TODAY’S AGENDA

Background
Parallel Hash Join
Hash Functions
Hashing Schemes
Evaluation
PARALLEL JOIN ALGORITHMS

Perform a join between two relations on multiple threads simultaneously to speed up operation.

Two main approaches:
→ Hash Join
→ Sort-Merge Join

We won't discuss nested-loop joins...
OBSERVATION

Many OLTP DBMSs do not implement hash join.

But an index nested-loop join with a small number of target tuples is at a high-level equivalent to a hash join.
HASHING VS. SORTING

1970s – Sorting
1980s – Hashing
1990s – Equivalent
2000s – Hashing
2010s – Hashing (Partitioned vs. Non-Partitioned)
2020s – ???
PARALLEL JOIN ALGORITHMS

→ Hashing is faster than Sort-Merge.
→ Sort-Merge is faster w/ wider SIMD.

→ Sort-Merge is already faster than Hashing, even without SIMD.

→ New optimizations and results for Radix Hash Join.

→ Trade-offs between partitioning & non-partitioning Hash-Join.

→ Ignore what we said last year.
→ You really want to use Hashing!

→ Hold up everyone! Let's look at everything more carefully!
JOIN ALGORITHM DESIGN GOALS

Goal #1: Minimize Synchronization
→ Avoid taking latches during execution.

Goal #2: Minimize Memory Access Cost
→ Ensure that data is always local to worker thread.
→ Reuse data while it exists in CPU cache.
IMPROVING CACHE BEHAVIOR

Factors that affect cache misses in a DBMS:
→ Cache + TLB capacity.
→ Locality (temporal and spatial).

Non-Random Access (Scan):
→ Clustering data to a cache line.
→ Execute more operations per cache line.

Random Access (Lookups):
→ Partition data to fit in cache + TLB.

Source: Johannes Gehrke
PARALLEL HASH JOINS

Hash join is the most important operator in a DBMS for OLAP workloads.

It is important that we speed up our DBMS's join algorithm by taking advantage of multiple cores. → We want to keep all cores busy, without becoming memory bound.
HASH JOIN (R⨝S)

Phase #1: Partition (optional)
→ Divide the tuples of R and S into sets using a hash on the join key.

Phase #2: Build
→ Scan relation R and create a hash table on join key.

Phase #3: Probe
→ For each tuple in S, look up its join key in hash table for R. If a match is found, output combined tuple.
PARTITION PHASE

Split the input relations into partitioned buffers by hashing the tuples’ join key(s).
→ Ideally the cost of partitioning is less than the cost of cache misses during build phase.
→ Sometimes called hybrid hash join / radix hash join.

Contents of buffers depends on storage model:
→ NSM: Usually the entire tuple.
→ DSM: Only the columns needed for the join + offset.
PARTITION PHASE

Approach #1: Non-Blocking Partitioning
→ Only scan the input relation once.
→ Produce output incrementally.

Approach #2: Blocking Partitioning (Radix)
→ Scan the input relation multiple times.
→ Only materialize results all at once.
→ Sometimes called *radix hash join*.
NON-BLOCKING PARTITIONING

Scan the input relation only once and generate the output on-the-fly.

Approach #1: Shared Partitions
→ Single global set of partitions that all threads update.
→ Must use a latch to synchronize threads.

Approach #2: Private Partitions
→ Each thread has its own set of partitions.
→ Must consolidate them after all threads finish.
Data Table

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\text{hash}_p(key) \]
SHARED PARTITIONS

Data Table

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>hash$_p$(key)</th>
<th>P_1</th>
<th>P_2</th>
<th>...</th>
<th>P_n</th>
</tr>
</thead>
</table>

Partitions

The hash function $hash_p(key)$ maps keys to partitions $P_1, P_2, ..., P_n$. Each partition contains a subset of the data from the table.
PRIVATE PARTITIONS

Data Table

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
</table>

Partitions

$\text{hash}_p(key)$

$\#_p$

$\#_p$

$\#_p$

$\#_p$
PRIVATE PARTITIONS

Data Table

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
</table>

Partitions

\[\text{hash}_p(\text{key}) \]

\[P_1 \]
\[P_2 \]
\[P_n \]
PRIVATE PARTITIONS

Data Table

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
</table>

Partitions

\[\text{hash}_p(key) \]

Combined

\[P_1 \]
\[P_2 \]
\[\vdots \]
\[P_n \]
PRIVATE PARTITIONS

Data Table

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>hash_p(key)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>P_1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P_2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P_n</td>
</tr>
</tbody>
</table>

Partitions

- P_1
- P_2
- ... (n)

Combined

- P_1
- P_2
- ... (n)
Scan the input relation multiple times to generate the partitions.

Multi-step pass over the relation:

→ **Step #1:** Scan R and compute a histogram of the # of tuples per hash key for the radix at some offset.

→ **Step #2:** Use this histogram to determine output offsets by computing the **prefix sum**.

→ **Step #3:** Scan R again and partition them according to the hash key.
The radix of a key is the value of an integer at a position (using its base).

Keys

89 12 23 08 41 64
The radix of a key is the value of an integer at a position (using its base).
The radix of a key is the value of an integer at a position (using its base).
The prefix sum of a sequence of numbers
\((x_0, x_1, \ldots, x_n)\)
is a second sequence of numbers
\((y_0, y_1, \ldots, y_n)\)
that is a running total of the input sequence.
RADIX PARTITIONS

Step #1: Inspect input, create histograms

<table>
<thead>
<tr>
<th>#p</th>
<th>07</th>
</tr>
</thead>
<tbody>
<tr>
<td>#p</td>
<td>18</td>
</tr>
<tr>
<td>#p</td>
<td>19</td>
</tr>
<tr>
<td>#p</td>
<td>07</td>
</tr>
<tr>
<td>#p</td>
<td>03</td>
</tr>
<tr>
<td>#p</td>
<td>11</td>
</tr>
<tr>
<td>#p</td>
<td>15</td>
</tr>
<tr>
<td>#p</td>
<td>10</td>
</tr>
</tbody>
</table>

hash_p(key)
Step #1: Inspect input, create histograms

<table>
<thead>
<tr>
<th>p</th>
<th>07</th>
<th>18</th>
<th>19</th>
<th>07</th>
<th>03</th>
<th>11</th>
<th>15</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>hash(key)</td>
<td>3</td>
<td>1</td>
<td>7</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>
RADIX PARTITIONS

Step #1: Inspect input, create histograms

<table>
<thead>
<tr>
<th>hash_p(key)</th>
<th>07</th>
<th>18</th>
<th>19</th>
<th>07</th>
<th>03</th>
<th>11</th>
<th>15</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partition 0:</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partition 1:</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Partition 0:** 2
- **Partition 1:** 2

- **Partition 0:** 1
- **Partition 1:** 3
RADIX PARTITIONS

Step #2: Compute output offsets

- **Partition 0**: 2
- **Partition 1**: 2

- **Partition 0, CPU 0**
- **Partition 0, CPU 1**
- **Partition 1, CPU 0**
- **Partition 1, CPU 1**
Step #2: Compute output offsets

Partition 0: 2
Partition 1: 2

Partition 0: 1
Partition 1: 3

Partition 0, CPU 0
Partition 1, CPU 0
Partition 0, CPU 1
Partition 1, CPU 1
RADIX PARTITIONS

Step #3: Read input and partition

- **Partition 0, CPU 0**: 07
- **Partition 0, CPU 1**: 03
- **Partition 1, CPU 0**: 07
- **Partition 1, CPU 1**: 03

<table>
<thead>
<tr>
<th>#p</th>
<th>07</th>
<th>18</th>
<th>19</th>
<th>07</th>
<th>03</th>
<th>11</th>
<th>15</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>hash_p(key)</td>
<td>Partition 0: 2</td>
<td>Partition 1: 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Partition 0: 1</td>
<td>Partition 1: 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RADIX PARTITIONS

Step #3: Read input and partition

Partition 0: 2
- CPU 0
- CPU 1

Partition 1: 2
- CPU 0
- CPU 1

Partition 0: 1
- CPU 0

Partition 1: 3
- CPU 1

Partition 0: 0
- CPU 1

Partition 1: 0
- CPU 0
RADIX PARTITIONS

Recursively repeat until target number of partitions have been created

<table>
<thead>
<tr>
<th>#p</th>
<th>07</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>07</td>
<td>03</td>
</tr>
<tr>
<td></td>
<td>03</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>10</td>
</tr>
</tbody>
</table>

Partition 0: 2
Partition 0: 1
Partition 1: 3
Partition 1: 2
Partition 1: 3
RADIX PARTITIONS

Recursively repeat until target number of partitions have been created

Partition 0: 2
Partition 1: 2

Partition 0: 1
Partition 1: 3
RADIX PARTITIONS

Recursively repeat until target number of partitions have been created

<table>
<thead>
<tr>
<th>#p</th>
<th>07</th>
<th>18</th>
<th>19</th>
<th>07</th>
<th>03</th>
<th>11</th>
<th>15</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>hash(key)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Partition 0**: 2
- **Partition 1**: 2

- **Partition 0**: 1
- **Partition 1**: 3
BUILD PHASE

The threads are then to scan either the tuples (or partitions) of \(R \).

For each tuple, hash the join key attribute for that tuple and add it to the appropriate bucket in the hash table.
\[\rightarrow \text{The buckets should only be a few cache lines in size.} \]
Design Decision #1: Hash Function
→ How to map a large key space into a smaller domain.
→ Trade-off between being fast vs. collision rate.

Design Decision #2: Hashing Scheme
→ How to handle key collisions after hashing.
→ Trade-off between allocating a large hash table vs. additional instructions to find/insert keys.
HASH FUNCTIONS

We do not want to use a cryptographic hash function for our join algorithm.

We want something that is fast and will have a low collision rate.
→ **Best Speed:** Always return '1'
→ **Best Collision Rate:** Perfect hashing

See [SMHasher](https://smhasher.net) for a comprehensive hash function benchmark suite.
HASH FUNCTIONS

CRC-64 (1975)
→ Used in networking for error detection.

MurmurHash (2008)
→ Designed to a fast, general purpose hash function.

Google CityHash (2011)
→ Designed to be faster for short keys (<64 bytes).

Facebook XXHash (2012)
→ From the creator of zstd compression.

Google FarmHash (2014)
→ Newer version of CityHash with better collision rates.
 HASH FUNCTION BENCHMARK

Intel Core i7-8700K @ 3.70GHz

<table>
<thead>
<tr>
<th>Key Size (bytes)</th>
<th>Throughput (MB/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>crc64</td>
</tr>
<tr>
<td>64</td>
<td>std::hash</td>
</tr>
<tr>
<td>128</td>
<td>MurmurHash3</td>
</tr>
<tr>
<td>192</td>
<td>CityHash</td>
</tr>
<tr>
<td>192</td>
<td>FarmHash</td>
</tr>
<tr>
<td>256</td>
<td>XXHash3</td>
</tr>
</tbody>
</table>

Source: Fredrik Widlund

15-721 (Spring 2020)
HASHING SCHEMES

Approach #1: Chained Hashing
Approach #2: Linear Probe Hashing
Approach #3: Robin Hood Hashing
Approach #4: Hopscotch Hashing
Approach #5: Cuckoo Hashing
CHAINED HASHING

Maintain a linked list of buckets for each slot in the hash table.

Resolve collisions by placing all elements with the same hash key into the same bucket.
→ To determine whether an element is present, hash to its bucket and scan for it.
→ Insertions and deletions are generalizations of lookups.
CHAINED HASHING

$hash(key)$
CHAINED HASHING

hash(key)

A
B
C
D
E
F

hash(A) | A

Buckets
CHAINED HASHING

hash(key)

A
B
C
D
E
F

hash(B) | B

hash(A) | A

Buckets
CHAINED HASHING

hash(key)

A
B
C
D
E
F

hash(B) | B

hash(A) | A

hash(C) | C

Buckets
CHAINED HASHING

hash(key)

<table>
<thead>
<tr>
<th>A</th>
<th>hash(A)</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>hash(B)</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>hash(C)</td>
<td>C</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Buckets
CHAINED HASHING

hash(key)

A
B
C
D
E
F

hash(B) | B

hash(A) | A

hash(C) | C

hash(D) | D
CHAINED HASHING

hash(key)

A
B
C
D
E
F

hash(A) | A

hash(B) | B

hash(C) | C

hash(D) | D

hash(E) | E
CHAINED HASHING

\[\text{hash(key)} \]

\begin{align*}
 & A \\
 & B \\
 & C \\
 & D \\
 & E \\
 & F
\end{align*}

\begin{align*}
 & \text{hash}(B) \mid B \\
 & \text{hash}(A) \mid A \\
 & \text{hash}(C) \mid C \\
 & \text{hash}(F) \mid F \\
 & \text{hash}(D) \mid D \\
 & \text{hash}(E) \mid E
\end{align*}
CHAINED HASHING

```
A | hash(A) A
B | hash(B) B
C | hash(C) C
D | hash(D) D
E | hash(E) E
F | hash(F) F
```

HyPer
- 64-bit Bucket Pointers
- 48-bit Pointer
- 16-bit Bloom Filter
LINEAR PROBE HASHING

Single giant table of slots.

Resolve collisions by linearly searching for the next free slot in the table.
→ To determine whether an element is present, hash to a location in the table and scan for it.
→ Must store the key in the table to know when to stop scanning.
→ Insertions and deletions are generalizations of lookups.
LINEAR PROBE HASHING

hash(key)

A
B
C
D
E
F
LINEAR PROBE HASHING

hash(key)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>hash(A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hash(B)</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

15-721 (Spring 2020)
LINEAR PROBE HASHING

hash(key)

A
B
C
D
E
F

hash(A) | A

hash(B) | B

hash(C) | C
LINEAR PROBE HASHING

hash(key)

A
B
C
D
E
F

hash(B) | B
hash(A) | A
hash(C) | C
hash(D) | D
LINEAR PROBE HASHING

hash(key)

$\begin{align*}
\text{hash(A)} & | A \\
\text{hash(B)} & | B \\
\text{hash(C)} & | C \\
\text{hash(D)} & | D \\
\end{align*}$
LINEAR PROBE HASHING

hash(key)

A
B
C
D
E
F

hash(B) | B
hash(A) | A
hash(C) | C
hash(D) | D
hash(E) | E
LINEAR PROBE HASHING

hash(key)

\[
\begin{array}{|c|}
\hline
A \\
\hline
B \\
\hline
C \\
\hline
D \\
\hline
E \\
\hline
F \\
\hline
\end{array}
\]

\[
\begin{array}{|c|}
\hline
\text{hash}(B) | B \\
\hline
\text{hash}(A) | A \\
\hline
\text{hash}(C) | C \\
\hline
\text{hash}(D) | D \\
\hline
\text{hash}(E) | E \\
\hline
\text{hash}(F) | F \\
\hline
\end{array}
\]
OBSERVATION

To reduce the # of wasteful comparisons during the join, it is important to avoid collisions of hashed keys.

This requires a chained hash table with \(\sim 2 \times \) the number of slots as the # of elements in \(R \).
ROBIN HOOD HASHING

Variant of linear probe hashing that steals slots from "rich" keys and give them to "poor" keys.

→ Each key tracks the number of positions they are from where its optimal position in the table.

→ On insert, a key takes the slot of another key if the first key is farther away from its optimal position than the second key.
ROBIN HOOD HASHING

hash(key)

hash(A) | A [∅]

of "Jumps" From First Position
ROBIN HOOD HASHING

\[\text{hash(key)} \]

A
B
C
D
E
F

\[\text{hash(A)} | A [\emptyset] \]

\[\text{hash(B)} | B [\emptyset] \]
ROBIN HOOD HASHING

hash(key)

A
B
C
D
E
F

hash(B) | B [\emptyset]

hash(A) | A [\emptyset]

A[0] == C[0]
ROBIN HOOD HASHING

hash(key)

A
B
C
D
E
F

hash(B) | B [Ø]
hash(A) | A [Ø]
hash(C) | C [1]

A[0] == C[0]
ROBIN HOOD HASHING

\[
\text{hash(key)} \quad \begin{array}{c}
A \\
B \\
C \\
D \\
E \\
F \\
\end{array}
\]

\[
\begin{array}{c}
\text{hash(B)} | B [\emptyset] \\
\text{hash(A)} | A [\emptyset] \\
\text{hash(C)} | C [1] \\
\end{array}
\]

\[C[1] > D[0] \]
ROBIN HOOD HASHING

hash(key)

A
B
C
D
E
F

hash(B) | B [0]
hash(A) | A [0]
hash(C) | C [1]
hash(D) | D [1]

C[1] > D[0]
ROBIN HOOD HASHING

hash(key)

A
B
C
D
E
F

hash(B) | B [\emptyset]

hash(A) | A [\emptyset]

hash(C) | C [1]

hash(D) | D [1]

A[0] == E[0]
ROBIN HOOD HASHING

hash(key)

A
B
C
D
E
F

hash(B) | B [0]
hash(A) | A [0]
hash(C) | C [1]
hash(D) | D [1]

A[0] == E[0]
C[1] == E[1]
ROBIN HOOD HASHING

Hashing (key)

A
B
C
D
E
F

hash(B) | B [0]

hash(A) | A [0]

hash(C) | C [1]

hash(D) | D [1]

A[0] == E[0]
C[1] == E[1]
ROBIN HOOD HASHING

hash(key)

A B C D E F

hash(A) | A [0]
hash(B) | B [0]
hash(C) | C [1]
hash(D) | D [2]
hash(E) | E [2]

A[0] == E[0]
C[1] == E[1]
ROBIN HOOD HASHING

hash(key)

hash(B) | B [0]
hash(A) | A [0]
hash(C) | C [1]
hash(E) | E [2]
hash(D) | D [2]
hash(F) | F [1]

D[2] > F[0]
HOPSCOTCH HASHING

Variant of linear probe hashing where keys can move between positions in a **neighborhood**.
→ A neighborhood is contiguous range of slots in the table.
→ The size of a neighborhood is a configurable constant.

A key is guaranteed to be in its neighborhood or not exist in the table.
HOPSCOTCH HASHING

hash(key)

A
B
C
D
E
F

Neighborhood Size = 3
HOPSCOTCH HASHING

hash(key)

| A | B | C | D | E | F |

Neighborhood Size = 3

Neighborhood #1
HOPSCOTCH HASHING

$\text{Neighborhood Size} = 3$

Neighborhood #1

Neighborhood #2

Neighborhood #3

\[\text{hash(key)}\]

A
B
C
D
E
F
HOPSCOTCH HASHING

hash(key)

Neighborhood Size = 3

Neighborhood #3
HOPSCOTCH HASHING

hash(key)

A
B
C
D
E
F

hash(A) | A

Neighborhood Size = 3

Neighborhood #3
Hopscotch Hashing

Neighborhood Size = 3

Neighborhood #1

hash(key)

| A | B | C | D | E | F |

hash(A) | A
HOPSCOTCH HASHING

Neighborhood Size = 3

- Neighborhood #1
 - hash(key)
 - hash(A) | A
 - hash(B) | B

- Elements: A, B, C, D, E, F
Hopscotch Hashing

Neighborhood Size = 3

hash(key)

A
B
C
D
E
F

hash(A) | A

hash(B) | B

Neighborhood #3
Hopscotch Hashing

Neighborhood Size = 3

Neighborhood #3

hash(key)

A
B
C
D
E
F

hash(A) | A

hash(B) | B
HOPSCOTCH HASHING

Neighborhood Size = 3

hash(key)

A
B
C
D
E
F

hash(B) | B

hash(A) | A

hash(C) | C

Neighborhood #3
HOPSCOTCH HASHING

Neighborhood Size = 3

hash(key)

A
B
C
D
E
F

hash(A) | A

hash(B) | B

hash(C) | C
HO\ P S C O T C H H A S H I N G

\textit{hash} (key)

\begin{itemize}
 \item \textit{hash(A)} | A
 \item \textit{hash(B)} | B
 \item \textit{hash(C)} | C
\end{itemize}

\textit{Neighborhood Size} = 3
Hopscotch Hashing

Neighborhood Size = 3

\[\text{hash(key)} \]

\[
\begin{align*}
\text{hash}(A) & | A \\
\text{hash}(B) & | B \\
\text{hash}(C) & | C \\
\text{hash}(D) & | D \\
\end{align*}
\]
Hopscotch Hashing

Neighborhood Size = 3

- **hash(key)**
 - A
 - B
 - C
 - D
 - E
 - F

- **hash(B)** | B
- **hash(A)** | A
- **hash(C)** | C
- **hash(D)** | D
HOPSCOTCH HASHING

Neighborhood Size = 3

hash(key)

A
B
C
D
E
F

hash(B) | B

hash(A) | A

hash(C) | C

hash(D) | D

Neighborhood #3
Hopscotch Hashing

- **hash(key)**
- **Neighborhood Size = 3**
- **Neighborhood #3**

- hash(A) | A
- hash(C) | C
- hash(D) | D
HOPSCOTCH HASHING

Neighborhood Size = 3

hash(key)

A
B
C
D
E
F

hash(B) | B

hash(A) | A

hash(C) | C

hash(D) | D

Neighborhood #3
HOPSCOTCH HASHING

Neighborhood Size = 3

- **hash(key)**
 - A
 - B
 - C
 - D
 - E
 - F

- **hash(B)** | B
- **hash(A)** | A
- **hash(C)** | C
- **hash(D)** | D
Hopscotch Hashing

Neighborhood Size = 3

- Hash function: `hash(key)`
- Neighborhood #3

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>hash(A)</code></td>
<td><code>hash(B)</code></td>
<td><code>hash(C)</code></td>
<td><code>hash(D)</code></td>
<td><code>hash(E)</code></td>
</tr>
</tbody>
</table>

```plaintext
hash(A) | A
hash(C) | C
hash(E) | E
hash(D) | D
```
Hopscotch Hashing

Neighborhood Size = 3

hash(key)

A
B
C
D
E
F

hash(A) | A
hash(B) | B
hash(C) | C
hash(D) | D
hash(E) | E

Neighborhood #6
Hopscotch Hashing

Neighborhood Size = 3

<table>
<thead>
<tr>
<th>Neighborhood #6</th>
</tr>
</thead>
<tbody>
<tr>
<td>hash(A)</td>
</tr>
<tr>
<td>hash(C)</td>
</tr>
<tr>
<td>hash(E)</td>
</tr>
<tr>
<td>hash(D)</td>
</tr>
<tr>
<td>hash(F)</td>
</tr>
</tbody>
</table>

hash(key)

- A
- B
- C
- D
- E
- F
C U C K O O H A S H I N G

Use multiple tables with different hash functions.
→ On insert, check every table and pick anyone that has a free slot.
→ If no table has a free slot, evict the element from one of them and then re-hash it find a new location.

Look-ups are always O(1) because only one location per hash table is checked.
CUCKOO HASHING

Hash Table #1

Hash Table #2
Cuckoo Hashing

Hash Table #1

Insert X

hash_1(X)

hash_2(X)

Hash Table #2
Cuckoo Hashing

Hash Table #1

\[\text{hash}_1(X) | X \]

Insert X
\[\text{hash}_1(X) \quad \text{hash}_2(X) \]

Hash Table #2

\[\ldots \]

\[\text{...} \]
CUCKOO HASHING

Hash Table #1

- Insert X
 - $\text{hash}_1(X)$
 - $\text{hash}_2(X)$

- $\text{hash}_1(X) | X$

Hash Table #2

- Insert Y
 - $\text{hash}_1(Y)$
 - $\text{hash}_2(Y)$
Cuckoo Hashing

Hash Table #1

Insert X
\[hash_1(X) \quad hash_2(X) \]

Insert Y
\[hash_1(Y) \quad hash_2(Y) \]

Hash Table #2

Hash Table #1

Hash Table #2
Cuckoo Hashing

Insert X
\[\text{hash}_1(X) \quad \text{hash}_2(X) \]

Insert Y
\[\text{hash}_1(Y) \quad \text{hash}_2(Y) \]

Insert Z
\[\text{hash}_1(Z) \quad \text{hash}_2(Z) \]
Cuckoo Hashing

Hash Table #1

Insert X
\[\text{hash}_1(X) \quad \text{hash}_2(X) \]

Insert Y
\[\text{hash}_1(Y) \quad \text{hash}_2(Y) \]

Insert Z
\[\text{hash}_1(Z) \quad \text{hash}_2(Z) \]

Hash Table #2

\[\text{hash}_2(Y) \mid Y \]
Cuckoo Hashing

Hash Table #1

- Insert X
 - $\text{hash}_1(X)$
 - $\text{hash}_2(X)$

- Insert Y
 - $\text{hash}_1(Y)$
 - $\text{hash}_2(Y)$

- Insert Z
 - $\text{hash}_1(Z)$
 - $\text{hash}_2(Z)$
 - $\text{hash}_1(Y)$

Hash Table #2

- $\text{hash}_2(Z)$
 - Z
CUCKOO HASHING

Hash Table #1

Insert X
\[\text{hash}_1(X) \quad \text{hash}_2(X) \]

Insert Y
\[\text{hash}_1(Y) \quad \text{hash}_2(Y) \]

Insert Z
\[\text{hash}_1(Z) \quad \text{hash}_2(Z) \]
\[\text{hash}_1(Y) \]

Hash Table #2

\[\text{hash}_2(Z) \quad \text{Z} \]
Cuckoo Hashing

Hash Table #1

Insert X
\[\text{hash}_1(X) \quad \text{hash}_2(X)\]

Insert Y
\[\text{hash}_1(Y) \quad \text{hash}_2(Y)\]

Insert Z
\[\text{hash}_1(Z) \quad \text{hash}_2(Z)\]

\[\text{hash}_1(Y)\]

Hash Table #2

\[\text{hash}_2(Z) \mid Z\]

\[\vdots\]

\[\text{hash}_1(Y)\]
Cuckoo Hashing

Hash Table #1

Insert X
\[\text{hash}_1(X) \quad \text{hash}_2(X) \]

Insert Y
\[\text{hash}_1(Y) \quad \text{hash}_2(Y) \]

Insert Z
\[\text{hash}_1(Z) \quad \text{hash}_2(Z) \]
\[\text{hash}_1(Y) \quad \text{hash}_2(X) \]

Hash Table #2

\[\text{hash}_2(Z) \mid Z \]
\[\text{hash}_2(X) \mid X \]
CUCKOO HASHING

Threads have to make sure that they don’t get stuck in an infinite loop when moving keys.

If we find a cycle, then we can rebuild the entire hash tables with new hash functions.

→ With two hash functions, we (probably) won’t need to rebuild the table until it is at about 50% full.
→ With three hash functions, we (probably) won’t need to rebuild the table until it is at about 90% full.
PROBE PHASE

For each tuple in S, hash its join key and check to see whether there is a match for each tuple in corresponding bucket in the hash table constructed for R.

→ If inputs were partitioned, then assign each thread a unique partition.

→ Otherwise, synchronize their access to the cursor on S.
Create a Bloom Filter during the build phase when the key is likely to not exist in the hash table.

→ Threads check the filter before probing the hash table. This will be faster since the filter will fit in CPU caches.

→ Sometimes called *sideways information passing*.
Create a Bloom Filter during the build phase when the key is likely to not exist in the hash table.

→ Threads check the filter before probing the hash table.

This will be faster since the filter will fit in CPU caches.

→ Sometimes called *sideways information passing*.
Create a Bloom Filter during the build phase when the key is likely to not exist in the hash table.
→ Threads check the filter before probing the hash table.
 This will be faster since the filter will fit in CPU caches.
→ Sometimes called *sideways information passing*.
PROBE PHASE – BLOOM FILTER

Create a Bloom Filter during the build phase when the key is likely to not exist in the hash table.
→ Threads check the filter before probing the hash table. This will be faster since the filter will fit in CPU caches.
→ Sometimes called *sideways information passing*.
HASH JOIN VARIANTS

<table>
<thead>
<tr>
<th></th>
<th>No-P</th>
<th>Shared-P</th>
<th>Private-P</th>
<th>Radix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partitioning</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Input scans</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Sync during partitioning</td>
<td>_</td>
<td>Spinlock per tuple</td>
<td>Barrier, once at end</td>
<td>Barrier, 4 · #passes</td>
</tr>
<tr>
<td>Hash table</td>
<td>Shared</td>
<td>Private</td>
<td>Private</td>
<td>Private</td>
</tr>
<tr>
<td>Sync during build phase</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Sync during probe phase</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
BENCHMARKS

Primary key – foreign key join
→ Outer Relation (Build): 16M tuples, 16 bytes each
→ Inner Relation (Probe): 256M tuples, 16 bytes each

Uniform and highly skewed (Zipf; s=1.25)

No output materialization
HASH JOIN – UNIFORM DATA SET

Intel Xeon CPU X5650 @ 2.66GHz
6 Cores with 2 Threads Per Core

<table>
<thead>
<tr>
<th></th>
<th>Cycles / Output Tuple</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Partitioning</td>
<td>60.2</td>
</tr>
<tr>
<td>Shared Partitioning</td>
<td>67.6</td>
</tr>
<tr>
<td>Private Partitioning</td>
<td>76.8</td>
</tr>
<tr>
<td>Radix</td>
<td>47.3</td>
</tr>
</tbody>
</table>

- 3.3x cache misses
- 70x TLB misses
- 24% faster than No Partitioning

Source: Spyros Blanas
HASH JOIN – SKEWED DATA SET

*Intel Xeon CPU X5650 @ 2.66GHz
6 Cores with 2 Threads Per Core*

<table>
<thead>
<tr>
<th></th>
<th>Partition</th>
<th>Build</th>
<th>Probe</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Partitioning</td>
<td>25.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shared Partitioning</td>
<td>167.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private Partitioning</td>
<td>56.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radix</td>
<td>50.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Spyros Blanas
We have ignored a lot of important parameters for all these algorithms so far.

→ Whether to use partitioning or not?
→ How many partitions to use?
→ How many passes to take in partitioning phase?

In a real DBMS, the optimizer will select what it thinks are good values based on what it knows about the data (and maybe hardware).
RADIX HASH JOIN – UNIFORM DATA SET

Intel Xeon CPU X5650 @ 2.66GHz
Varying the # of Partitions

<table>
<thead>
<tr>
<th>Cycles / Output Tuple</th>
<th>Partition</th>
<th>Build</th>
<th>Probe</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>256</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>512</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1024</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4096</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8192</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32768</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>131072</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>256</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>512</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1024</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4096</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8192</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32768</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>131072</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Spyros Blanas

No Partitioning
RADIX HASH JOIN – UNIFORM DATA SET

Intel Xeon CPU X5650 @ 2.66GHz
Varying the # of Partitions

Cycles / Output Tuple

Partition | Build | Probe

Intel Xeon CPU X5650 @ 2.66GHz

Varying the # of Partitions

Source: Spyros Blanas

15-721 (Spring 2020)
EFFECTS OF HYPER-THREADING

Intel Xeon CPU X5650 @ 2.66GHz
Uniform Data Set

- No Partitioning
- Radix
- Ideal

Radix join has fewer cache & TLB misses but this has marginal benefit.

Non-partitioned join relies on multi-threading for high performance.

Source: Spyros Blanas
TPC-H Q19

4× Intel Xeon CPU E7-4870v4
Scale Factor 100

Source: Stefan Schuh
PARTING THOUGHTS

Partitioned-based joins outperform no-partitioning algorithms is most settings, but it is non-trivial to tune it correctly.

AFAIK, every DBMS vendor picks one hash join implementation and does not try to be adaptive.
NEXT CLASS

Parallel Sort-Merge Joins