
L
e

c
tu

re
 #

1
5

Vectorized Execution

@Andy_Pavlo // 15-721 // Spring 2020

ADVANCED
DATABASE
SYSTEMS

https://15721.courses.cs.cmu.edu/spring2020/
http://db.cs.cmu.edu/
https://twitter.com/andy_pavlo

15-721 (Spring 2020)

Background

Vectorized Algorithms (Columbia)

Project #3 Topics

2

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

VECTORIZATION

The process of converting an algorithm's scalar
implementation that processes a single pair of
operands at a time, to a vector implementation
that processes one operation on multiple pairs of
operands at once.

3

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

WHY THIS MAT TERS

Say we can parallelize our algorithm over 32 cores.

Each core has a 4-wide SIMD registers.

Potential Speed-up: 32x × 4x = 128x

4

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SINGLE INSTRUCTION, MULTIPLE DATA

A class of CPU instructions that allow the
processor to perform the same operation on
multiple data points simultaneously.

All major ISAs have microarchitecture support
SIMD operations.
→ x86: MMX, SSE, SSE2, SSE3, SSE4, AVX, AVX2,

AVX512
→ PowerPC: Altivec
→ ARM: NEON, SVE

8

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://developer.arm.com/docs/100891/0606/sve-overview/introducing-sve

15-721 (Spring 2020)

Z

SIMD EXAMPLE

9

X + Y = Z 8
7
6
5
4
3
2
1

X

SISD

+for (i=0; i<n; i++) {
Z[i] = X[i] + Y[i];

}

1
1
1
1
1
1
1
1

Y

x1

x2

⋮
xn

y1

y2

⋮
yn

x1+y1

x2+y2

⋮
xn+yn

+ =

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Z

SIMD EXAMPLE

9

X + Y = Z 8
7
6
5
4
3
2
1

X

SISD

+for (i=0; i<n; i++) {
Z[i] = X[i] + Y[i];

}

9
1
1
1
1
1
1
1
1

Y

x1

x2

⋮
xn

y1

y2

⋮
yn

x1+y1

x2+y2

⋮
xn+yn

+ =

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Z

SIMD EXAMPLE

9

X + Y = Z 8
7
6
5
4
3
2
1

X

SISD

+for (i=0; i<n; i++) {
Z[i] = X[i] + Y[i];

}

9 8 7 6 5 4 3 2
1
1
1
1
1
1
1
1

Y

x1

x2

⋮
xn

y1

y2

⋮
yn

x1+y1

x2+y2

⋮
xn+yn

+ =

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Z

SIMD EXAMPLE

9

X + Y = Z 8
7
6
5
4
3
2
1

X

for (i=0; i<n; i++) {
Z[i] = X[i] + Y[i];

}

9 8 7 6
1
1
1
1
1
1
1
1

Y

SIMD

+

8 7 6 5

1 1 1 1

128-bit SIMD Register

128-bit SIMD Register
128-bit SIMD Register

x1

x2

⋮
xn

y1

y2

⋮
yn

x1+y1

x2+y2

⋮
xn+yn

+ =

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Z

SIMD EXAMPLE

9

X + Y = Z 8
7
6
5
4
3
2
1

X

for (i=0; i<n; i++) {
Z[i] = X[i] + Y[i];

}

9 8 7 6 5 4 3 2
1
1
1
1
1
1
1
1

Y

SIMD

+
4 3 2 1

1 1 1 1

x1

x2

⋮
xn

y1

y2

⋮
yn

x1+y1

x2+y2

⋮
xn+yn

+ =

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SIMD INSTRUCTIONS (1)

Data Movement
→ Moving data in and out of vector registers

Arithmetic Operations
→ Apply operation on multiple data items (e.g., 2 doubles, 4

floats, 16 bytes)
→ Example: ADD, SUB, MUL, DIV, SQRT, MAX, MIN

Logical Instructions
→ Logical operations on multiple data items
→ Example: AND, OR, XOR, ANDN, ANDPS, ANDNPS

11

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SIMD INSTRUCTIONS (2)

Comparison Instructions
→ Comparing multiple data items (==,<,<=,>,>=,!=)

Shuffle instructions
→ Move data in between SIMD registers

Miscellaneous
→ Conversion: Transform data between x86 and SIMD

registers.
→ Cache Control: Move data directly from SIMD registers

to memory (bypassing CPU cache).

12

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

INTEL SIMD EXTENSIONS

13

Width Integers Single-P Double-P

1997 MMX 64 bits ✔

1999 SSE 128 bits ✔ ✔(×4)

2001 SSE2 128 bits ✔ ✔ ✔(×2)

2004 SSE3 128 bits ✔ ✔ ✔

2006 SSSE 3 128 bits ✔ ✔ ✔

2006 SSE 4.1 128 bits ✔ ✔ ✔

2008 SSE 4.2 128 bits ✔ ✔ ✔

2011 AVX 256 bits ✔ ✔(×8) ✔(×4)

2013 AVX2 256 bits ✔ ✔ ✔

2017 AVX-512 512 bits ✔ ✔(×16) ✔(×8)

Source: James Reinders

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.youtube.com/watch?v=_OJmxi4-twY

15-721 (Spring 2020)

SIMD TRADE-OFFS

Advantages:
→ Significant performance gains and resource utilization if

an algorithm can be vectorized.

Disadvantages:
→ Implementing an algorithm using SIMD is still mostly a

manual process.
→ SIMD may have restrictions on data alignment.
→ Gathering data into SIMD registers and scattering it to

the correct locations is tricky and/or inefficient.

14

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

VECTORIZATION

Choice #1: Automatic Vectorization

Choice #2: Compiler Hints

Choice #3: Explicit Vectorization

15

Source: James Reinders

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.youtube.com/watch?v=_OJmxi4-twY

15-721 (Spring 2020)

VECTORIZATION

Choice #1: Automatic Vectorization

Choice #2: Compiler Hints

Choice #3: Explicit Vectorization

15

Source: James Reinders

Ease of Use

Programmer
Control

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.youtube.com/watch?v=_OJmxi4-twY

15-721 (Spring 2020)

AUTOMATIC VECTORIZATION

The compiler can identify when instructions
inside of a loop can be rewritten as a vectorized
operation.

Works for simple loops only and is rare in
database operators. Requires hardware support for
SIMD instructions.

16

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

AUTOMATIC VECTORIZATION

This loop is not legal to
automatically vectorize.

The code is written such that the
addition is described sequentially.

17

These might point to
the same address!

void add(int *X,
int *Y,
int *Z) {

for (int i=0; i<MAX; i++) {
Z[i] = X[i] + Y[i];

}
}

*Z=*X+1

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

COMPILER HINTS

Provide the compiler with additional information
about the code to let it know that is safe to
vectorize.

Two approaches:
→ Give explicit information about memory locations.
→ Tell the compiler to ignore vector dependencies.

18

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

COMPILER HINTS

The restrict keyword in C++
tells the compiler that the arrays
are distinct locations in memory.

19

void add(int *restrict X,
int *restrict Y,
int *restrict Z) {

for (int i=0; i<MAX; i++) {
Z[i] = X[i] + Y[i];

}
}

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

COMPILER HINTS

This pragma tells the compiler to
ignore loop dependencies for the
vectors.

It’s up to you make sure that this is
correct.

20

void add(int *X,
int *Y,
int *Z) {

#pragma ivdep
for (int i=0; i<MAX; i++) {
Z[i] = X[i] + Y[i];

}
}

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

EXPLICIT VECTORIZATION

Use CPU intrinsics to manually marshal data
between SIMD registers and execute vectorized
instructions.

Potentially not portable.

21

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

EXPLICIT VECTORIZATION

Store the vectors in 128-bit SIMD
registers.

Then invoke the intrinsic to add
together the vectors and write
them to the output location.

22

void add(int *X,
int *Y,
int *Z) {

__mm128i *vecX = (__m128i*)X;
__mm128i *vecY = (__m128i*)Y;
__mm128i *vecZ = (__m128i*)Z;
for (int i=0; i<MAX/4; i++) {
_mm_store_si128(vecZ++,
⮱_mm_add_epi32(*vecX++,

⮱*vecY++));
}

}

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

VECTORIZATION DIRECTION

Approach #1: Horizontal
→ Perform operation on all elements

together within a single vector.

Approach #2: Vertical
→ Perform operation in an elementwise

manner on elements of each vector.

23

Source:

0 1 2 3

SIMD Add 6

0 1 2 3

SIMD Add

1 1 1 1

1 2 3 4

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://gain-performance.com/2017/05/01/umesimd-tutorial-2-calculation/

15-721 (Spring 2020)

EXPLICIT VECTORIZATION

Linear Access Operators
→ Predicate evaluation
→ Compression

Ad-hoc Vectorization
→ Sorting
→ Merging

Composable Operations
→ Multi-way trees
→ Bucketized hash tables

24

Source: Orestis Polychroniou

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://www.cs.columbia.edu/~orestis

15-721 (Spring 2020)

VECTORIZED DBMS ALGORITHMS

Principles for efficient vectorization by using
fundamental vector operations to construct more
advanced functionality.
→ Favor vertical vectorization by processing different input

data per lane.
→ Maximize lane utilization by executing unique data items

per lane subset (i.e., no useless computations).

25

RETHINKING SIMD VECTORIZATION FOR
IN-MEMORY DATABASES
SIGMOD 2015

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2020/papers/15-vectorization1/p1493-polychroniou.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/15-vectorization1/p1493-polychroniou.pdf

15-721 (Spring 2020)

FUNDAMENTAL OPERATIONS

Selective Load

Selective Store

Selective Gather

Selective Scatter

26

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

FUNDAMENTAL VECTOR OPERATIONS

27

Selective Load

A B C DVector

Memory

0 1 0 1Mask

U V W X Y Z • • •

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

FUNDAMENTAL VECTOR OPERATIONS

27

Selective Load

A B C DVector

Memory

0 1 0 1Mask

U V W X Y Z • • •

U

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

FUNDAMENTAL VECTOR OPERATIONS

27

Selective Load

A B C DVector

Memory

0 1 0 1Mask

U V W X Y Z • • •

U V

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

FUNDAMENTAL VECTOR OPERATIONS

27

Selective Load Selective Store

A B C DVector

Memory

0 1 0 1Mask

U V W X Y Z • • •

U V

A B C DVector

U V W X Y Z • • •Memory

0 1 0 1Mask

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

FUNDAMENTAL VECTOR OPERATIONS

27

Selective Load Selective Store

A B C DVector

Memory

0 1 0 1Mask

U V W X Y Z • • •

U V

A B C DVector

U V W X Y Z • • •Memory

0 1 0 1Mask

B

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

FUNDAMENTAL VECTOR OPERATIONS

27

Selective Load Selective Store

A B C DVector

Memory

0 1 0 1Mask

U V W X Y Z • • •

U V

A B C DVector

U V W X Y Z • • •Memory

0 1 0 1Mask

B D

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Selective Gather

FUNDAMENTAL VECTOR OPERATIONS

28

A B DValue Vector

Memory

2 1 5 3Index Vector

U V W X Y Z • • •

CA

0 21 3 54

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Selective Gather

FUNDAMENTAL VECTOR OPERATIONS

28

A B DValue Vector

Memory

2 1 5 3Index Vector

U V W X Y Z • • •

CAW

0 21 3 54

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Selective Gather

FUNDAMENTAL VECTOR OPERATIONS

28

A B DValue Vector

Memory

2 1 5 3Index Vector

U V W X Y Z • • •

CAW V XZ

0 21 3 54

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Selective Gather

FUNDAMENTAL VECTOR OPERATIONS

28

Selective Scatter

A B DValue Vector

Memory

2 1 5 3Index Vector

U V W X Y Z • • • A B C DValue Vector

U V W X Y Z • • •Memory

2 1 5 3Index Vector

CAW V XZ

0 21 3 54

0 21 3 54

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Selective Gather

FUNDAMENTAL VECTOR OPERATIONS

28

Selective Scatter

A B DValue Vector

Memory

2 1 5 3Index Vector

U V W X Y Z • • • A B C DValue Vector

U V W X Y Z • • •Memory

2 1 5 3Index Vector

CAW V XZ A

0 21 3 54

0 21 3 54

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Selective Gather

FUNDAMENTAL VECTOR OPERATIONS

28

Selective Scatter

A B DValue Vector

Memory

2 1 5 3Index Vector

U V W X Y Z • • • A B C DValue Vector

U V W X Y Z • • •Memory

2 1 5 3Index Vector

CAW V XZ AB CD

0 21 3 54

0 21 3 54

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

ISSUES

Gathers and scatters are not really executed in
parallel because the L1 cache only allows one or
two distinct accesses per cycle.

Gathers are only supported in newer CPUs.

Selective loads and stores are also implemented in
Xeon CPUs using vector permutations.

29

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://software.intel.com/en-us/node/683481

15-721 (Spring 2020)

VECTORIZED OPERATORS

Selection Scans

Hash Tables

Partitioning / Histograms

Paper provides additional vectorized algorithms:
→ Joins, Sorting, Bloom filters.

30

RETHINKING SIMD VECTORIZATION FOR
IN-MEMORY DATABASES
SIGMOD 2015

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2020/papers/15-vectorization1/p1493-polychroniou.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/15-vectorization1/p1493-polychroniou.pdf

15-721 (Spring 2020)

SELECTION SCANS

31

Scalar (Branching)

i = 0
for t in table:
key = t.key
if (key≥low) && (key≤high):

copy(t, output[i])
i = i + 1

Scalar (Branchless)

i = 0
for t in table:
copy(t, output[i])
key = t.key
m = (key≥low ? 1 : 0) &
⮱(key≤high ? 1 : 0)

i = i + m

Source: Bogdan Raducanu

SELECT * FROM table
WHERE key >= $low AND key <= $high

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://dl.acm.org/citation.cfm?id=2465292

15-721 (Spring 2020)

SELECTION SCANS

32

Source: Bogdan Raducanu

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://dl.acm.org/citation.cfm?id=2465292

15-721 (Spring 2020)

SELECT * FROM table
WHERE key >= $low AND key <= $high

SELECTION SCANS

33

Vectorized

i = 0
for vt in table:
simdLoad(vt.key, vk)
vm = (vk≥low ? 1 : 0) &

⮱(vk≤high ? 1 : 0)
simdStore(vt, vm, output[i])
i = i + |vm≠false|

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SELECT * FROM table
WHERE key >= $low AND key <= $high

SELECTION SCANS

33

Vectorized

i = 0
for vt in table:
simdLoad(vt.key, vk)
vm = (vk≥low ? 1 : 0) &

⮱(vk≤high ? 1 : 0)
simdStore(vt, vm, output[i])
i = i + |vm≠false|

SELECT * FROM table
WHERE key >= "O" AND key <= "U"

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SELECT * FROM table
WHERE key >= $low AND key <= $high

SELECTION SCANS

33

Vectorized

i = 0
for vt in table:
simdLoad(vt.key, vk)
vm = (vk≥low ? 1 : 0) &

⮱(vk≤high ? 1 : 0)
simdStore(vt, vm, output[i])
i = i + |vm≠false|

J O Y S U XKey VectorID
1

KEY
J

2 O
3 Y
4 S
5 U
6 X

SELECT * FROM table
WHERE key >= "O" AND key <= "U"

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SELECT * FROM table
WHERE key >= $low AND key <= $high

SELECTION SCANS

33

Vectorized

i = 0
for vt in table:
simdLoad(vt.key, vk)
vm = (vk≥low ? 1 : 0) &

⮱(vk≤high ? 1 : 0)
simdStore(vt, vm, output[i])
i = i + |vm≠false|

J O Y S U XKey VectorID
1

KEY
J

2 O
3 Y
4 S
5 U
6 X

Mask 0 1 0 1 1 0

SIMD Compare

SELECT * FROM table
WHERE key >= "O" AND key <= "U"

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SELECT * FROM table
WHERE key >= $low AND key <= $high

SELECTION SCANS

33

Vectorized

i = 0
for vt in table:
simdLoad(vt.key, vk)
vm = (vk≥low ? 1 : 0) &

⮱(vk≤high ? 1 : 0)
simdStore(vt, vm, output[i])
i = i + |vm≠false|

J O Y S U XKey VectorID
1

KEY
J

2 O
3 Y
4 S
5 U
6 X

Mask 0 1 0 1 1 0

SIMD Compare

0 1 2 3 4 5All Offsets

SELECT * FROM table
WHERE key >= "O" AND key <= "U"

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SELECT * FROM table
WHERE key >= $low AND key <= $high

SELECTION SCANS

33

Vectorized

i = 0
for vt in table:
simdLoad(vt.key, vk)
vm = (vk≥low ? 1 : 0) &

⮱(vk≤high ? 1 : 0)
simdStore(vt, vm, output[i])
i = i + |vm≠false|

J O Y S U XKey VectorID
1

KEY
J

2 O
3 Y
4 S
5 U
6 X

Mask 0 1 0 1 1 0

SIMD Compare

0 1 2 3 4 5All Offsets

SIMD Store

1 3 4Matched Offsets
SELECT * FROM table
WHERE key >= "O" AND key <= "U"

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SELECTION SCANS

34

Scalar (Branching)

Scalar (Branchless)

Vectorized (Early Mat)

Vectorized (Late Mat)

MIC (Xeon Phi 7120P – 61 Cores + 4×HT) Multi-Core (Xeon E3-1275v3 – 4 Cores + 2×HT)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SELECTION SCANS

34

0

16

32

48

0 1 2 5 10 20 50 100

T
hr

ou
gh

pu
t

(b
il

li
on

 tu
pl

es
 /

 s
ec

)

Selectivity (%)

Scalar (Branching)

Scalar (Branchless)

Vectorized (Early Mat)

Vectorized (Late Mat)

0.0

2.0

4.0

6.0

0 1 2 5 10 20 50 100

T
hr

ou
gh

pu
t

(b
il

li
on

 tu
pl

es
 /

 s
ec

)
Selectivity (%)

MIC (Xeon Phi 7120P – 61 Cores + 4×HT) Multi-Core (Xeon E3-1275v3 – 4 Cores + 2×HT)

5.7 5.6 5.35.7 4.9 4.3 2.8 1.3

1.7 1.7 1.71.8
1.6 1.4 1.5

1.2

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SELECTION SCANS

34

0

16

32

48

0 1 2 5 10 20 50 100

T
hr

ou
gh

pu
t

(b
il

li
on

 tu
pl

es
 /

 s
ec

)

Selectivity (%)

Scalar (Branching)

Scalar (Branchless)

Vectorized (Early Mat)

Vectorized (Late Mat)

0.0

2.0

4.0

6.0

0 1 2 5 10 20 50 100

T
hr

ou
gh

pu
t

(b
il

li
on

 tu
pl

es
 /

 s
ec

)
Selectivity (%)

MIC (Xeon Phi 7120P – 61 Cores + 4×HT) Multi-Core (Xeon E3-1275v3 – 4 Cores + 2×HT)

Memory
Bandwidth

Memory
Bandwidth

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PAYLOADKEY

Linear Probing
Hash Table

HASH TABLES PROBING

35

Scalar

k1

Input Key

h1

Hash Index

#
hash(key)

k1 k9=

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PAYLOADKEY

Linear Probing
Hash Table

HASH TABLES PROBING

35

Scalar

k1

Input Key

h1

Hash Index

#
hash(key)

k1

k9=

k3=

k8=

k1=

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

HASH TABLES PROBING

35

Scalar

k1

Input Key

h1

Hash Index

#
hash(key)

Vectorized (Horizontal)

KEYS PAYLOAD

Linear Probing
Bucketized Hash Table

Four Keys Four Values

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

HASH TABLES PROBING

35

Scalar

k1

Input Key

h1

Hash Index

#
hash(key)

Vectorized (Horizontal)

KEYS PAYLOAD

Linear Probing
Bucketized Hash Table

k1

Input Key

h1

Hash Index

#
hash(key)

k9= k3 k8 k1k1

0 0 0 1
Matched Mask

SIMD Compare

Four Keys Four Values

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PAYLOAD

k99

k1

k6

k4

KEY

k5

k88

Linear Probing
Hash Table

HASH TABLES PROBING

36

Vectorized (Vertical)
Input Key

Vector

k1

k2

k3

k4

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PAYLOAD

k99

k1

k6

k4

KEY

k5

k88

Linear Probing
Hash Table

HASH TABLES PROBING

36

Vectorized (Vertical)
Input Key

Vector hash(key)

#

#

#

#

Hash Index
Vector

h1

h2

h3

h4

k1

k2

k3

k4

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PAYLOAD

k99

k1

k6

k4

KEY

k5

k88

Linear Probing
Hash Table

HASH TABLES PROBING

36

Vectorized (Vertical)
Input Key

Vector hash(key)

#

#

#

#

Hash Index
Vector

h1

h2

h3

h4

k1

k2

k3

k4

k1

k99

k88

k4

=
=
=
=

SIMD Gather

k1

k2

k3

k4

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PAYLOAD

k99

k1

k6

k4

KEY

k5

k88

Linear Probing
Hash Table

HASH TABLES PROBING

36

Vectorized (Vertical)
Input Key

Vector hash(key)

#

#

#

#

Hash Index
Vector

h1

h2

h3

h4

k1

k2

k3

k4

k1

k99

k88

k4

=
=
=
=

SIMD Compare

1

0

0

1

k1

k2

k3

k4

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PAYLOAD

k99

k1

k6

k4

KEY

k5

k88

Linear Probing
Hash Table

HASH TABLES PROBING

36

Vectorized (Vertical)
Input Key

Vector hash(key)

#

#

#

#

Hash Index
Vector

h1

h2

h3

h4

k1

k2

k3

k4

k1

k99

k88

k4

=
=
=
=

SIMD Compare

1

0

0

1

k1

k2

k3

k4

k5

k6

h5

h2+1

h3+1

h6

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PAYLOAD

k99

k1

k6

k4

KEY

k5

k88

Linear Probing
Hash Table

HASH TABLES PROBING

36

Vectorized (Vertical)
Input Key

Vector hash(key)

#

#

#

#

Hash Index
Vector

h1

h2

h3

h4

k1

k2

k3

k4

k5

k6

h5

h2+1

h3+1

h6

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

HASH TABLES PROBING

37

0

3

6

9

12

T
hr

ou
gh

pu
t

(b
il

li
on

 tu
pl

es
 /

 s
ec

)

Hash Table Size

Scalar Vectorized (Horizontal) Vectorized (Vertical)

MIC (Xeon Phi 7120P – 61 Cores + 4×HT) Multi-Core (Xeon E3-1275v3 – 4 Cores + 2×HT)

0

0.5

1

1.5

2

T
hr

ou
gh

pu
t

(b
il

li
on

 tu
pl

es
 /

 s
ec

)

Hash Table Size

2.3 2.2 2.12.4
1.1 0.9 0.7 0.6

1.1 1.1
0.9

1.2

0.8 0.8

0.3
0.2

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

HASH TABLES PROBING

37

0

3

6

9

12

T
hr

ou
gh

pu
t

(b
il

li
on

 tu
pl

es
 /

 s
ec

)

Hash Table Size

Scalar Vectorized (Horizontal) Vectorized (Vertical)

MIC (Xeon Phi 7120P – 61 Cores + 4×HT) Multi-Core (Xeon E3-1275v3 – 4 Cores + 2×HT)

0

0.5

1

1.5

2

T
hr

ou
gh

pu
t

(b
il

li
on

 tu
pl

es
 /

 s
ec

)

Hash Table Size

Out of Cache

Out of Cache

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PARTITIONING HISTOGRAM

Use scatter and gathers to increment counts.

Replicate the histogram to handle collisions.

38

k1

k2

k3

k4

Input Key
Vector

h1

h2

h3

h4

Hash Index
Vector

SIMD AddSIMD Radix

+1

+1

+1

Histogram

Missing Update

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PARTITIONING HISTOGRAM

Use scatter and gathers to increment counts.

Replicate the histogram to handle collisions.

38

k1

k2

k3

k4

Input Key
Vector

h1

h2

h3

h4

Hash Index
Vector Replicated Histogram

+1

+1

+1

+1

of Vector Lanes

SIMD Radix SIMD Scatter

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PARTITIONING HISTOGRAM

Use scatter and gathers to increment counts.

Replicate the histogram to handle collisions.

38

k1

k2

k3

k4

Input Key
Vector

h1

h2

h3

h4

Hash Index
Vector Replicated Histogram

+1

+1

+1

+1

SIMD Add

of Vector Lanes

SIMD Radix

+1

+2

+1

Histogram

SIMD Scatter

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PARTING THOUGHTS

Vectorization is essential for OLAP queries.

These algorithms don’t work when the data
exceeds your CPU cache.

We can combine all the intra-query parallelism
optimizations we’ve talked about in a DBMS.
→ Multiple threads processing the same query.
→ Each thread can execute a compiled plan.
→ The compiled plan can invoke vectorized operations.

41

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PROJECT #3

Group project to implement some substantial
component or feature in a DBMS.

Projects should incorporate topics discussed in this
course as well as from your own interests.

Each group must pick a project that is unique from
their classmates.

42

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PROJECT #3

Project deliverables:
→ Proposal
→ Status Update
→ Design Document
→ Code Review
→ Final Presentation
→ Code Drop

43

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PROJECT #3 PROPOSAL

Five-minute presentation to the class that
discusses the high-level topic.

Each proposal must discuss:
→ What files you will need to modify.
→ How you will test whether your implementation is

correct.
→ What workloads you will use for your project.

44

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PROJECT #3 STATUS UPDATE

Five-minute presentation to update the class
about the current status of your project.

Each presentation should include:
→ Current development status.
→ Whether your plan has changed and why.
→ Anything that surprised you during coding.

45

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PROJECT #3 DESIGN DOCUMENT

As part of the status update, you must provide a
design document that describes your project
implementation:
→ Architectural Design
→ Design Rationale
→ Testing Plan
→ Trade-offs and Potential Problems
→ Future Work

46

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PROJECT #3 CODE REVIEW

Each group will be paired with another group and
provide feedback on their code.

There will be two separate code review rounds.

Grading will be based on participation.

47

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PROJECT #3 FINAL PRESENTATION

10-minute presentation on the final status of your
project during the scheduled final exam.

You should include any performance
measurements or benchmarking numbers for your
implementation.

Demos are always hot too…

48

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PROJECT #2 CODE DROP

A project is not considered complete until:
→ The code can merge into the master branch without any

conflicts.
→ All comments from code review are addressed.
→ The project includes test cases that correctly verify that

implementation is correct.
→ Source code contains clear documentation / comments.

We will select the merge order randomly.

49

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

COMPUTING RESOURCES

We will provide additional Amazon AWS credits.

Submitting a PR to our repo will invoke builds on
Travis and local Jenkins cluster.

Let me know if you think you need special
hardware.

50

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

DISCL AIMER

The DBMS is a major work-in-progress.

We do not support a bunch of things yet.

We should work together to add in features /
components that we all need.

51

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PROJECT TOPICS

52

Query Optimizer

Statistics + Sampling

Common Table Expressions

Add/Drop Index

Checkpoints + Recovery

Multi-Threaded Queries

Constraints

Sequences

Additional Data Types

Views

Schema Changes

Compression

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

QUERY OPTIMIZER

We have a sophisticated query optimizer based on
the Cascades model.

Project: Expand features in DBMS optimizer
→ Outer Joins
→ Nested Queries
→ Cost Models
→ Note: You must send me your CV if you choose this

project because companies want to hire you. Seriously.

53

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

STATISTICS + SAMPLING

We currently do not maintain any statistics about
the database. This is needed for our query
optimizer.

Project: Implement a mechanism for collecting
statistics about tables for the query optimizer.
→ Can choose lazy or eager sampling.
→ Add this data to the catalog.
→ Bonus: Implement a new cost model.

54

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

COMMON TABLE EXPRESSIONS

TPC-DS is a more complex workload than TPC-
H, but it requires support for CTEs.

Project: Add support for CTEs
→ Extend parser to support WITH and UNION.
→ Modify optimizer to reason about derived tables (should

be similar to nested queries).
→ Extend execution engine to process CTEs.

55

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

ADD/DROP INDEXES

We need to support building indexes in a
transactionally consistent manner.

Project: Correct index creation/deletion
→ Maintain a delta storage for capturing changes made to

table while the index is being built.
→ Temporarily halt transactions when the index is built and

then apply missed changes.
→ Bonus: Support building indexes with multiple threads.

56

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MULTI-THREADED QUERIES

The DBMS currently only uses a single worker
thread per txn/query.

Project: Implement support for intra-query
parallelism with multiple threads.
→ Will need to implement this to work with the new

LLVM execution engine.
→ Bonus: Add support for NUMA-aware data placement.

Will need to update internal catalog.

57

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CHECKPOINTS + RECOVERY

We currently support a WAL scheme without
checkpoints. We can replay log upon restart but
not re-install catalogs.

Project: Implement full recovery from
checkpoints + WAL.
→ First store catalog table in checkpoint
→ Add recovery from checkpoint + WAL.
→ Implement consistent checkpoints for data tables.

58

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CONSTRAINTS

Constraints are important feature in DBMSs to
ensure database integrity.

Project: Implement support for enforcing
integrity constraints.
→ Will want to start with simple constraints first.
→ Final goal will be to implement foreign key constraints.
→ Bonus: Online constraint changes with ALTER.

59

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SEQUENCES

Global counters that can be used as auto-
increment keys for tables.

Project: Add support for Sequences
→ Store sequences in the catalog (follow Postgres v12) and

make sure increments are durable in WAL.
→ Provide helper methods for efficient access.
→ Need to special case them from the DBMS's txn manager.
→ Add support for nextval native function.
→ Add support for SERIAL attribute type.

60

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

NUMERIC T YPE

The Germans claim that fixed-point decimals are
faster than floating point decimals.

Project: Add support for NUMERIC type.
→ Modify data table to support inline 16-byte values.
→ Add new built-in type and operator functions.
→ Modify binder with new casting + type-checking

methods.
→ Modify network layer to serialize values for Postgres wire

protocol.

61

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

ENUM T YPE

The ENUM type allows the programmer to map
names to values and restrict the domain.

Project: Add support for ENUM type
→ Update catalogs to store ENUM information.
→ Modify binder to enforce the ENUM constraint and then

map entries to integers.
→ Support ENUM type in LLVM expression evaluation.

62

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

VIEWS

A view is a "virtual" table that is based on a
SELECT query. The DBMS then rewrite queries on
that view to be on the underlying query.

Project: Implement support for views.
→ Extend the catalog to store view information.
→ Modify the binder to transform the view to use the

originally query.
→ Should not need to modify execution engine.

63

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CONCURRENT SCHEMA CHANGES

A DBMS needs to be able to support updating the
database schema (e.g., add/drop column) while it
continues to execute txns and queries.

Project: Implement support for concurrent
schema changes with low overhead.
→ You will want to use a lazy method that propagates

changes to blocks only when they are updated.
→ Will want to extend internal catalog to keep track of

different schema versions.

64

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

DATABASE COMPRESSION

We currently support Apache Arrow's dictionary
compression scheme, but it is not turned on

Project: Enable Arrow dictionary compression.
→ Implement support to convert uncompressed blocks to

compressed blocks. Must also update indexes.
→ Extend data table API to allow execution engine scan

operations to process on compressed data.

65

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

HOW TO START

Form a team.

Meet with your team and discuss potential topics.

Look over source code and determine what you
will need to implement.

I am able during Spring Break for additional
discussion and clarification of the project idea.

66

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

NEXT CL ASS

Proposal Presentations

89

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

