Compressed Data

code
10

20

30

40

value
Andrea

Andy

Matt

Prashanth

name
10

40

20

30

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

ORDER-PRESERVING ENCODING

39

SELECT name FROM users
WHERE name LIKE 'And%'

SELECT DISTINCT name
FROM users
WHERE name LIKE 'And%'

Still must perform seq scan

???

Original Data

name

Andrea

Prashanth

Andy

Matt

Compressed Data

code
10

20

30

40

value
Andrea

Andy

Matt

Prashanth

name
10

40

20

30

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

ORDER-PRESERVING ENCODING

39

SELECT name FROM users
WHERE name LIKE 'And%'

SELECT DISTINCT name
FROM users
WHERE name LIKE 'And%'

Still must perform seq scan

Only need to access dictionary

Original Data

name

Andrea

Prashanth

Andy

Matt

Compressed Data

code
10

20

30

40

value
Andrea

Andy

Matt

Prashanth

name
10

40

20

30

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

DICTIONARY DATA STRUCTURES

Choice #1: Array
→ One array of variable length strings and another array

with pointers that maps to string offsets.
→ Expensive to update.

Choice #2: Hash Table
→ Fast and compact.
→ Unable to support range and prefix queries.

Choice #3: B+Tree
→ Slower than a hash table and takes more memory.
→ Can support range and prefix queries.

40

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SHARED-LEAVES B+TREE

41

Decode Index

Encode Index

Decode Index

value
aab

code
10

aae 20
aaf 30
aaz 40

value
zzb

code
960

zzm 970
zzx 980
zzz 990

Original
Value

Encoded
Value

Encoded
Value

Original
Value

Sorted
Shared Leaf

Incremental
Encoding

DICTIONARY-BASED ORDER-PRESERVING STRING
COMPRESSION FOR MAIN MEMORY COLUMN STORES
SIGMOD 2009

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2020/papers/09-compression/p283-binnig.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/09-compression/p283-binnig.pdf

15-721 (Spring 2020)

OBSERVATION

An OLTP DBMS cannot use the OLAP
compression techniques because we need to
support fast random tuple access.
→ Compressing & decompressing “hot” tuples on-the-fly

would be too slow to do during a txn.

Indexes consume a large portion of the memory
for an OLTP database…

42

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

OLTP INDEX OVERHEAD

43

Tuples
Primary
Indexes

Secondary
Indexes

TPC-C 42.5% 33.5% 24.0%

Articles 64.8% 22.6% 12.6%

Voter 45.1% 54.9% 0%

57.5%

54.9%

35.2%

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

HYBRID INDEXES

Split a single logical index into two physical
indexes. Data is migrated from one stage to the
next over time.
→ Dynamic Stage: New data, fast to update.
→ Static Stage: Old data, compressed + read-only.

All updates go to dynamic stage.
Reads may need to check both stages.

44

REDUCING THE STORAGE OVERHEAD OF MAIN-MEMORY
OLTP DATABASES WITH HYBRID INDEXES
SIGMOD 2016

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2020/papers/09-compression/zhang-sigmod2016.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/09-compression/zhang-sigmod2016.pdf

15-721 (Spring 2020)

HYBRID INDEXES

45

Dynamic
Index

Static
Index

Insert
Update
Delete

Read

Bloom Filter

Merge

ReadRead

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

COMPACT B+TREE

46

20

10 35

6 12 23 38

Empty Slots

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

COMPACT B+TREE

46

12

6 12 23 38

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

COMPACT B+TREE

46

12

6 12 23 38

Pointers

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

COMPACT B+TREE

46

12

6 12 23 38

Computed Offset

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

HYBRID INDEXES

47

Source: Huanchen Zhang

50% Reads / 50% Writes
50 million Entries

5.1 5.0

1.7

6.2

12.6

2.0

0

4

8

12

16

Random
Int

Mono-Inc
Int

Email

T
hr

ou
gh

pu
t (

M
op

/s
ec

)

1.3
1.8

3.2

0.9 0.9

2.3

0

1

2

3

4

Random
Int

Mono-Inc
Int

Email

M
em

or
y

 (
G

B
)

Original B+Tree Hybrid B+Tree

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://www.cs.cmu.edu/~huanche1/

15-721 (Spring 2020)

PARTING THOUGHTS

Dictionary encoding is probably the most useful
compression scheme because it does not require
pre-sorting.

The DBMS can combine different approaches for
even better compression.

It is important to wait as long as possible during
query execution to decompress data.

48

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

NEXT CL ASS

Logging + Checkpoints!

49

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

