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OBSERVATION

Vectorization can speed up query performance.

Compilation can speed up query performance.

We have not discussed which approach is better 
and under what conditions.

Switching an existing DBMS is difficult, so one 
must make this design decision early.

2

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

VECTORWISE PRECOMPILED PRIMITIVES

Pre-compiles thousands of "primitives" that 
perform basic operations on typed data.
→ Using simple kernels for each primitive means that they 

are easier to vectorize.

The DBMS then executes a query plan that 
invokes these primitives at runtime.
→ Function calls are amortized over multiple tuples.
→ The output of a primitive are the offsets of tuples that 
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MICRO ADAPTIVITY IN VECTORWISE
SIGMOD 2013

https://db.cs.cmu.edu/
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VECTORWISE PRECOMPILED PRIMITIVES
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SELECT * FROM foo
WHERE str_col = 'abc'
AND int_col = 4;

foo

str_col='abc' &&
int_col=4s

vec<offset> sel_eq_str(vec<string> col, string val) {
vec<offset> res;   
for (offset i = 0; i < col.size(); i++)

if (col[i] == val) res.append(i);
return (res);

}

vec<offset> sel_eq_int(vec<int> col, int val,
vec<offset> positions) {

vec<offset> res;   
for (offset i : positions)
if (col[i] == val) res.append(i);

return (res);
}

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
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HYPER JIT  QUERY COMPIL ATION

Compile queries in-memory into native code using 
the LLVM toolkit.

Organizes query processing in a way to keep a 
tuple in CPU registers for as long as possible.
→ Bottom-to-top / push-based query processing model.
→ Not vectorizable (as originally described).
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EFFICIENTLY COMPILING EFFICIENT QUERY PLANS 
FOR MODERN HARDWARE
VLDB 2011

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2019/papers/19-compilation/p539-neumann.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/19-compilation/p539-neumann.pdf
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HYPER JIT  QUERY COMPIL ATION
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SELECT * FROM foo
WHERE str_col = 'abc'
AND int_col = 4;

foo

str_col='abc' &&
int_col=4s

vec<offset> sel_eq_row(vec<string> str_col, string val0,
vec<int> int_col, int val1) {

vec<offset> res;   
for (offset i = 0; i < str_col.size(); i++)

if (str_col[i] == val0 && int_col[i] == val1)
res.append(i);

return (res);
}

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
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Vectorization vs. Compilation

Relaxed Operator Fusion
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VECTORIZATION VS.  COMPIL ATION

Test-bed system to analyze the trade-offs between 
vectorized execution and query compilation.

Implemented high-level algorithms the same in 
each system but varied the implementation details.
→ Example: Hash join algorithm is the same, but the 

systems use different hash functions (Murmur2 vs. CRC)
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EVERYTHING YOU ALWAYS WANTED TO KNOW ABOUT COMPILED 
AND VECTORIZED QUERIES BUT WERE AFRAID TO ASK
VLDB 2018

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2020/papers/16-vectorization2/p2209-kersten.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/16-vectorization2/p2209-kersten.pdf
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IMPLEMENTATIONS

Approach #1: Tectorwise
→ Break operations into pre-compiled primitives.
→ Must materialize the output of primitives at each step. 

Approach #2: Typer
→ Push-based processing model with JIT compilation.
→ Process a single tuple up entire pipeline without 

materializing the intermediate results.
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TPC-H WORKLOAD

Q1: Fixed-point arithmetic, 4-group aggregation

Q6: Selective filters

Q3: Join (build: 147k tuples / probe: 3.2m tuples)

Q9: Join (build: 320k tuples / probe: 1.5M tuples)

Q18: High-cardinality aggregation (1.5m groups)
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TPC-H ANALYZED: HIDDEN MESSAGES AND LESSONS LEARNED 
FROM AN INFLUENTIAL BENCHMARK
TPCTC 2013

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://doi.org/10.1007/978-3-319-04936-6_5
https://doi.org/10.1007/978-3-319-04936-6_5
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SINGLE-THREADED PERFORMANCE
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Source: Timo Kersten
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http://15721.courses.cs.cmu.edu/
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SINGLE-THREADED PERFORMANCE
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Cycles IPC Instr. L1 Miss LLC Miss Bran. Miss

Typer 34 2.0 68 0.6 0.57 0.01

TW 59 2.8 162 2.0 0.57 0.03

Typer 11 1.8 20 0.3 0.35 0.06

TW 11 1.4 15 0.2 0.29 0.01

Typer 25 0.8 21 0.5 0.16 0.27

TW 24 1.8 42 0.9 0.16 0.08

Typer 74 0.6 42 1.7 0.46 0.34

TW 56 1.3 76 2.1 0.47 0.39

Typer 30 1.6 46 0.8 0.19 0.16

TW 48 2.1 102 1.9 0.18 0.37

Q1

Q6

Q3

Q9

Q18

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
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MAIN FINDINGS

Both models are efficient and achieve roughly the 
same performance.

Data-centric is better for "calculation-heavy" 
queries with few cache misses.

Vectorization is slightly better at hiding cache miss 
latencies.
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SIMD PERFORMANCE

Evaluate vectorized branchless selection and hash 
probe in Tectorwise.

We use AVX-512 because it includes new 
instructions to make it easier to implement 
algorithms using vertical vectorization. 
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SIMD EVALUATION
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Source: Timo Kersten

Hashing Gather Join

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://db.in.tum.de/~kersten/index.shtml?lang=en
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AUTO-VECTORIZATION

Measure how well the compiler can automatically 
vectorize the Vectorwise primitives.
→ Targets: GCC v7.2, Clang v5.0, ICC v18

ICC was able to vectorize the most primitives 
using AVX-512:
→ Vectorized: Hashing, Selection, Projection
→ Not Vectorized: Hash Table Probing, Aggregation
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AUTO-VECTORIZATION
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AUTO-VECTORIZATION
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OBSERVATION

The paper (partially) assumes that vectorization 
and compilation are mutually exclusive.

HyPer fuses operators together so that they work 
on a single tuple a time to maximize CPU register 
reuse and minimize cache misses.

19

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

VECTORIZATION VS.  COMPIL ATION
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Source: Timo Kersten
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PIPELINE PERSPECTIVE

Each pipeline fuses operators together into loop

Each pipeline is a tuple-at-a-time process
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PIPELINE PERSPECTIVE

Each pipeline fuses operators together into loop

Each pipeline is a tuple-at-a-time process
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def plan(state):
agg = dict()
for t in A:

if t.age > 20:
agg[t.city]['count']++

for t in agg:
emit(t)      

Scan

Filter

Agg

Emit

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
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PIPELINE PERSPECTIVE

Each pipeline fuses operators together into loop

Each pipeline is a tuple-at-a-time process
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def plan(state):
agg = dict()
for t in A:

if t.age > 20:
agg[t.city]['count']++

for t in agg:
emit(t)      

Scan

Filter

Agg

Emit
Pipeline #2

Pipeline #1

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
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FUSION PROBLEMS

Fusion inhibits some optimizations:
→ Unable to look ahead in tuple stream.
→ Unable to overlap computation and memory access.
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def plan(state):
agg = dict()
for t in A:

if t.age > 20:
agg[t.city]['count']++

for t in agg:
emit(t)      

Scan

Filter
Agg
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FUSION PROBLEMS

Fusion inhibits some optimizations:
→ Unable to look ahead in tuple stream.
→ Unable to overlap computation and memory access.
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def plan(state):
agg = dict()
for t in A:

if t.age > 20:
agg[t.city]['count']++

for t in agg:
emit(t)      

Scan

Filter
Agg

Cannot SIMD
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FUSION PROBLEMS

Fusion inhibits some optimizations:
→ Unable to look ahead in tuple stream.
→ Unable to overlap computation and memory access.
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def plan(state):
agg = dict()
for t in A:

if t.age > 20:
agg[t.city]['count']++

for t in agg:
emit(t)      

Scan

Filter
Agg

Cannot SIMD

Cannot Prefetch
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REL AXED OPERATOR FUSION

Vectorized processing model designed for query 
compilation execution engines.

Decompose pipelines into stages that operate on 
vectors of tuples.
→ Each stage may contain multiple operators.
→ Communicate through cache-resident buffers.
→ Stages are granularity of vectorization + fusion.
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RELAXED OPERATOR FUSION FOR IN-MEMORY DATABASES: MAKING 
COMPILATION, VECTORIZATION, AND PREFETCHING WORK TOGETHER AT LAST
VLDB 2017

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2020/papers/16-vectorization2/menon-vldb2017.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/16-vectorization2/menon-vldb2017.pdf
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ROF EXAMPLE
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ROF EXAMPLE
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ROF EXAMPLE

24
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ROF EXAMPLE
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Stage #2

Stage #1

Stage Buffer

Scan

Filter

Agg

Emit

def plan(state):
agg = dict()
for t in A step 1024:

out = simd_cmp_gt(t, 20, 1024)
for ft in out:

agg[ft.city]['count']++
for t in agg:

emit(t) 

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
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ROF EXAMPLE
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Stage Buffer
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def plan(state):
agg = dict()
for t in A step 1024:

out = simd_cmp_gt(t, 20, 1024)
for ft in out:

agg[ft.city]['count']++
for t in agg:

emit(t) 
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ROF SOFTWARE PREFETCHING

The DBMS can tell the CPU to grab the next 
vector while it works on the current batch.
→ Prefetch-enabled operators define start of new stage.
→ Hides the cache miss latency.

Any prefetching technique is suitable
→ Group prefetching, software pipelining, AMAC.
→ Group prefetching works and is simple to implement.
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ROF EVALUATION

26

901

1396

2641

383
540

892 846

1763

191 220

0

1000

2000

3000

Q1 Q3 Q13 Q14 Q19

E
xe

cu
ti

on
 T

im
e 

(m
s)

LLVM LLVM + ROF

Dual Socket Intel Xeon E5-2630v4 @ 2.20GHz
TPC-H 10 GB Database

Source: Prashanth Menon

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.youtube.com/watch?v=HjMQbzBhTb4


15-721 (Spring 2020)

ROF EVALUATION

26

901

1396

2641

383
540

892 846

1763

191 220

0

1000

2000

3000

Q1 Q3 Q13 Q14 Q19

E
xe

cu
ti

on
 T

im
e 

(m
s)

LLVM LLVM + ROF

Dual Socket Intel Xeon E5-2630v4 @ 2.20GHz
TPC-H 10 GB Database

Source: Prashanth Menon

SIMD/Prefetch
Does Not Help SIMD/Prefetch

Does Help

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.youtube.com/watch?v=HjMQbzBhTb4


15-721 (Spring 2020)

ROF EVALUATION TPC-H Q19
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PARTING THOUGHTS

No major performance difference between the 
Vectorwise and HyPer approaches for all queries.

ROF combines vectorization and compilation into 
a hybrid query processing model.

→ Trades off additional instructions for reduced CPI
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NEXT CL ASS

Hash Join Implementations
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