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Project #3 will be announced next class.
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Background

Code Generation / Transpilation

JIT Compilation (LLVM)

Real-world Implementations
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HEKATON REMARK

After switching to an in-memory DBMS, the only 
way to increase throughput is to reduce the 
number of instructions executed.
→ To go 10x faster, the DBMS must execute 90% fewer 

instructions…
→ To go 100x faster, the DBMS must execute 99% fewer 

instructions…
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COMPILATION IN THE MICROSOFT SQL SERVER 
HEKATON ENGINE
IEEE DATA ENGINEERING BULLETIN 2011
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OBSERVATION

One way to achieve such a reduction in 
instructions is through code specialization.

This means generating code that is specific to a 
task in the DBMS (e.g., one query).

Most code is written to make it easy for humans to 
understand rather than performance…
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EXAMPLE DATABASE

6

CREATE TABLE A (
id INT PRIMARY KEY,
val INT

);

CREATE TABLE B (
id INT PRIMARY KEY,
val INT

);

CREATE TABLE C (
a_id INT REFERENCES A(id),
b_id INT REFERENCES B(id),
PRIMARY KEY (a_id, b_id)

);

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
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QUERY INTERPRETATION

8

SELECT *
FROM A, C, 
(SELECT B.id, COUNT(*)

FROM B
WHERE B.val = ? + 1
GROUP BY B.id) AS B

WHERE A.val = 123 
AND A.id = C.a_id
AND B.id = C.b_id

⨝A.id=C.a_id

σA.val=123

A

⨝B.id=C.b_id

ΓB.id, COUNT(*)

σB.val=?+1

B C

https://db.cs.cmu.edu/
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QUERY INTERPRETATION

8

SELECT *
FROM A, C, 
(SELECT B.id, COUNT(*)

FROM B
WHERE B.val = ? + 1
GROUP BY B.id) AS B

WHERE A.val = 123 
AND A.id = C.a_id
AND B.id = C.b_id

⨝A.id=C.a_id

σA.val=123

A

⨝B.id=C.b_id

ΓB.id, COUNT(*)

σB.val=?+1

B C

⨝
for t1 in left.next():

buildHashTable(t1)
for t2 in right.next():

if probe(t2): emit(t1⨝t2)

for t in child.next():
if evalPred(t): emit(t)σ ⨝

for t1 in left.next():
buildHashTable(t1)

for t2 in right.next():
if probe(t2): emit(t1⨝t2)

for t in A:
emit(t)A

for t in B:
emit(t)B for t in C:

emit(t)C

for t in child.next():
if evalPred(t): emit(t)σ

Γ
for t in child.next():
buildAggregateTable(t)

for t in aggregateTable:
emit(t)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
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Execution Context

PREDICATE INTERPRETATION

9

SELECT *
FROM A, C, 
(SELECT B.id, COUNT(*)

FROM B
WHERE B.val = ? + 1
GROUP BY B.id) AS B

WHERE A.val = 123 
AND A.id = C.a_id
AND B.id = C.b_id

Current Tuple
(123, 1000)

Query Parameters
(int:999)

Table Schema
B→(int:id, int:val)

TupleAttribute(B.val)

Constant(1)

=

+

Parameter(0)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
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Execution Context

PREDICATE INTERPRETATION
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SELECT *
FROM A, C, 
(SELECT B.id, COUNT(*)

FROM B
WHERE B.val = ? + 1
GROUP BY B.id) AS B

WHERE A.val = 123 
AND A.id = C.a_id
AND B.id = C.b_id

Current Tuple
(123, 1000)

Query Parameters
(int:999)

Table Schema
B→(int:id, int:val)

TupleAttribute(B.val)

Constant(1)

=

+

Parameter(0)
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FROM A, C, 
(SELECT B.id, COUNT(*)

FROM B
WHERE B.val = ? + 1
GROUP BY B.id) AS B
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CODE SPECIALIZATION

Any CPU intensive entity of database can be 
natively compiled if they have a similar execution 
pattern on different inputs. 
→ Access Methods
→ Stored Procedures
→ Operator Execution
→ Predicate Evaluation
→ Logging Operations

10

https://db.cs.cmu.edu/
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BENEFITS

Attribute types are known a priori.
→ Data access function calls can be converted to inline 

pointer casting.

Predicates are known a priori.
→ They can be evaluated using primitive data comparisons.

No function calls in loops
→ Allows the compiler to efficiently distribute data to 

registers and increase cache reuse.

11

https://db.cs.cmu.edu/
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ARCHITECTURE OVERVIEW

12

SQL Query

Parser
Abstract

Syntax
Tree

Physical 
Plan

Cost
Estimates

System
Catalog

Binder

Optimizer
Annotated 

AST

Native Code

Compiler

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
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CODE GENERATION

Approach #1: Transpilation
→ Write code that converts a relational query plan into 

imperative language source code and then run it through a 
conventional compiler to generate native code.

Approach #2: JIT Compilation
→ Generate an intermediate representation (IR) of the query 

that the DBMS then compiles into native code .

13
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HIQUE CODE GENERATION

For a given query plan, create a C/C++ program 
that implements that query’s execution.
→ Bake in all the predicates and type conversions.

Use an off-shelf compiler to convert the code into 
a shared object, link it to the DBMS process, and 
then invoke the exec function.

14

GENERATING CODE FOR HOLISTIC 
QUERY EVALUATION
ICDE 2010

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2020/papers/14-compilation/krikellas-icde2010.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/14-compilation/krikellas-icde2010.pdf
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OPERATOR TEMPL ATES

15

SELECT * FROM A WHERE A.val = ? + 1

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
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Interpreted Plan

OPERATOR TEMPL ATES

15

for t in range(table.num_tuples):
tuple = get_tuple(table, t)
if eval(predicate, tuple, params):

emit(tuple)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
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Interpreted Plan

OPERATOR TEMPL ATES

15

for t in range(table.num_tuples):
tuple = get_tuple(table, t)
if eval(predicate, tuple, params):

emit(tuple)

1. Get schema in catalog for table.
2. Calculate offset based on tuple size.
3. Return pointer to tuple.

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
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Interpreted Plan

OPERATOR TEMPL ATES

15

for t in range(table.num_tuples):
tuple = get_tuple(table, t)
if eval(predicate, tuple, params):

emit(tuple)

1. Get schema in catalog for table.
2. Calculate offset based on tuple size.
3. Return pointer to tuple.

1. Traverse predicate tree and pull values up.
2. If tuple value, calculate the offset of the target attribute.
3. Perform casting as needed for comparison operators.
4. Return true / false.

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
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Templated PlanInterpreted Plan

OPERATOR TEMPL ATES

15

tuple_size = ###
predicate_offset = ###
parameter_value = ###

for t in range(table.num_tuples):
tuple = table.data + t ∗ tuple_size
val = (tuple+predicate_offset)
if (val == parameter_value + 1):
emit(tuple)

for t in range(table.num_tuples):
tuple = get_tuple(table, t)
if eval(predicate, tuple, params):

emit(tuple)

1. Get schema in catalog for table.
2. Calculate offset based on tuple size.
3. Return pointer to tuple.

1. Traverse predicate tree and pull values up.
2. If tuple value, calculate the offset of the target attribute.
3. Perform casting as needed for comparison operators.
4. Return true / false.

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
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DBMS INTEGRATION

The generated query code can invoke any other 
function in the DBMS.

This allows it to use all the same components as 
interpreted queries.
→ Concurrency Control
→ Logging / Checkpoints
→ Indexes

16
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EVALUATION

Generic Iterators
→ Canonical model with generic predicate evaluation.

Optimized Iterators
→ Type-specific iterators with inline predicates.

Generic Hardcoded
→ Handwritten code with generic iterators/predicates.

Optimized Hardcoded
→ Direct tuple access with pointer arithmetic.

HIQUE
→ Query-specific specialized code.

17
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QUERY COMPIL ATION EVALUATION
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QUERY COMPIL ATION COST
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OBSERVATION

Relational operators are a useful way to reason 
about a query but are not the most efficient way to 
execute it.

It takes a (relatively) long time to compile a 
C/C++ source file into executable code.

HIQUE does not support for full pipelining…

20
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PIPELINED OPERATORS

21

SELECT *
FROM A, C, 
(SELECT B.id, COUNT(*)

FROM B
WHERE B.val = ? + 1
GROUP BY B.id) AS B

WHERE A.val = 123 
AND A.id = C.a_id
AND B.id = C.b_id

⨝A.id=C.a_id

σA.val=123

A

⨝B.id=C.b_id

ΓB.id,COUNT(*)

σB.val=?+1

B C

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
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PIPELINED OPERATORS

21

SELECT *
FROM A, C, 
(SELECT B.id, COUNT(*)

FROM B
WHERE B.val = ? + 1
GROUP BY B.id) AS B

WHERE A.val = 123 
AND A.id = C.a_id
AND B.id = C.b_id

⨝A.id=C.a_id

σA.val=123

A

⨝B.id=C.b_id

ΓB.id,COUNT(*)

σB.val=?+1

B C

Pipeline Boundaries #1

#4

#2

#3

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
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HYPER JIT QUERY COMPIL ATION

Compile queries in-memory into native code using 
the LLVM toolkit.

Organizes query processing in a way to keep a 
tuple in CPU registers for as long as possible.
→ Push-based vs. Pull-based
→ Data Centric vs. Operator Centric

22

EFFICIENTLY COMPILING EFFICIENT QUERY PLANS 
FOR MODERN HARDWARE
VLDB 2011

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2020/papers/14-compilation/p539-neumann.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/14-compilation/p539-neumann.pdf
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LLVM

Collection of modular and reusable compiler and 
toolchain technologies.

Core component is a low-level programming 
language (IR) that is like assembly.

Not all the DBMS components need to be written 
in LLVM IR.
→ LLVM code can make calls to C++ code.

23

https://db.cs.cmu.edu/
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PUSH-BASED EXECUTION

24

Generated Query Plan

for t in A:
if t.val == 123:

Materialize t in HashTable ⨝(A.id=C.a_id)

for t in B:
if t.val == <param> + 1:
Aggregate t in HashTable Γ(B.id)

for t in Γ(B.id):
Materialize t in HashTable ⨝(B.id=C.b_id)

for t3 in C:
for t2 in ⨝(B.id=C.b_id):

for t1 in ⨝(A.id=C.a_id):
emit(t1⨝t2⨝t3)

#1

#4

#2

#3

SELECT *
FROM A, C, 
(SELECT B.id, COUNT(*)

FROM B
WHERE B.val = ? + 1
GROUP BY B.id) AS B

WHERE A.val = 123 
AND A.id = C.a_id
AND B.id = C.b_id

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
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QUERY COMPIL ATION EVALUATION
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QUERY COMPIL ATION COST
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QUERY COMPIL ATION COST

LLVM's compilation time grows super-linearly 
relative to the query size.
→ # of joins
→ # of predicates
→ # of aggregations

Not a big issue with OLTP applications.

Major problem with OLAP workloads.

27
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HYPER ADAPTIVE EXECUTION

First generate the LLVM IR for the query and 
then immediately start executing the IR using an 
interpreter.

Then the DBMS compiles the query in the 
background.

When the compiled query is ready, seamlessly 
replace the interpretive execution.
→ For each morsel, check to see whether the compiled 

version is available.

28

ADAPTIVE EXECUTION OF COMPILED QUERIES
ICDE 2018

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
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https://15721.courses.cs.cmu.edu/spring2020/papers/14-compilation/kohn-icde2018.pdf


15-721 (Spring 2020)

HYPER ADAPTIVE EXECUTION

29
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(0.2 ms)
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HYPER ADAPTIVE EXECUTION
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REAL-WORLD IMPLEMENTATIONS

31

JVM-based
Apache Spark

Neo4j

Splice Machine

Presto

LLVM-based
MemSQL

VitesseDB

PostgreSQL (2018)

Cloudera Impala

Peloton

CMU's DBMS 2.0

Custom
IBM System R

Oracle

Microsoft Hekaton

Actian Vector

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
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IBM SYSTEM R

A primitive form of code generation and query 
compilation was used by IBM in 1970s.
→ Compiled SQL statements into assembly code by 

selecting code templates for each operator.

Technique was abandoned when IBM built DB2:
→ High cost of external function calls
→ Poor portability
→ Software engineer complications

32

A HISTORY AND EVALUATION OF SYSTEM R
COMMUNICATIONS OF THE ACM 1981

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=358784
http://dl.acm.org/citation.cfm?id=358784
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ORACLE

Convert PL/SQL stored procedures into Pro*C
code and then compiled into native C/C++ code.

They also put Oracle-specific operations directly
in the SPARC chips as co-processors.
→ Memory Scans
→ Bit-pattern Dictionary Compression
→ Vectorized instructions designed for DBMSs
→ Security/encryption

33
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MICROSOFT HEKATON

Can compile both procedures and SQL.
→ Non-Hekaton queries can access Hekaton tables through 

compiled inter-operators.

Generates C code from an imperative syntax tree, 
compiles it into DLL, and links at runtime.

Employs safety measures to prevent somebody 
from injecting malicious code in a query.

34

COMPILATION IN THE MICROSOFT SQL SERVER 
HEKATON ENGINE
IEEE DATA ENGINEERING BULLETIN 2011

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2019/papers/19-compilation/freedman-ieee2014.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/19-compilation/freedman-ieee2014.pdf
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ACTIAN VECTOR

Pre-compiles thousands of “primitives” that 
perform basic operations on typed data.
→ Example: Generate a vector of tuple ids by applying a less 

than operator on some column of a particular type.

The DBMS then executes a query plan that 
invokes these primitives at runtime.
→ Function calls are amortized over multiple tuples

35

MICRO ADAPTIVITY IN VECTORWISE
SIGMOD 2013

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=2465292
http://dl.acm.org/citation.cfm?id=2465292
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ACTIAN VECTOR

Pre-compiles thousands of “primitives” that 
perform basic operations on typed data.
→ Example: Generate a vector of tuple ids by applying a less 

than operator on some column of a particular type.

The DBMS then executes a query plan that 
invokes these primitives at runtime.
→ Function calls are amortized over multiple tuples

35

MICRO ADAPTIVITY IN VECTORWISE
SIGMOD 2013

size_t scan_lessthan_int32(int *res, int32_t *col, int32_t val) {
size_t k = 0;
for (size_t i = 0; i < n; i++)
if (col[i] < val) res[k++] = i;

return (k);
}

size_t scan_lessthan_double(int *res, int32_t *col, double val) {
size_t k = 0;
for (size_t i = 0; i < n; i++)
if (col[i] < val) res[k++] = i;

return (k);
}

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=2465292
http://dl.acm.org/citation.cfm?id=2465292
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APACHE SPARK

Introduced in the new Tungsten engine in 2015.

The system converts a query's WHERE clause 
expression trees into Scala ASTs.

It then compiles these ASTs to generate JVM 
bytecode, which is then executed natively.

36

SPARK SQL: RELATIONAL DATA PROCESSING IN SPARK
SIGMOD 2015

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://dl.acm.org/citation.cfm?id=2742797
https://dl.acm.org/citation.cfm?id=2742797
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JAVA DATABASES

There are several JVM-based DBMSs that contain 
custom code that emits JVM bytecode directly.
→ Neo4j
→ Splice Machine
→ Presto
→ Derby

37

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
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MEMSQL (PRE 2016)

Performs the same C/C++ code generation as 
HIQUE and then invokes gcc.

Converts all queries into a parameterized form and 
caches the compiled query plan.

38

SELECT * FROM A 
WHERE A.id = ?

SELECT * FROM A 
WHERE A.id = 123

SELECT * FROM A 
WHERE A.id = 456

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
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MEMSQL (2016 PRESENT )

A query plan is converted into an imperative plan 
expressed in a high-level imperative DSL.
→ MemSQL Programming Language (MPL)
→ Think of this as a C++ dialect.

The DSL then gets converted into a second 
language of opcodes.
→ MemSQL Bit Code (MBC)
→ Think of this as JVM byte code.

Finally the DBMS compiles the opcodes into 
LLVM IR and then to native code.

39

Source: Drew Paroski

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://highscalability.com/blog/2016/9/7/code-generation-the-inner-sanctum-of-database-performance.html
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POSTGRESQL

Added support in 2018 (v11) for JIT compilation 
of predicates and tuple deserialization with LLVM.
→ Relies on optimizer estimates to determine when to 

compile expressions.

Automatically compiles Postgres' back-end C code 
into LLVM C++ code to remove iterator calls.

40

Source: Dmitry Melnik

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.pgcon.org/2017/schedule/attachments/467_PGCon 2017-05-26 15-00 ISPRAS Dynamic Compilation of SQL Queries in PostgreSQL Using LLVM JIT.pdf
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CLOUDERA IMPAL A

LLVM JIT compilation for predicate evaluation 
and record parsing.
→ Not sure if they are also doing operator compilation.

Optimized record parsing is important for Impala 
because they need to handle multiple data formats 
stored on HDFS.

41

IMPALA: A MODERN, OPEN-SOURCE 
SQL ENGINE FOR HADOOP
CIDR 2015

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://www.cidrdb.org/cidr2015/Papers/CIDR15_Paper28.pdf
http://www.cidrdb.org/cidr2015/Papers/CIDR15_Paper28.pdf
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VITESSEDB

Query accelerator for Postgres/Greenplum that 
uses LLVM + intra-query parallelism.
→ JIT predicates
→ Push-based processing model
→ Indirect calls become direct or inlined.
→ Leverages hardware for overflow detection.

Does not support all of Postgres’ types and 
functionalities. All DML operations are still 
interpreted.
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Source: CK Tan

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.youtube.com/watch?v=PEmVuYjhQFo
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PELOTON (2017)

HyPer-style full compilation of the entire query 
plan using the LLVM .

Relax the pipeline breakers create mini-batches for 
operators that can be vectorized.

Use software pre-fetching to hide memory stalls.
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RELAXED OPERATOR FUSION FOR IN-MEMORY DATABASES: MAKING COMPILATION, 
VECTORIZATION, AND PREFETCHING WORK TOGETHER AT LAST
VLDB 2017

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2018/papers/22-vectorization2/menon-vldb2017.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/21-vectorization2/menon-vldb2017.pdf
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PELOTON (2017)

44

88147
26350

87473

9960
21500

901
1396

2641

383 540
892 846

1763

191 220

1

10

100

1000

10000

100000

Q1 Q3 Q13 Q14 Q19

E
xe

cu
ti

on
 T

im
e 

(m
s)

Interpreted LLVM LLVM + ROF

Dual Socket Intel Xeon E5-2630v4 @ 2.20GHz
TPC-H 10 GB Database

Source: Prashanth Menon

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.youtube.com/watch?v=HjMQbzBhTb4
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UNNAMED CMU DBMS (2019)

MemSQL-style conversion of query plans into a 
database-oriented DSL.

Then compile the DSL into opcodes.

HyPer-style interpretation of opcodes while 
compilation occurs in the background with 
LLVM.

45

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
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UNNAMED CMU DBMS (2019)

46

fun main() -> int {
var ret = 0
for (row in foo) {   

if (row.colA >= 50 and
row.colB < 100000) {      

ret = ret + 1
}

}
return ret

}

Source: Prashanth Menon

SELECT * FROM foo
WHERE colA >= 50
AND colB < 100000;

Function 0 <main>:                                                                                                           
[3/4587]

Frame size 8512 bytes (1 parameter, 20 locals)                                                                               
param    hiddenRv:  offset=0       size=8       align=8       type=*int32
local         ret: offset=8       size=4       align=4       type=int32
local  table_iter:  offset=16      size=8312    align=8       type=tpl::sql::TableVectorIterator
local         vpi:  offset=8328    size=8       align=8       type=*tpl::sql::VectorProjectionIterator
local        tmp1:  offset=8336    size=1       align=1       type=bool
local         row:  offset=8344    size=64      align=8       type=struct{Integer,Integer,Integer,Integer}
local        tmp2:  offset=8408    size=1       align=1       type=bool
local        tmp3:  offset=8416    size=8       align=8       type=*Integer
local        tmp4:  offset=8424    size=8       align=8       type=*Integer
local        tmp5:  offset=8432    size=8       align=8       type=*Integer
local        tmp6:  offset=8440    size=8       align=8       type=*Integer
local        tmp7:  offset=8448    size=1       align=1       type=bool
local        tmp8:  offset=8449    size=2       align=1       type=Boolean
local        tmp9:  offset=8456    size=16      align=8       type=Integer
local       tmp10:  offset=8472    size=4       align=4       type=int32
local       tmp11:  offset=8476    size=2       align=1       type=Boolean
local       tmp12:  offset=8480    size=8       align=8       type=*Integer
local       tmp13:  offset=8488    size=16      align=8       type=Integer
local       tmp14:  offset=8504    size=4       align=4       type=int32
local       tmp15:  offset=8508    size=4       align=4       type=int32

0x00000000    AssignImm4
0x0000000c    TableVectorIteratorInit
0x00000016    TableVectorIteratorGetVPI
0x00000022    TableVectorIteratorNext
0x0000002e    JumpIfFalse
0x0000003a    VPIHasNext
0x00000046    JumpIfFalse
0x00000052    Lea
0x00000062    VPIGetInteger
0x00000072    Lea
0x00000082    VPIGetInteger
0x00000092    Lea
0x000000a2    VPIGetInteger
0x000000b2    Lea
0x000000c2    VPIGetInteger
0x000000d2    AssignImm4
0x000000de    InitInteger
0x000000ea    GreaterThanEqualInteger
0x000000fa    ForceBoolTruth
0x00000106    JumpIfFalse
0x00000112    Lea

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.youtube.com/watch?v=HjMQbzBhTb4
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UNNAMED CMU DBMS (2019)
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fun main() -> int {
var ret = 0
for (row in foo) {   

if (row.colA >= 50 and
row.colB < 100000) {      

ret = ret + 1
}

}
return ret

}

Source: Prashanth Menon

SELECT * FROM foo
WHERE colA >= 50
AND colB < 100000;

Interpreter

Optimized 
LLVM Compiler

x86 Code

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.youtube.com/watch?v=HjMQbzBhTb4
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PARTING THOUGHTS

Query compilation makes a difference but is non-
trivial to implement.

The 2016 version of MemSQL is the best query 
compilation implementation out there.

Any new DBMS that wants to compete has to 
implement query compilation.
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https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
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NEXT CL ASS

Vectorization

50

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

