
L
e

c
tu

re
 #

1
4

Query Compilation &
Code Generation
@Andy_Pavlo // 15-721 // Spring 2020

ADVANCED
DATABASE
SYSTEMS

https://15721.courses.cs.cmu.edu/spring2020/
http://db.cs.cmu.edu/
https://twitter.com/andy_pavlo

15-721 (Spring 2020)

ADMINISTRIV IA

Project #2 Checkpoint: Sunday March 8th

Project #2 Final: Sunday March 15th

Project #3 will be announced next class.

2

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Background

Code Generation / Transpilation

JIT Compilation (LLVM)

Real-world Implementations

3

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

HEKATON REMARK

After switching to an in-memory DBMS, the only
way to increase throughput is to reduce the
number of instructions executed.
→ To go 10x faster, the DBMS must execute 90% fewer

instructions…
→ To go 100x faster, the DBMS must execute 99% fewer

instructions…

4

COMPILATION IN THE MICROSOFT SQL SERVER
HEKATON ENGINE
IEEE DATA ENGINEERING BULLETIN 2011

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2020/papers/14-compilation/freedman-ieee2014.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/14-compilation/freedman-ieee2014.pdf

15-721 (Spring 2020)

OBSERVATION

One way to achieve such a reduction in
instructions is through code specialization.

This means generating code that is specific to a
task in the DBMS (e.g., one query).

Most code is written to make it easy for humans to
understand rather than performance…

5

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

EXAMPLE DATABASE

6

CREATE TABLE A (
id INT PRIMARY KEY,
val INT

);

CREATE TABLE B (
id INT PRIMARY KEY,
val INT

);

CREATE TABLE C (
a_id INT REFERENCES A(id),
b_id INT REFERENCES B(id),
PRIMARY KEY (a_id, b_id)

);

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

QUERY INTERPRETATION

8

SELECT *
FROM A, C,
(SELECT B.id, COUNT(*)

FROM B
WHERE B.val = ? + 1
GROUP BY B.id) AS B

WHERE A.val = 123
AND A.id = C.a_id
AND B.id = C.b_id

⨝A.id=C.a_id

σA.val=123

A

⨝B.id=C.b_id

ΓB.id, COUNT(*)

σB.val=?+1

B C

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

QUERY INTERPRETATION

8

SELECT *
FROM A, C,
(SELECT B.id, COUNT(*)

FROM B
WHERE B.val = ? + 1
GROUP BY B.id) AS B

WHERE A.val = 123
AND A.id = C.a_id
AND B.id = C.b_id

⨝A.id=C.a_id

σA.val=123

A

⨝B.id=C.b_id

ΓB.id, COUNT(*)

σB.val=?+1

B C

⨝
for t1 in left.next():

buildHashTable(t1)
for t2 in right.next():

if probe(t2): emit(t1⨝t2)

for t in child.next():
if evalPred(t): emit(t)σ ⨝

for t1 in left.next():
buildHashTable(t1)

for t2 in right.next():
if probe(t2): emit(t1⨝t2)

for t in A:
emit(t)A

for t in B:
emit(t)B for t in C:

emit(t)C

for t in child.next():
if evalPred(t): emit(t)σ

Γ
for t in child.next():
buildAggregateTable(t)

for t in aggregateTable:
emit(t)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Execution Context

PREDICATE INTERPRETATION

9

SELECT *
FROM A, C,
(SELECT B.id, COUNT(*)

FROM B
WHERE B.val = ? + 1
GROUP BY B.id) AS B

WHERE A.val = 123
AND A.id = C.a_id
AND B.id = C.b_id

Current Tuple
(123, 1000)

Query Parameters
(int:999)

Table Schema
B→(int:id, int:val)

TupleAttribute(B.val)

Constant(1)

=

+

Parameter(0)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

1000

Execution Context

PREDICATE INTERPRETATION

9

SELECT *
FROM A, C,
(SELECT B.id, COUNT(*)

FROM B
WHERE B.val = ? + 1
GROUP BY B.id) AS B

WHERE A.val = 123
AND A.id = C.a_id
AND B.id = C.b_id

Current Tuple
(123, 1000)

Query Parameters
(int:999)

Table Schema
B→(int:id, int:val)

TupleAttribute(B.val)

Constant(1)

=

+

Parameter(0)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

1000

999

Execution Context

PREDICATE INTERPRETATION

9

SELECT *
FROM A, C,
(SELECT B.id, COUNT(*)

FROM B
WHERE B.val = ? + 1
GROUP BY B.id) AS B

WHERE A.val = 123
AND A.id = C.a_id
AND B.id = C.b_id

Current Tuple
(123, 1000)

Query Parameters
(int:999)

Table Schema
B→(int:id, int:val)

TupleAttribute(B.val)

Constant(1)

=

+

Parameter(0)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

1000

999 1

Execution Context

PREDICATE INTERPRETATION

9

SELECT *
FROM A, C,
(SELECT B.id, COUNT(*)

FROM B
WHERE B.val = ? + 1
GROUP BY B.id) AS B

WHERE A.val = 123
AND A.id = C.a_id
AND B.id = C.b_id

Current Tuple
(123, 1000)

Query Parameters
(int:999)

Table Schema
B→(int:id, int:val)

TupleAttribute(B.val)

Constant(1)

=

+

Parameter(0)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

1000

999 1

true

1000

Execution Context

PREDICATE INTERPRETATION

9

SELECT *
FROM A, C,
(SELECT B.id, COUNT(*)

FROM B
WHERE B.val = ? + 1
GROUP BY B.id) AS B

WHERE A.val = 123
AND A.id = C.a_id
AND B.id = C.b_id

Current Tuple
(123, 1000)

Query Parameters
(int:999)

Table Schema
B→(int:id, int:val)

TupleAttribute(B.val)

Constant(1)

=

+

Parameter(0)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CODE SPECIALIZATION

Any CPU intensive entity of database can be
natively compiled if they have a similar execution
pattern on different inputs.
→ Access Methods
→ Stored Procedures
→ Operator Execution
→ Predicate Evaluation
→ Logging Operations

10

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

BENEFITS

Attribute types are known a priori.
→ Data access function calls can be converted to inline

pointer casting.

Predicates are known a priori.
→ They can be evaluated using primitive data comparisons.

No function calls in loops
→ Allows the compiler to efficiently distribute data to

registers and increase cache reuse.

11

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

ARCHITECTURE OVERVIEW

12

SQL Query

Parser
Abstract

Syntax
Tree

Physical
Plan

Cost
Estimates

System
Catalog

Binder

Optimizer
Annotated

AST

Native Code

Compiler

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CODE GENERATION

Approach #1: Transpilation
→ Write code that converts a relational query plan into

imperative language source code and then run it through a
conventional compiler to generate native code.

Approach #2: JIT Compilation
→ Generate an intermediate representation (IR) of the query

that the DBMS then compiles into native code .

13

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

HIQUE CODE GENERATION

For a given query plan, create a C/C++ program
that implements that query’s execution.
→ Bake in all the predicates and type conversions.

Use an off-shelf compiler to convert the code into
a shared object, link it to the DBMS process, and
then invoke the exec function.

14

GENERATING CODE FOR HOLISTIC
QUERY EVALUATION
ICDE 2010

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2020/papers/14-compilation/krikellas-icde2010.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/14-compilation/krikellas-icde2010.pdf

15-721 (Spring 2020)

OPERATOR TEMPL ATES

15

SELECT * FROM A WHERE A.val = ? + 1

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Interpreted Plan

OPERATOR TEMPL ATES

15

for t in range(table.num_tuples):
tuple = get_tuple(table, t)
if eval(predicate, tuple, params):

emit(tuple)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Interpreted Plan

OPERATOR TEMPL ATES

15

for t in range(table.num_tuples):
tuple = get_tuple(table, t)
if eval(predicate, tuple, params):

emit(tuple)

1. Get schema in catalog for table.
2. Calculate offset based on tuple size.
3. Return pointer to tuple.

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Interpreted Plan

OPERATOR TEMPL ATES

15

for t in range(table.num_tuples):
tuple = get_tuple(table, t)
if eval(predicate, tuple, params):

emit(tuple)

1. Get schema in catalog for table.
2. Calculate offset based on tuple size.
3. Return pointer to tuple.

1. Traverse predicate tree and pull values up.
2. If tuple value, calculate the offset of the target attribute.
3. Perform casting as needed for comparison operators.
4. Return true / false.

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Templated PlanInterpreted Plan

OPERATOR TEMPL ATES

15

tuple_size = ###
predicate_offset = ###
parameter_value = ###

for t in range(table.num_tuples):
tuple = table.data + t ∗ tuple_size
val = (tuple+predicate_offset)
if (val == parameter_value + 1):
emit(tuple)

for t in range(table.num_tuples):
tuple = get_tuple(table, t)
if eval(predicate, tuple, params):

emit(tuple)

1. Get schema in catalog for table.
2. Calculate offset based on tuple size.
3. Return pointer to tuple.

1. Traverse predicate tree and pull values up.
2. If tuple value, calculate the offset of the target attribute.
3. Perform casting as needed for comparison operators.
4. Return true / false.

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

DBMS INTEGRATION

The generated query code can invoke any other
function in the DBMS.

This allows it to use all the same components as
interpreted queries.
→ Concurrency Control
→ Logging / Checkpoints
→ Indexes

16

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

EVALUATION

Generic Iterators
→ Canonical model with generic predicate evaluation.

Optimized Iterators
→ Type-specific iterators with inline predicates.

Generic Hardcoded
→ Handwritten code with generic iterators/predicates.

Optimized Hardcoded
→ Direct tuple access with pointer arithmetic.

HIQUE
→ Query-specific specialized code.

17

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

QUERY COMPIL ATION EVALUATION

18

0

50

100

150

200

250

Generic
Iterators

Optimized
Iterators

Generic
Hardcoded

Optimized
Hardcoded

HIQUE

E
xe

cu
ti

on
 T

im
e

(m
s)

L2-cache Miss Memory Stall Instruction Exec.

Intel Core 2 Duo 6300 @ 1.86GHz
Join Query: 10k⨝ 10k→10m

Source: Konstantinos Krikellas

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.linkedin.com/in/konstantinoskrikellas

15-721 (Spring 2020)

QUERY COMPIL ATION COST

19

121 160
213

274

403

619

0

200

400

600

800

Q1 Q2 Q3

C
om

pi
la

ti
on

 T
im

e
(m

s)

Compile (-O0) Compile (-O2)

Intel Core 2 Duo 6300 @ 1.86GHz
TPC-H Queries

Source: Konstantinos Krikellas

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.linkedin.com/in/konstantinoskrikellas

15-721 (Spring 2020)

OBSERVATION

Relational operators are a useful way to reason
about a query but are not the most efficient way to
execute it.

It takes a (relatively) long time to compile a
C/C++ source file into executable code.

HIQUE does not support for full pipelining…

20

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PIPELINED OPERATORS

21

SELECT *
FROM A, C,
(SELECT B.id, COUNT(*)

FROM B
WHERE B.val = ? + 1
GROUP BY B.id) AS B

WHERE A.val = 123
AND A.id = C.a_id
AND B.id = C.b_id

⨝A.id=C.a_id

σA.val=123

A

⨝B.id=C.b_id

ΓB.id,COUNT(*)

σB.val=?+1

B C

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PIPELINED OPERATORS

21

SELECT *
FROM A, C,
(SELECT B.id, COUNT(*)

FROM B
WHERE B.val = ? + 1
GROUP BY B.id) AS B

WHERE A.val = 123
AND A.id = C.a_id
AND B.id = C.b_id

⨝A.id=C.a_id

σA.val=123

A

⨝B.id=C.b_id

ΓB.id,COUNT(*)

σB.val=?+1

B C

Pipeline Boundaries #1

#4

#2

#3

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

HYPER JIT QUERY COMPIL ATION

Compile queries in-memory into native code using
the LLVM toolkit.

Organizes query processing in a way to keep a
tuple in CPU registers for as long as possible.
→ Push-based vs. Pull-based
→ Data Centric vs. Operator Centric

22

EFFICIENTLY COMPILING EFFICIENT QUERY PLANS
FOR MODERN HARDWARE
VLDB 2011

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2020/papers/14-compilation/p539-neumann.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/14-compilation/p539-neumann.pdf

15-721 (Spring 2020)

LLVM

Collection of modular and reusable compiler and
toolchain technologies.

Core component is a low-level programming
language (IR) that is like assembly.

Not all the DBMS components need to be written
in LLVM IR.
→ LLVM code can make calls to C++ code.

23

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PUSH-BASED EXECUTION

24

Generated Query Plan

for t in A:
if t.val == 123:

Materialize t in HashTable ⨝(A.id=C.a_id)

for t in B:
if t.val == <param> + 1:
Aggregate t in HashTable Γ(B.id)

for t in Γ(B.id):
Materialize t in HashTable ⨝(B.id=C.b_id)

for t3 in C:
for t2 in ⨝(B.id=C.b_id):

for t1 in ⨝(A.id=C.a_id):
emit(t1⨝t2⨝t3)

#1

#4

#2

#3

SELECT *
FROM A, C,
(SELECT B.id, COUNT(*)

FROM B
WHERE B.val = ? + 1
GROUP BY B.id) AS B

WHERE A.val = 123
AND A.id = C.a_id
AND B.id = C.b_id

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

QUERY COMPIL ATION EVALUATION

25

35

125
80 117

1105

142
374

141 203

1416

98
257

436
1107

72

218
112

8168 12028

4221
6555

16410

3830

15212

1

10

100

1000

10000

100000

Q1 Q2 Q3 Q4 Q5

E
xe

cu
ti

on
 T

im
e

(m
s)

HyPer (LLVM) HyPer (C++) VectorWise MonetDB Oracle

Dual Socket Intel Xeon X5770 @ 2.93GHz
TPC-H Queries

Source: Thomas Neumann

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://sites.computer.org/debull/A14mar/p3.pdf

15-721 (Spring 2020)

QUERY COMPIL ATION COST

26

274

403

619

13 37 15
0

200

400

600

800

Q1 Q2 Q3

C
om

pi
la

ti
on

 T
im

e
(m

s)

HIQUE HyPer

HIQUE (-O2) vs. HyPer
TPC-H Queries

Source: Konstantinos Krikellas

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.linkedin.com/in/konstantinoskrikellas

15-721 (Spring 2020)

QUERY COMPIL ATION COST

LLVM's compilation time grows super-linearly
relative to the query size.
→ # of joins
→ # of predicates
→ # of aggregations

Not a big issue with OLTP applications.

Major problem with OLAP workloads.

27

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

HYPER ADAPTIVE EXECUTION

First generate the LLVM IR for the query and
then immediately start executing the IR using an
interpreter.

Then the DBMS compiles the query in the
background.

When the compiled query is ready, seamlessly
replace the interpretive execution.
→ For each morsel, check to see whether the compiled

version is available.

28

ADAPTIVE EXECUTION OF COMPILED QUERIES
ICDE 2018

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2020/papers/14-compilation/kohn-icde2018.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/14-compilation/kohn-icde2018.pdf

15-721 (Spring 2020)

HYPER ADAPTIVE EXECUTION

29

Optimizer
(0.2 ms)

Byte Code

SQL Query

Code Generator
(0.7 ms)

Query Plan

LLVM Passes
(25 ms)

Byte Code
Compiler
(0.4 ms)

Unoptimized
LLVM Compiler

(6 ms)

Optimized
LLVM Compiler

(17 ms)

LLVM IR

LLVM IR

LLVM IR

LLVM IR

x86 Code

x86 Code

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

HYPER ADAPTIVE EXECUTION

30

858

94

323 352 362

161

13

104
67 6077

8

80
45 37

1

10

100

1000

Q1 Q2 Q3 Q4 Q5

E
xe

cu
ti

on
 T

im
e

(m
s)

Byte Code Unoptimized LLVM Optimized LLVM

AMD Ryzen 7 1700X @ 3.4GHz (One Thread)
TPC-H Queries

Source: Andre Kohn

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://db.in.tum.de/~kohn/index.shtml?lang=en

15-721 (Spring 2020)

REAL-WORLD IMPLEMENTATIONS

31

JVM-based
Apache Spark

Neo4j

Splice Machine

Presto

LLVM-based
MemSQL

VitesseDB

PostgreSQL (2018)

Cloudera Impala

Peloton

CMU's DBMS 2.0

Custom
IBM System R

Oracle

Microsoft Hekaton

Actian Vector

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

IBM SYSTEM R

A primitive form of code generation and query
compilation was used by IBM in 1970s.
→ Compiled SQL statements into assembly code by

selecting code templates for each operator.

Technique was abandoned when IBM built DB2:
→ High cost of external function calls
→ Poor portability
→ Software engineer complications

32

A HISTORY AND EVALUATION OF SYSTEM R
COMMUNICATIONS OF THE ACM 1981

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=358784
http://dl.acm.org/citation.cfm?id=358784

15-721 (Spring 2020)

ORACLE

Convert PL/SQL stored procedures into Pro*C
code and then compiled into native C/C++ code.

They also put Oracle-specific operations directly
in the SPARC chips as co-processors.
→ Memory Scans
→ Bit-pattern Dictionary Compression
→ Vectorized instructions designed for DBMSs
→ Security/encryption

33

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://en.wikipedia.org/wiki/Pro*C

15-721 (Spring 2020)

MICROSOFT HEKATON

Can compile both procedures and SQL.
→ Non-Hekaton queries can access Hekaton tables through

compiled inter-operators.

Generates C code from an imperative syntax tree,
compiles it into DLL, and links at runtime.

Employs safety measures to prevent somebody
from injecting malicious code in a query.

34

COMPILATION IN THE MICROSOFT SQL SERVER
HEKATON ENGINE
IEEE DATA ENGINEERING BULLETIN 2011

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2019/papers/19-compilation/freedman-ieee2014.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/19-compilation/freedman-ieee2014.pdf

15-721 (Spring 2020)

ACTIAN VECTOR

Pre-compiles thousands of “primitives” that
perform basic operations on typed data.
→ Example: Generate a vector of tuple ids by applying a less

than operator on some column of a particular type.

The DBMS then executes a query plan that
invokes these primitives at runtime.
→ Function calls are amortized over multiple tuples

35

MICRO ADAPTIVITY IN VECTORWISE
SIGMOD 2013

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=2465292
http://dl.acm.org/citation.cfm?id=2465292

15-721 (Spring 2020)

ACTIAN VECTOR

Pre-compiles thousands of “primitives” that
perform basic operations on typed data.
→ Example: Generate a vector of tuple ids by applying a less

than operator on some column of a particular type.

The DBMS then executes a query plan that
invokes these primitives at runtime.
→ Function calls are amortized over multiple tuples

35

MICRO ADAPTIVITY IN VECTORWISE
SIGMOD 2013

size_t scan_lessthan_int32(int *res, int32_t *col, int32_t val) {
size_t k = 0;
for (size_t i = 0; i < n; i++)
if (col[i] < val) res[k++] = i;

return (k);
}

size_t scan_lessthan_double(int *res, int32_t *col, double val) {
size_t k = 0;
for (size_t i = 0; i < n; i++)
if (col[i] < val) res[k++] = i;

return (k);
}

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=2465292
http://dl.acm.org/citation.cfm?id=2465292

15-721 (Spring 2020)

APACHE SPARK

Introduced in the new Tungsten engine in 2015.

The system converts a query's WHERE clause
expression trees into Scala ASTs.

It then compiles these ASTs to generate JVM
bytecode, which is then executed natively.

36

SPARK SQL: RELATIONAL DATA PROCESSING IN SPARK
SIGMOD 2015

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://dl.acm.org/citation.cfm?id=2742797
https://dl.acm.org/citation.cfm?id=2742797

15-721 (Spring 2020)

JAVA DATABASES

There are several JVM-based DBMSs that contain
custom code that emits JVM bytecode directly.
→ Neo4j
→ Splice Machine
→ Presto
→ Derby

37

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MEMSQL (PRE 2016)

Performs the same C/C++ code generation as
HIQUE and then invokes gcc.

Converts all queries into a parameterized form and
caches the compiled query plan.

38

SELECT * FROM A
WHERE A.id = ?

SELECT * FROM A
WHERE A.id = 123

SELECT * FROM A
WHERE A.id = 456

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MEMSQL (2016 PRESENT)

A query plan is converted into an imperative plan
expressed in a high-level imperative DSL.
→ MemSQL Programming Language (MPL)
→ Think of this as a C++ dialect.

The DSL then gets converted into a second
language of opcodes.
→ MemSQL Bit Code (MBC)
→ Think of this as JVM byte code.

Finally the DBMS compiles the opcodes into
LLVM IR and then to native code.

39

Source: Drew Paroski

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://highscalability.com/blog/2016/9/7/code-generation-the-inner-sanctum-of-database-performance.html

15-721 (Spring 2020)

POSTGRESQL

Added support in 2018 (v11) for JIT compilation
of predicates and tuple deserialization with LLVM.
→ Relies on optimizer estimates to determine when to

compile expressions.

Automatically compiles Postgres' back-end C code
into LLVM C++ code to remove iterator calls.

40

Source: Dmitry Melnik

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.pgcon.org/2017/schedule/attachments/467_PGCon 2017-05-26 15-00 ISPRAS Dynamic Compilation of SQL Queries in PostgreSQL Using LLVM JIT.pdf

15-721 (Spring 2020)

CLOUDERA IMPAL A

LLVM JIT compilation for predicate evaluation
and record parsing.
→ Not sure if they are also doing operator compilation.

Optimized record parsing is important for Impala
because they need to handle multiple data formats
stored on HDFS.

41

IMPALA: A MODERN, OPEN-SOURCE
SQL ENGINE FOR HADOOP
CIDR 2015

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://www.cidrdb.org/cidr2015/Papers/CIDR15_Paper28.pdf
http://www.cidrdb.org/cidr2015/Papers/CIDR15_Paper28.pdf

15-721 (Spring 2020)

VITESSEDB

Query accelerator for Postgres/Greenplum that
uses LLVM + intra-query parallelism.
→ JIT predicates
→ Push-based processing model
→ Indirect calls become direct or inlined.
→ Leverages hardware for overflow detection.

Does not support all of Postgres’ types and
functionalities. All DML operations are still
interpreted.

42

Source: CK Tan

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.youtube.com/watch?v=PEmVuYjhQFo

15-721 (Spring 2020)

PELOTON (2017)

HyPer-style full compilation of the entire query
plan using the LLVM .

Relax the pipeline breakers create mini-batches for
operators that can be vectorized.

Use software pre-fetching to hide memory stalls.

43

RELAXED OPERATOR FUSION FOR IN-MEMORY DATABASES: MAKING COMPILATION,
VECTORIZATION, AND PREFETCHING WORK TOGETHER AT LAST
VLDB 2017

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2018/papers/22-vectorization2/menon-vldb2017.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/21-vectorization2/menon-vldb2017.pdf

15-721 (Spring 2020)

PELOTON (2017)

44

88147
26350

87473

9960
21500

901
1396

2641

383 540
892 846

1763

191 220

1

10

100

1000

10000

100000

Q1 Q3 Q13 Q14 Q19

E
xe

cu
ti

on
 T

im
e

(m
s)

Interpreted LLVM LLVM + ROF

Dual Socket Intel Xeon E5-2630v4 @ 2.20GHz
TPC-H 10 GB Database

Source: Prashanth Menon

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.youtube.com/watch?v=HjMQbzBhTb4

15-721 (Spring 2020)

UNNAMED CMU DBMS (2019)

MemSQL-style conversion of query plans into a
database-oriented DSL.

Then compile the DSL into opcodes.

HyPer-style interpretation of opcodes while
compilation occurs in the background with
LLVM.

45

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

UNNAMED CMU DBMS (2019)

46

fun main() -> int {
var ret = 0
for (row in foo) {

if (row.colA >= 50 and
row.colB < 100000) {

ret = ret + 1
}

}
return ret

}

Source: Prashanth Menon

SELECT * FROM foo
WHERE colA >= 50
AND colB < 100000;

Function 0 <main>:
[3/4587]

Frame size 8512 bytes (1 parameter, 20 locals)
param hiddenRv: offset=0 size=8 align=8 type=*int32
local ret: offset=8 size=4 align=4 type=int32
local table_iter: offset=16 size=8312 align=8 type=tpl::sql::TableVectorIterator
local vpi: offset=8328 size=8 align=8 type=*tpl::sql::VectorProjectionIterator
local tmp1: offset=8336 size=1 align=1 type=bool
local row: offset=8344 size=64 align=8 type=struct{Integer,Integer,Integer,Integer}
local tmp2: offset=8408 size=1 align=1 type=bool
local tmp3: offset=8416 size=8 align=8 type=*Integer
local tmp4: offset=8424 size=8 align=8 type=*Integer
local tmp5: offset=8432 size=8 align=8 type=*Integer
local tmp6: offset=8440 size=8 align=8 type=*Integer
local tmp7: offset=8448 size=1 align=1 type=bool
local tmp8: offset=8449 size=2 align=1 type=Boolean
local tmp9: offset=8456 size=16 align=8 type=Integer
local tmp10: offset=8472 size=4 align=4 type=int32
local tmp11: offset=8476 size=2 align=1 type=Boolean
local tmp12: offset=8480 size=8 align=8 type=*Integer
local tmp13: offset=8488 size=16 align=8 type=Integer
local tmp14: offset=8504 size=4 align=4 type=int32
local tmp15: offset=8508 size=4 align=4 type=int32

0x00000000 AssignImm4
0x0000000c TableVectorIteratorInit
0x00000016 TableVectorIteratorGetVPI
0x00000022 TableVectorIteratorNext
0x0000002e JumpIfFalse
0x0000003a VPIHasNext
0x00000046 JumpIfFalse
0x00000052 Lea
0x00000062 VPIGetInteger
0x00000072 Lea
0x00000082 VPIGetInteger
0x00000092 Lea
0x000000a2 VPIGetInteger
0x000000b2 Lea
0x000000c2 VPIGetInteger
0x000000d2 AssignImm4
0x000000de InitInteger
0x000000ea GreaterThanEqualInteger
0x000000fa ForceBoolTruth
0x00000106 JumpIfFalse
0x00000112 Lea

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.youtube.com/watch?v=HjMQbzBhTb4

15-721 (Spring 2020)

UNNAMED CMU DBMS (2019)

46

fun main() -> int {
var ret = 0
for (row in foo) {

if (row.colA >= 50 and
row.colB < 100000) {

ret = ret + 1
}

}
return ret

}

Source: Prashanth Menon

SELECT * FROM foo
WHERE colA >= 50
AND colB < 100000;

Interpreter

Optimized
LLVM Compiler

x86 Code

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.youtube.com/watch?v=HjMQbzBhTb4

15-721 (Spring 2020)

PARTING THOUGHTS

Query compilation makes a difference but is non-
trivial to implement.

The 2016 version of MemSQL is the best query
compilation implementation out there.

Any new DBMS that wants to compete has to
implement query compilation.

47

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

NEXT CL ASS

Vectorization

50

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

