
L
e

c
tu

re
 #

1
0

Recovery Protocols

@Andy_Pavlo // 15-721 // Spring 2020

ADVANCED
DATABASE
SYSTEMS

https://15721.courses.cs.cmu.edu/spring2019/
http://db.cs.cmu.edu/
https://twitter.com/andy_pavlo

15-721 (Spring 2020)

DATABASE RECOVERY

Recovery algorithms are techniques to ensure
database consistency, atomicity and durability
despite failures.

Recovery algorithms have two parts:
→ Actions during normal txn processing to ensure that the

DBMS can recover from a failure.
→ Actions after a failure to recover the database to a state

that ensures atomicity, consistency, and durability.

2

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

OBSERVATION

Many of the early papers (1980s) on recovery for
in-memory DBMSs assume that there is non-
volatile memory.
→ Battery-backed DRAM is large / finnicky
→ Real NVM is finally here as of 2019!

This hardware is still not widely available, so we
want to use existing SSD/HDDs.

3

A RECOVERY ALGORITHM FOR A HIGH-PERFORMANCE
MEMORY-RESIDENT DATABASE SYSTEM
SIGMOD 1987

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2020/papers/10-recovery/p104-lehman.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/10-recovery/p104-lehman.pdf

15-721 (Spring 2020)

OBSERVATION

Many of the early papers (1980s) on recovery for
in-memory DBMSs assume that there is non-
volatile memory.
→ Battery-backed DRAM is large / finnicky
→ Real NVM is finally here as of 2019!

This hardware is still not widely available, so we
want to use existing SSD/HDDs.

3

A RECOVERY ALGORITHM FOR A HIGH-PERFORMANCE
MEMORY-RESIDENT DATABASE SYSTEM
SIGMOD 1987

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2020/papers/10-recovery/p104-lehman.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/10-recovery/p104-lehman.pdf

15-721 (Spring 2020)

IN-MEMORY DATABASE RECOVERY

Slightly easier than in a disk-oriented DBMS
because the system must do less work:
→ Do not track dirty pages in case of crash during recovery.
→ Do not store undo records (only need redo).
→ Do not log changes to indexes.

But the DBMS is still stymied by the slow sync
time of non-volatile storage.

4

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Logging Schemes

Checkpoint Protocols

Restart Protocols

5

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

LOGGING SCHEMES

Approach #1: Physical Logging
→ Record the changes made to a specific record in the

database.
→ Example: Store the original value and after value for an

attribute that is changed by a query.

Approach #2: Logical Logging
→ Record the high-level operations executed by txns.
→ Example: The UPDATE, DELETE, and INSERT queries

invoked by a txn.

6

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

LOG FLUSHING

Approach #1: All-at-Once Flushing
→ Wait until a txn has fully committed before writing out

log records to disk.
→ Do not need to store abort records because uncommitted

changes are never written to disk.

Approach #2: Incremental Flushing
→ Allow the DBMS to write a txn's log records to disk

before it has committed.

7

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

GROUP COMMIT

Batch together log records from multiple txns and
flush them together with a single fsync.
→ Logs are flushed either after a timeout or when the buffer

gets full.
→ Originally developed in IBM IMS FastPath in the 1980s

This amortizes the cost of I/O over several txns.

8

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://en.wikipedia.org/wiki/IBM_Information_Management_System#.22Fast_Path.22_databases

15-721 (Spring 2020)

EARLY LOCK RELEASE

A txn's locks can be released before its commit
record is written to disk if it does not return
results to the client before becoming durable.

Other txns that speculatively read data updated by
a pre-committed txn become dependent on it
and must wait for their predecessor’s log records to
reach disk.

9

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

OBSERVATION

The delta records in an MVCC DBMS are like the
log records generated in physical logging.

Instead of generating separate data structures for
MVCC and logging, what if the DBMS could use
the same information?

10

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MSSQL CONSTANT TIME RECOVERY

Physical logging protocol that uses the DBMS's
MVCC time-travel table as the recovery log.
→ The version store is a persistent append-only storage area

that is flushed to disk.
→ Leverage versions meta-data to "undo" updates without

having to process undo records in WAL.

Recovery time is measured based on the number
of version store records that must be read from
disk.

11

CONSTANT TIME RECOVERY IN AZURE SQL DATABASE
VLDB 2019

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2020/papers/10-recovery/p2143-antonopoulos.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/10-recovery/p2143-antonopoulos.pdf

15-721 (Spring 2020)

MSSQL: VERSION STORE

12

Main Table Version Store

COL1

A4

POINTER

B2 yyy

C5 zzz

COL2

$22

$5

xxx $444

COL1

A2 xxx

POINTER

Ø

B1 yyy Ø

A3 xxx

COL2

$222

$11

$333

C4 zzz Ø$4

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MSSQL: VERSION STORE

12

Main Table Version Store

COL1

A4

POINTER

B2 yyy

C5 zzz

COL2

$22

$5

xxx $444

COL1

A2 xxx

POINTER

Ø

B1 yyy Ø

A3 xxx

COL2

$222

$11

$333

C4 zzz Ø$4

A4 xxx $444

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MSSQL: VERSION STORE

12

Main Table Version Store

COL1 POINTER

B2 yyy

C5 zzz

COL2

$22

$5

COL1

A2 xxx

POINTER

Ø

B1 yyy Ø

A3 xxx

COL2

$222

$11

$333

C4 zzz Ø$4

A4 xxx $444

A5 xxx $555

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MSSQL CTR: PERSISTENT VERSION STORE

Approach #1: In-row Versioning
→ Store small updates to a tuple as a delta record embedded

with the latest version in the main table.
→ Same as Cicada "best-effort in-lining" technique.

Approach #2: Off-row Versioning
→ Specialized data table to store the old versions that is

optimized for concurrent inserts.
→ Versions from all tables are stored in a single table.
→ Store redo records for inserts on this table in WAL.

13

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MSSQL CTR: IN-ROW VERSIONING

Store small updates to a tuple as a
delta record embedded with the
latest version in the main table.

The delta record space is not pre-
allocated per tuple in a disk-
oriented DBMS.

14

Main Table

COL1

A4

B2 yyy

C5 zzz

xxx

POINTER

Ø

COL2

$22

$5

$444

DELTA

Ø

Ø

Ø

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MSSQL CTR: IN-ROW VERSIONING

Store small updates to a tuple as a
delta record embedded with the
latest version in the main table.

The delta record space is not pre-
allocated per tuple in a disk-
oriented DBMS.

14

Main Table

COL1

A4

B2 yyy

C5 zzz

xxx

POINTER

Ø

COL2

$22

$5

$444

DELTA

Ø

Ø

Ø

COL2

$444

TXNID

T2

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MSSQL CTR: IN-ROW VERSIONING

Store small updates to a tuple as a
delta record embedded with the
latest version in the main table.

The delta record space is not pre-
allocated per tuple in a disk-
oriented DBMS.

14

Main Table

COL1

B2 yyy

C5 zzz

xxx

POINTER

Ø

COL2

$22

$5

DELTA

Ø

Ø

COL2

$444

TXNID

T2A5 $555

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MSSQL CTR: RECOVERY PROTOCOL

Phase #1: Analysis
→ Identify the sate of every txn in the log.

Phase #2: Redo
→ Recover the main table and version store to their state at

the time of the crash.
→ The database is available and online after this phase.

Phase #3: Undo
→ Mark uncommitted txns as aborted in a global txn state

map so that future txns ignore their versions.
→ Incrementally remove older versions via logical revert.

16

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MSSQL CTR: LOGICAL REVERT

Approach #1: Background Cleanup
→ GC thread scans all blocks and removes reclaimable

versions.
→ If latest version in main table is from an aborted txn, then

it will move the committed version back to main table.

Approach #2: Aborted Version Overwrite
→ Txns can overwrite the latest version in the main table if

that version is from an aborted txn.

17

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SILO

In-memory OLTP DBMS from Harvard/MIT.
→ Single-versioned OCC with epoch-based GC.
→ Same authors of the Masstree.
→ Eddie Kohler is unstoppable.

SiloR uses physical logging + checkpoints to
ensure durability of txns.
→ It achieves high performance by parallelizing all aspects

of logging, checkpointing, and recovery.

18

FAST DATABASES WITH FAST DURABILITY AND RECOVERY
THROUGH MULTICORE PARALLELISM
OSDI 2014

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://en.wikipedia.org/wiki/File:EddieKohlerHarvard-MaleTears-August2014.jpg
https://15721.courses.cs.cmu.edu/spring2020/papers/10-recovery/zheng-osdi14.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/10-recovery/zheng-osdi14.pdf

15-721 (Spring 2020)

SILOR: LOGGING PROTOCOL

The DBMS assumes that there is one storage
device per CPU socket.
→ Assigns one logger thread per device.
→ Worker threads are grouped per CPU socket.

As the worker executes a txn, it creates new log
records that contain the values that were written
to the database (i.e., REDO).

19

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SILOR: LOGGING PROTOCOL

Each logger thread maintains a pool of log buffers
that are given to its worker threads.

When a worker’s buffer is full, it gives it back to
the logger thread to flush to disk and attempts to
acquire a new one.
→ If there are no available buffers, then it stalls.

20

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SILOR: LOG FILES

The logger threads write buffers out to files:
→ After 100 epochs, it creates a new file.
→ The old file is renamed with a marker indicating the max

epoch of records that it contains.

Log record format:
→ Id of the txn that modified the record (TID).
→ A set of value log triplets (Table, Key, Value).
→ The value can be a list of attribute + value pairs.

21

UPDATE people
SET isLame = true

WHERE name IN ('Matt','Andy')

Txn#1001
[people, 888, (isLame→true)]
[people, 999, (isLame→true)]

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Storage

SILOR: ARCHITECTURE

22

Epoch
Thread

Worker Logger
Free
Buffers

Flushing
Buffers

Log Files

epoch=100

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Storage

SILOR: ARCHITECTURE

22

Epoch
Thread

Worker Logger
Free
Buffers

Flushing
Buffers

Log Files

epoch=100

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Storage

SILOR: ARCHITECTURE

22

Epoch
Thread

Worker Logger
Free
Buffers

Flushing
Buffers

Log Files

epoch=100

Log Records

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Storage

SILOR: ARCHITECTURE

22

Epoch
Thread

Worker Logger
Free
Buffers

Flushing
Buffers

Log Files

epoch=100

Log Records

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Storage

SILOR: ARCHITECTURE

22

Epoch
Thread

Worker Logger
Free
Buffers

Flushing
Buffers

Log Files

epoch=100

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Storage

SILOR: ARCHITECTURE

22

Epoch
Thread

Worker Logger
Free
Buffers

Flushing
Buffers

Log Files

epoch=200

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Storage

SILOR: ARCHITECTURE

22

Epoch
Thread

Worker Logger
Free
Buffers

Flushing
Buffers

Log Files

epoch=200

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Storage

SILOR: ARCHITECTURE

22

Epoch
Thread

Worker Logger
Free
Buffers

Flushing
Buffers

Log Files

epoch=200

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Storage

SILOR: ARCHITECTURE

22

Epoch
Thread

Worker Logger
Free
Buffers

Flushing
Buffers

Log Files

epoch=200

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Storage

SILOR: ARCHITECTURE

22

Epoch
Thread

Worker Logger
Free
Buffers

Flushing
Buffers

Log Files

epoch=200

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SILOR: PERSISTENT EPOCH

A special logger thread keeps track of the current
persistent epoch (pepoch)
→ Special log file that maintains the highest epoch that is

durable across all loggers.

Txns that executed in epoch e can only release
their results when the pepoch is durable to non-
volatile storage.

23

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SILOR: ARCHITECTURE

24

Epoch
Thread

Pepoch=100

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SILOR: ARCHITECTURE

24

Epoch
Thread

P

epoch=200

epoch=200

epoch=200

pepoch=200

epoch=200

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SILOR: RECOVERY PROTOCOL

Phase #1: Load Last Checkpoint
→ Install the contents of the last checkpoint that was saved

into the database.
→ All indexes must be rebuilt from checkpoint.

Phase #2: Log Replay
→ Process logs in reverse order to reconcile the latest

version of each tuple.
→ The txn ids generated at runtime are enough to

determine the serial order on recovery.

25

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SILOR: LOG REPL AY

First check the pepoch file to determine the most
recent persistent epoch.
→ Any log record from after the pepoch is ignored.

Log files are processed from newest to oldest.
→ Value logging can be replayed in any order.
→ For each log record, the thread checks to see whether the

tuple already exists.
→ If it does not, then it is created with the value.
→ If it does, then the tuple’s value is overwritten only if the

log TID is newer than tuple’s TID.

26

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

OBSERVATION

Logging allows the DBMS to recover the database
after a crash/restart. But this system will have to
replay the entire log each time.

Checkpoints allows the systems to ignore large
segments of the log to reduce recovery time.

28

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

IN-MEMORY CHECKPOINTS

The different approaches for how the DBMS can
create a new checkpoint for an in-memory
database are tightly coupled with its concurrency
control scheme.

The checkpoint thread(s) scans each table and
writes out data asynchronously to disk.

29

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

IDEAL CHECKPOINT PROPERTIES

Do not slow down regular txn processing.

Do not introduce unacceptable latency spikes.

Do not require excessive memory overhead.

30

LOW-OVERHEAD ASYNCHRONOUS CHECKPOINTING IN
MAIN-MEMORY DATABASE SYSTEMS
SIGMOD 2016

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=2915966
http://dl.acm.org/citation.cfm?id=2915966

15-721 (Spring 2020)

CONSISTENT VS. FUZZY CHECKPOINTS

Approach #1: Consistent Checkpoints
→ Represents a consistent snapshot of the database at some

point in time. No uncommitted changes.
→ No additional processing during recovery.

Approach #2: Fuzzy Checkpoints
→ The snapshot could contain records updated from

transactions that committed after the checkpoint started.
→ Must do additional processing to figure out whether the

checkpoint contains all updates from those txns.

31

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CHECKPOINT MECHANISM

Approach #1: Do It Yourself
→ The DBMS is responsible for creating a snapshot of the

database in memory.
→ Can leverage multi-versioned storage to find snapshot.

Approach #2: OS Fork Snapshots
→ Fork the process and have the child process write out the

contents of the database to disk.
→ This copies everything in memory.
→ Requires extra work to remove uncommitted changes.

32

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

HYPER OS FORK SNAPSHOTS

Create a snapshot of the database by forking the
DBMS process.
→ Child process contains a consistent checkpoint if there

are not active txns.
→ Otherwise, use the in-memory undo log to roll back txns

in the child process.

Continue processing txns in the parent process.

33

HYPER: A HYBRID OLTP&OLAP MAIN MEMORY DATABASE
SYSTEM BASED ON VIRTUAL MEMORY SNAPSHOTS
ICDE 2011

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=2005619
http://dl.acm.org/citation.cfm?id=2005619

15-721 (Spring 2020)

CHECKPOINT CONTENTS

Approach #1: Complete Checkpoint
→ Write out every tuple in every table regardless of

whether were modified since the last checkpoint.

Approach #2: Delta Checkpoint
→ Write out only the tuples that were modified since the

last checkpoint.
→ Can merge checkpoints together in the background.

34

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

FREQUENCY

Approach #1: Time-based
→ Wait for a fixed period of time after the last checkpoint

has completed before starting a new one.

Approach #2: Log File Size Threshold
→ Begin checkpoint after a certain amount of data has been

written to the log file.

Approach #3: On Shutdown (Mandatory)
→ Perform a checkpoint when the DBA instructs the system

to shut itself down. Every DBMS (hopefully) does this.

35

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CHECKPOINT IMPLEMENTATIONS

36

Type Contents Frequency

MemSQL Consistent Complete Log Size

VoltDB Consistent Complete Time-Based

Altibase Fuzzy Complete Time-based

TimesTen Consistent (Blocking)
Fuzzy (Non-Blocking)

Complete
Complete

On Shutdown
Time-Based

Hekaton Consistent Delta Log Size

SAP HANA Fuzzy Complete Time-Based

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

OBSERVATION

Not all DBMS restarts are due to crashes.
→ Updating OS libraries
→ Hardware upgrades/fixes
→ Updating DBMS software

Need a way to be able to quickly restart the DBMS
without having to re-read the entire database from
disk again.

37

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

FACEBOOK SCUBA: FAST RESTARTS

Decouple the in-memory database lifetime from
the process lifetime.

By storing the database shared memory, the DBMS
process can restart, and the memory contents will
survive without having to reload from disk.

38

FAST DATABASE RESTARTS AT FACEBOOK
SIGMOD 2014

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2019/papers/12-recovery/p541-goel.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/12-recovery/p541-goel.pdf

15-721 (Spring 2020)

FACEBOOK SCUBA

Distributed, in-memory DBMS for time-series
event analysis and anomaly detection.

Heterogeneous architecture
→ Leaf Nodes: Execute scans/filters on in-memory data
→ Aggregator Nodes: Combine results from leaf nodes

39

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

FACEBOOK SCUBA: ARCHITECTURE

40

…
…

SELECT COUNT(*) FROM events
WHERE type = 'crash'
AND time = 'Monday'

Root

Leaf Node Leaf Node Leaf Node Leaf Node Leaf Node Leaf Node

Aggregator Aggregator Aggregator

Query Plan
Fragments

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

FACEBOOK SCUBA: ARCHITECTURE

40

…
…

SELECT COUNT(*) FROM events
WHERE type = 'crash'
AND time = 'Monday'

Root

Leaf Node Leaf Node Leaf Node Leaf Node Leaf Node Leaf Node

Aggregator Aggregator Aggregator

Query Plan
Fragments

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

FACEBOOK SCUBA: ARCHITECTURE

40

…
…

SELECT COUNT(*) FROM events
WHERE type = 'crash'
AND time = 'Monday'

10 20 25 15 20

Root

Leaf Node Leaf Node Leaf Node Leaf Node Leaf Node Leaf Node

Aggregator Aggregator Aggregator

Query Plan
Fragments

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

FACEBOOK SCUBA: ARCHITECTURE

40

…
…

SELECT COUNT(*) FROM events
WHERE type = 'crash'
AND time = 'Monday'

10 20 25 15 20

Root

10+20=30 25+15=40 20

Leaf Node Leaf Node Leaf Node Leaf Node Leaf Node Leaf Node

Aggregator Aggregator Aggregator

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

FACEBOOK SCUBA: ARCHITECTURE

40

…
…

SELECT COUNT(*) FROM events
WHERE type = 'crash'
AND time = 'Monday'

10 20 25 15 20

30+40+20=90
Root

10+20=30 25+15=40 20

Leaf Node Leaf Node Leaf Node Leaf Node Leaf Node Leaf Node

Aggregator Aggregator Aggregator

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SHARED MEMORY RESTARTS

Approach #1: Shared Memory Heaps
→ All data is allocated in SM during normal operations.
→ Have to use a custom allocator to subdivide memory

segments for thread safety and scalability.
→ Cannot use lazy allocation of backing pages with SM.

Approach #2: Copy on Shutdown
→ All data is allocated in local memory during normal

operations.
→ On shutdown, copy data from heap to SM.

41

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SHARED MEMORY RESTARTS

Approach #1: Shared Memory Heaps
→ All data is allocated in SM during normal operations.
→ Have to use a custom allocator to subdivide memory

segments for thread safety and scalability.
→ Cannot use lazy allocation of backing pages with SM.

Approach #2: Copy on Shutdown
→ All data is allocated in local memory during normal

operations.
→ On shutdown, copy data from heap to SM.

41

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

FACEBOOK SCUBA: FAST RESTARTS

When the admin initiates restart command, the
node halts ingesting updates.

DBMS starts copying data from heap memory to
shared memory.
→ Delete blocks in heap once they are in SM.

Once snapshot finishes, the DBMS restarts.
→ On start up, check to see whether the there is a valid

database in SM to copy into its heap.
→ Otherwise, the DBMS restarts from disk.

42

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PARTING THOUGHTS

Physical logging is a general-purpose approach
that supports all concurrency control schemes.
→ Logical logging is faster but not universal.

Copy-on-update checkpoints are the way to go
especially if you are using MVCC

Non-volatile memory is here!

43

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

NEXT CL ASS

Networking Protocols

44

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

