
L
e

c
tu

re
 #

1
1

Networking

@Andy_Pavlo // 15-721 // Spring 2020

ADVANCED
DATABASE
SYSTEMS

https://15721.courses.cs.cmu.edu/spring2020/
http://db.cs.cmu.edu/
https://twitter.com/andy_pavlo

CMU 15-721 (Spring 2019)

Scheduling / Placement
Concurrency Control

Indexes
Operator Execution

ARCHITECTURE OVERVIEW

2

SQL Query

Networking Layer

Planner

Compiler

Execution Engine

Storage Manager

SQL Parser
Binder

Optimizer / Cost Models
Rewriter

Storage Models
Logging / Checkpoints

1

2

3

4

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

TODAY'S AGENDA

Database Access APIs

Database Network Protocols

Replication Protocols

Kernel Bypass Methods

Project #2

3

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

DATABASE ACCESS

All the demos in the class have been through a
terminal client.
→ SQL queries are written by hand.
→ Results are printed to the terminal.

Real programs access a database through an API:
→ Direct Access (DBMS-specific)
→ Open Database Connectivity (ODBC)
→ Java Database Connectivity (JDBC)

4

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://en.wikipedia.org/wiki/Open_Database_Connectivity
https://en.wikipedia.org/wiki/Java_Database_Connectivity

15-721 (Spring 2020)

OPEN DATABASE CONNECTIVIT Y

Standard API for accessing a DBMS. Designed to
be independent of the DBMS and OS.

Originally developed in the early 1990s by
Microsoft and Simba Technologies.

Every major relational DBMS now has an ODBC
implementation.

5

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

OPEN DATABASE CONNECTIVIT Y

ODBC is based on the "device driver" model.

The driver encapsulates the logic needed to
convert a standard set of commands into the
DBMS-specific calls.

6

Application

O
D

B
C

 D
ri

ve
r

Request

Result

DBMS Wire Protocol

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

JAVA DATABASE CONNECTIVIT Y

Developed by Sun Microsystems in 1997 to
provide a standard API for connecting a Java
program with a DBMS.

JDBC can be considered a version of ODBC for the
programming language Java instead of C.

7

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

JAVA DATABASE CONNECTIVIT Y

Approach #1: JDBC-ODBC Bridge
→ Convert JDBC method calls into ODBC function calls.

Approach #2: Native-API Driver
→ Convert JDBC method calls into native calls of the target

DBMS API.

Approach #3: Network-Protocol Driver
→ Driver connects to a middleware that converts JDBC calls

into a vendor-specific DBMS protocol.

Approach #4: Database-Protocol Driver
→ Pure Java implementation that converts JDBC calls

directly into a vendor-specific DBMS protocol.

8

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

DATABASE NETWORKING PROTOCOLS

All major DBMSs implement their own
proprietary wire protocol over TCP/IP.

A typical client/server interaction:
→ Client connects to DBMS and begins authentication

process. There may be an SSL handshake.
→ Client then sends a query.
→ DBMS executes the query, then serializes the results and

sends it back to the client.

9

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

EXISTING PROTOCOLS

Most newer systems implement one of the open-
source DBMS wire protocols. This allows them to
reuse the client drivers without having to develop
and support them.

Just because on DBMS "speaks" another DBMS's
wire protocol does not mean that it is compatible.
→ Need to also support catalogs, SQL dialect, and other

functionality.

10

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

EXISTING PROTOCOLS

11

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PROTOCOL DESIGN SPACE

Row vs. Column Layout

Compression

Data Serialization

String Handling

12

DON'T HOLD MY DATA HOSTAGE: A CASE FOR
CLIENT PROTOCOL REDESIGN
VLDB 2017

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://dl.acm.org/citation.cfm?id=3115408
http://dl.acm.org/citation.cfm?id=2005619

15-721 (Spring 2020)

ROW VS. COLUMN L AYOUT

ODBC/JDBC are inherently row-oriented APIs.
→ Server packages tuples into messages one tuple at a time.
→ Client must deserialize data one tuple at a time.

But modern data analysis software operates on
matrices and columns.

One potential solution is to send data in vectors.
→ Batch of rows organized in a column-oriented layout.

13

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

COMPRESSION

Approach #1: Naïve Compression

Approach #2: Columnar-Specific Encoding

More heavyweight compression is better when the
network is slow.

Better compression ratios for larger message
chunk sizes.

14

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

DATA SERIALIZATION

Approach #1: Binary Encoding
→ Client handles endian conversion.
→ The closer the serialized format is to the DBMS's binary

format, then the lower the overhead to serialize.
→ DBMS can implement its own format or rely on existing

libraries (ProtoBuffers, Thrift, FlatBuffers).

Approach #2: Text Encoding
→ Convert all binary values into strings (atoi).
→ Do not have to worry about endianness.

15

1234564-bytes

"123456"+6-bytes

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://developers.google.com/protocol-buffers
https://en.wikipedia.org/wiki/Apache_Thrift
https://google.github.io/flatbuffers/
http://www.cplusplus.com/reference/cstdlib/atoi/

15-721 (Spring 2020)

STRING HANDLING

Approach #1: Null Termination
→ Store a null byte ('\0') to denote the end of a string.
→ Client scans the entire string to find end.

Approach #2: Length-Prefixes
→ Add the length of the string at the beginning of the bytes.

Approach #3: Fixed Width
→ Pad every string to be the max size of that attribute.

16

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

NETWORK PROTOCOL PERFORMANCE

17

0.013 0.011
0.017

0.029
0.059 0.063

0.666
1.080

0.01

0.1

1

10

E
la

ps
ed

 T
im

e
(s

ec
)

MySQL+GZIP MySQL MonetDB Postgres

Oracle MongoDB DB2 Hive

Transfer One Tuple from TCP-H LINEITEM

Source: Hannes Mühleisen

Text Encoding

All Other Protocols Use Binary Encoding

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://hannes.muehleisen.org/

15-721 (Spring 2020)

NETWORK PROTOCOL PERFORMANCE

18

1

10

100

0.1 1 10 100

E
la

ps
ed

 T
im

e
(s

ec
)

Network Latency (ms)

MySQL+GZIP MySQL MonetDB Postgres

Oracle MongoDB DB2 Hive

Transfer 1m Tuples from TCP-H LINEITEM

Source: Hannes Mühleisen

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://hannes.muehleisen.org/

15-721 (Spring 2020)

DATA EXPORT PERFORMANCE

19

Transfer 7GB of Tuples from TCP-C ORDER_LINE

38
150

891

1057

0

400

800

1200

T
hr

ou
gh

pu
t (

M
B

/s
ec

)

Postgres Vectorized Postgres Arrow Flight RDMA

Source: Tianyu Li

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.linkedin.com/in/tianyu-li-28608366/

15-721 (Spring 2020)

REPLICATION PROTOCOLS

DBMSs will propagate changes over the network
to other nodes to increase availability.
→ Send either physical or logical log records.
→ Granularity of log record can differ from WAL.

Design Decisions:
→ Replica Configuration
→ Propagation Scheme

20

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

REPLICA CONFIGURATIONS

Approach #1: Master-Replica
→ All updates go to a designated master for each object.
→ The master propagates updates to its replicas without an

atomic commit protocol.
→ Read-only txns may be allowed to access replicas.
→ If the master goes down, then hold an election to select a

new master.

Approach #2: Multi-Master
→ Txns can update data objects at any replica.
→ Replicas must synchronize with each other using an

atomic commit protocol.

21

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

REPLICA CONFIGURATIONS

22

Master-Replica

Master

P1

P1

P1

Replicas

Multi-Master

Node 1

P1

Node 2

P1

Writes
Reads Writes

Reads

Writes
Reads

Reads

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PROPAGATION SCHEME

When a txn commits on a replicated database, the
DBMS decides whether it must wait for that txn's
changes to propagate to other nodes before it can
send the acknowledgement to application.

Propagation levels:
→ Synchronous (Strong Consistency)
→ Asynchronous (Eventual Consistency)

23

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PROPAGATION SCHEME

Approach #1: Synchronous
→ The master sends updates to replicas

and then waits for them to
acknowledge that they fully applied
(i.e., logged) the changes.

Approach #2: Asynchronous
→ The master immediately returns the

acknowledgement to the client
without waiting for replicas to apply
the changes.

24

Commit? Flush?

AckAck

Flush!

Commit? Flush?

Ack

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

OBSERVATION

The DBMS's network protocol implementation is
not the only source of slowdown.

The OS's TCP/IP stack is slow…
→ Expensive context switches / interrupts
→ Data copying
→ Lots of latches in the kernel

25

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

KERNEL BYPASS METHODS

Allows the system to get data directly from the
NIC into the DBMS address space.
→ No unnecessary data copying.
→ No OS TCP/IP stack.

Approach #1: Data Plane Development Kit

Approach #2: Remote Direct Memory Access

26

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

DATA PL ANE DEVELOPMENT KIT (DPDK)

Set of libraries that allows programs to access NIC
directly. Treat the NIC as a bare metal device.

Requires the DBMS code to do more to manage
memory and buffers.
→ No data copying.
→ No system calls.

Example: ScyllaDB

27

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://dpdk.org/
https://www.scylladb.com/
https://twitter.com/axboe/status/927571366085246976

15-721 (Spring 2020)

REMOTE DIRECT MEMORY ACCESS

Read and write memory directly on a remote host
without going through OS.
→ The client needs to know the correct address of the data

that it wants to access.
→ The server is unaware that memory is being accessed

remotely (i.e., no callbacks).

Example: Oracle RAC, Microsoft FaRM

28

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://en.wikipedia.org/wiki/Oracle_RAC
https://www.microsoft.com/en-us/research/publication/farm-fast-remote-memory/

15-721 (Spring 2020)

PARTING THOUGHTS

A DBMS's networking protocol is an often
overlooked bottleneck for performance.

Kernel bypass methods greatly improve
performance but require more bookkeeping.
→ Probably more useful for internal DBMS communication.

29

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PROJECT #2

Implement an in-memory B+Tree in the DBMS.

Must support the following features:
→ Insert / Get / Delete / Range Scan
→ Forward / Reverse Range Scans
→ Unique + Non-Unique Keys.

Other than implementing our API, you are free to
do any optimization that you want.

30

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PROJECT #2 DESIGN

We will provide you with a header file with the
index API that you have to implement.
→ Data serialization and predicate evaluation will be taken

care of for you.

There are several design decisions that you are
going to have to make.
→ There is no right answer.
→ Do not expect us to guide you at every step of the

development process.

31

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PROJECT #2 TESTING

We are providing you with C++ unit tests for you
to check your implementation.

We also have a Bw-Tree implementation to
compare against.

We strongly encourage you to do your own
additional testing.

32

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PROJECT #2 DOCUMENTATION

You must write documentation and comments in
your code to explain what you are doing in all
different parts.

We will inspect the submissions manually.

33

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PROJECT #2 GRADING

We will run additional tests beyond what we
provided you for grading.
→ Bonus points will be given to the groups with the fastest

implementation.
→ We will use ASAN when testing your code.

All source code must pass formatting and linter
checks.
→ See documentation for formatting guidelines.

34

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://github.com/cmu-db/terrier/wiki/Coding-Guideline

15-721 (Spring 2020)

PROJECT #2 GROUPS

This is a group project.
→ Everyone should contribute equally.
→ I will review commit history.

Email me if you do not have a group.

35

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PROJECT #2

Due Date: March 15th @ 11:59pm

Projects will be turned in using Gradescope.

Full description and instructions:

https://15721.courses.cs.cmu.edu/spring2020/proj
ect2.html

36

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2020/project2.html

15-721 (Spring 2020)

NEXT CL ASS

Let's start to talk about how to execute queries!

37

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

