
L
e

c
tu

re
 #

1
6

Vectorization vs. Compilation

@Andy_Pavlo // 15-721 // Spring 2020

ADVANCED
DATABASE
SYSTEMS

https://15721.courses.cs.cmu.edu/spring2020/
http://db.cs.cmu.edu/
https://twitter.com/andy_pavlo

15-721 (Spring 2020)

OBSERVATION

Vectorization can speed up query performance.

Compilation can speed up query performance.

We have not discussed which approach is better
and under what conditions.

Switching an existing DBMS is difficult, so one
must make this design decision early.

2

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

VECTORWISE PRECOMPILED PRIMITIVES

Pre-compiles thousands of "primitives" that
perform basic operations on typed data.
→ Using simple kernels for each primitive means that they

are easier to vectorize.

The DBMS then executes a query plan that
invokes these primitives at runtime.
→ Function calls are amortized over multiple tuples.
→ The output of a primitive are the offsets of tuples that

3

MICRO ADAPTIVITY IN VECTORWISE
SIGMOD 2013

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=2465292
http://dl.acm.org/citation.cfm?id=2465292

15-721 (Spring 2020)

VECTORWISE PRECOMPILED PRIMITIVES

4

SELECT * FROM foo
WHERE str_col = 'abc'
AND int_col = 4;

foo

str_col='abc' &&
int_col=4s

vec<offset> sel_eq_str(vec<string> col, string val) {
vec<offset> res;
for (offset i = 0; i < col.size(); i++)

if (col[i] == val) res.append(i);
return (res);

}

vec<offset> sel_eq_int(vec<int> col, int val,
vec<offset> positions) {

vec<offset> res;
for (offset i : positions)
if (col[i] == val) res.append(i);

return (res);
}

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

HYPER JIT QUERY COMPIL ATION

Compile queries in-memory into native code using
the LLVM toolkit.

Organizes query processing in a way to keep a
tuple in CPU registers for as long as possible.
→ Bottom-to-top / push-based query processing model.
→ Not vectorizable (as originally described).

5

EFFICIENTLY COMPILING EFFICIENT QUERY PLANS
FOR MODERN HARDWARE
VLDB 2011

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2019/papers/19-compilation/p539-neumann.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/19-compilation/p539-neumann.pdf

15-721 (Spring 2020)

HYPER JIT QUERY COMPIL ATION

6

SELECT * FROM foo
WHERE str_col = 'abc'
AND int_col = 4;

foo

str_col='abc' &&
int_col=4s

vec<offset> sel_eq_row(vec<string> str_col, string val0,
vec<int> int_col, int val1) {

vec<offset> res;
for (offset i = 0; i < str_col.size(); i++)

if (str_col[i] == val0 && int_col[i] == val1)
res.append(i);

return (res);
}

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Vectorization vs. Compilation

Relaxed Operator Fusion

7

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

VECTORIZATION VS. COMPIL ATION

Test-bed system to analyze the trade-offs between
vectorized execution and query compilation.

Implemented high-level algorithms the same in
each system but varied the implementation details.
→ Example: Hash join algorithm is the same, but the

systems use different hash functions (Murmur2 vs. CRC)

8

EVERYTHING YOU ALWAYS WANTED TO KNOW ABOUT COMPILED
AND VECTORIZED QUERIES BUT WERE AFRAID TO ASK
VLDB 2018

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2020/papers/16-vectorization2/p2209-kersten.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/16-vectorization2/p2209-kersten.pdf

15-721 (Spring 2020)

IMPLEMENTATIONS

Approach #1: Tectorwise
→ Break operations into pre-compiled primitives.
→ Must materialize the output of primitives at each step.

Approach #2: Typer
→ Push-based processing model with JIT compilation.
→ Process a single tuple up entire pipeline without

materializing the intermediate results.

9

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

TPC-H WORKLOAD

Q1: Fixed-point arithmetic, 4-group aggregation

Q6: Selective filters

Q3: Join (build: 147k tuples / probe: 3.2m tuples)

Q9: Join (build: 320k tuples / probe: 1.5M tuples)

Q18: High-cardinality aggregation (1.5m groups)

10

TPC-H ANALYZED: HIDDEN MESSAGES AND LESSONS LEARNED
FROM AN INFLUENTIAL BENCHMARK
TPCTC 2013

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://doi.org/10.1007/978-3-319-04936-6_5
https://doi.org/10.1007/978-3-319-04936-6_5

15-721 (Spring 2020)

SINGLE-THREADED PERFORMANCE

11

Source: Timo Kersten

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://db.in.tum.de/~kersten/index.shtml?lang=en

15-721 (Spring 2020)

SINGLE-THREADED PERFORMANCE

12

Cycles IPC Instr. L1 Miss LLC Miss Bran. Miss

Typer 34 2.0 68 0.6 0.57 0.01

TW 59 2.8 162 2.0 0.57 0.03

Typer 11 1.8 20 0.3 0.35 0.06

TW 11 1.4 15 0.2 0.29 0.01

Typer 25 0.8 21 0.5 0.16 0.27

TW 24 1.8 42 0.9 0.16 0.08

Typer 74 0.6 42 1.7 0.46 0.34

TW 56 1.3 76 2.1 0.47 0.39

Typer 30 1.6 46 0.8 0.19 0.16

TW 48 2.1 102 1.9 0.18 0.37

Q1

Q6

Q3

Q9

Q18

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MAIN FINDINGS

Both models are efficient and achieve roughly the
same performance.

Data-centric is better for "calculation-heavy"
queries with few cache misses.

Vectorization is slightly better at hiding cache miss
latencies.

13

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SIMD PERFORMANCE

Evaluate vectorized branchless selection and hash
probe in Tectorwise.

We use AVX-512 because it includes new
instructions to make it easier to implement
algorithms using vertical vectorization.

14

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SIMD EVALUATION

15

Source: Timo Kersten

Hashing Gather Join

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://db.in.tum.de/~kersten/index.shtml?lang=en

15-721 (Spring 2020)

AUTO-VECTORIZATION

Measure how well the compiler can automatically
vectorize the Vectorwise primitives.
→ Targets: GCC v7.2, Clang v5.0, ICC v18

ICC was able to vectorize the most primitives
using AVX-512:
→ Vectorized: Hashing, Selection, Projection
→ Not Vectorized: Hash Table Probing, Aggregation

16

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

AUTO-VECTORIZATION

17

29.0

15.4

27.2

62.5

42.0

12.0

31.5

82.6

60.1

35.0

15.4

46.6

82.9

61.2

0

20

40

60

80

100

Q1 Q6 Q3 Q9 Q18

R
ed

u
ct

io
n

 o
f

In
st

r.
 (

%
)

Auto Manual Auto+Manual

Intel Core i9-7900X (10 cores × 2HT)
Compiler: ICC v18

Source: Timo Kersten

-1.01

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://db.in.tum.de/~kersten/index.shtml?lang=en

15-721 (Spring 2020)

AUTO-VECTORIZATION

18

3.5
1.1

-1.6

-14.6

-6.0

8.5

0.3

16.4

21.6 21.4

5.4

-0.3

11.0

15.7
12.6

-20

-10

0

10

20

30

Q1 Q6 Q3 Q9 Q18

R
ed

u
ct

io
n

 o
f

T
im

e
(%

)

Auto Manual Auto+Manual

Intel Core i9-7900X (10 cores × 2HT)
Compiler: ICC v18

Source: Timo Kersten

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://db.in.tum.de/~kersten/index.shtml?lang=en

15-721 (Spring 2020)

OBSERVATION

The paper (partially) assumes that vectorization
and compilation are mutually exclusive.

HyPer fuses operators together so that they work
on a single tuple a time to maximize CPU register
reuse and minimize cache misses.

19

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

VECTORIZATION VS. COMPIL ATION

20

Source: Timo Kersten

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://db.in.tum.de/~kersten/index.shtml?lang=en

15-721 (Spring 2020)

PIPELINE PERSPECTIVE

Each pipeline fuses operators together into loop

Each pipeline is a tuple-at-a-time process

21

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PIPELINE PERSPECTIVE

Each pipeline fuses operators together into loop

Each pipeline is a tuple-at-a-time process

21

def plan(state):
agg = dict()
for t in A:

if t.age > 20:
agg[t.city]['count']++

for t in agg:
emit(t)

Scan

Filter

Agg

Emit

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PIPELINE PERSPECTIVE

Each pipeline fuses operators together into loop

Each pipeline is a tuple-at-a-time process

21

def plan(state):
agg = dict()
for t in A:

if t.age > 20:
agg[t.city]['count']++

for t in agg:
emit(t)

Scan

Filter

Agg

Emit
Pipeline #2

Pipeline #1

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

FUSION PROBLEMS

Fusion inhibits some optimizations:
→ Unable to look ahead in tuple stream.
→ Unable to overlap computation and memory access.

22

def plan(state):
agg = dict()
for t in A:

if t.age > 20:
agg[t.city]['count']++

for t in agg:
emit(t)

Scan

Filter
Agg

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

FUSION PROBLEMS

Fusion inhibits some optimizations:
→ Unable to look ahead in tuple stream.
→ Unable to overlap computation and memory access.

22

def plan(state):
agg = dict()
for t in A:

if t.age > 20:
agg[t.city]['count']++

for t in agg:
emit(t)

Scan

Filter
Agg

Cannot SIMD

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

FUSION PROBLEMS

Fusion inhibits some optimizations:
→ Unable to look ahead in tuple stream.
→ Unable to overlap computation and memory access.

22

def plan(state):
agg = dict()
for t in A:

if t.age > 20:
agg[t.city]['count']++

for t in agg:
emit(t)

Scan

Filter
Agg

Cannot SIMD

Cannot Prefetch

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

REL AXED OPERATOR FUSION

Vectorized processing model designed for query
compilation execution engines.

Decompose pipelines into stages that operate on
vectors of tuples.
→ Each stage may contain multiple operators.
→ Communicate through cache-resident buffers.
→ Stages are granularity of vectorization + fusion.

23

RELAXED OPERATOR FUSION FOR IN-MEMORY DATABASES: MAKING
COMPILATION, VECTORIZATION, AND PREFETCHING WORK TOGETHER AT LAST
VLDB 2017

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2020/papers/16-vectorization2/menon-vldb2017.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/16-vectorization2/menon-vldb2017.pdf

15-721 (Spring 2020)

ROF EXAMPLE

24

Scan

Filter

Agg

Emit

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

ROF EXAMPLE

24

Scan

Filter

Agg

Emit

Vectorization
Candidate

Scan

Filter

Agg

Emit

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

ROF EXAMPLE

24

Scan

Filter

Agg

Emit

Vectorization
Candidate

Stage #2

Stage #1

Stage Buffer

Scan

Filter

Agg

Emit

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

ROF EXAMPLE

24

Stage #2

Stage #1

Stage Buffer

Scan

Filter

Agg

Emit

def plan(state):
agg = dict()
for t in A step 1024:

out = simd_cmp_gt(t, 20, 1024)
for ft in out:

agg[ft.city]['count']++
for t in agg:

emit(t)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

ROF EXAMPLE

24

Stage #2

Stage #1

Stage Buffer

Scan

Filter

Agg

Emit

def plan(state):
agg = dict()
for t in A step 1024:

out = simd_cmp_gt(t, 20, 1024)
for ft in out:

agg[ft.city]['count']++
for t in agg:

emit(t)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

ROF SOFTWARE PREFETCHING

The DBMS can tell the CPU to grab the next
vector while it works on the current batch.
→ Prefetch-enabled operators define start of new stage.
→ Hides the cache miss latency.

Any prefetching technique is suitable
→ Group prefetching, software pipelining, AMAC.
→ Group prefetching works and is simple to implement.

25

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

ROF EVALUATION

26

901

1396

2641

383
540

892 846

1763

191 220

0

1000

2000

3000

Q1 Q3 Q13 Q14 Q19

E
xe

cu
ti

on
 T

im
e

(m
s)

LLVM LLVM + ROF

Dual Socket Intel Xeon E5-2630v4 @ 2.20GHz
TPC-H 10 GB Database

Source: Prashanth Menon

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.youtube.com/watch?v=HjMQbzBhTb4

15-721 (Spring 2020)

ROF EVALUATION

26

901

1396

2641

383
540

892 846

1763

191 220

0

1000

2000

3000

Q1 Q3 Q13 Q14 Q19

E
xe

cu
ti

on
 T

im
e

(m
s)

LLVM LLVM + ROF

Dual Socket Intel Xeon E5-2630v4 @ 2.20GHz
TPC-H 10 GB Database

Source: Prashanth Menon

SIMD/Prefetch
Does Not Help SIMD/Prefetch

Does Help

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.youtube.com/watch?v=HjMQbzBhTb4

15-721 (Spring 2020)

ROF EVALUATION TPC-H Q19

27

21475

568
196 189

1

10

100

1000

10000

100000

Interpreted Compiled ROF + SIMD ROF + SIMD +
Pretching

E
xe

cu
ti

on
 T

im
e

(m
s)

Dual Socket Intel Xeon E5-2630v4 @ 2.20GHz
TPC-H 10 GB Database

Source: Prashanth Menon

↓97% ↓65% ↓3.5%

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.youtube.com/watch?v=HjMQbzBhTb4

15-721 (Spring 2020)

PARTING THOUGHTS

No major performance difference between the
Vectorwise and HyPer approaches for all queries.

ROF combines vectorization and compilation into
a hybrid query processing model.

→ Trades off additional instructions for reduced CPI

28

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

NEXT CL ASS

Hash Join Implementations

29

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

