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QUERY OPTIMIZATION

For a given query, find a correct execution plan 
that has the lowest "cost".

This is the part of a DBMS that is the hardest to 
implement well (proven to be NP-Complete).

No optimizer truly produces the "optimal" plan
→ Use estimation techniques to guess real plan cost.
→ Use heuristics to limit the search space.
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NEXT THREE WEEKS

Optimizer Implementations

Query Rewriting

Plan Enumerations

Adaptive Query Optimization

Cost Models
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Background

Implementation Design Decisions

Optimizer Search Strategies
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ARCHITECTURE OVERVIEW
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LOGICAL VS.  PHYSICAL PL ANS

The optimizer generates a mapping of a logical 
algebra expression to the optimal equivalent 
physical algebra expression.

Physical operators define a specific execution 
strategy using an access path.
→ They can depend on the physical format of the data that 

they process (i.e., sorting, compression).
→ Not always a 1:1 mapping from logical to physical.
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REL ATIONAL ALGEBRA EQUIVALENCES

Two relational algebra expressions are said to be 
equivalent if on every legal database instance the 
two expressions generate the same set of tuples.

Example: (A ⨝ (B ⨝C)) = (B ⨝ (A ⨝C))
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OBSERVATION

Query planning for OLTP queries is easy because 
they are sargable.
→ It is usually picking the best index with simple heuristics.
→ Joins are almost always on foreign key relationships with 

a small cardinality.

8

Search
Argument
Able

CREATE TABLE foo (
id INT PRIMARY KEY,
name VARCHAR(32),
⋮

);

SELECT name FROM foo
WHERE id = 123;
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COST ESTIMATION

Generate an estimate of the cost of executing a 
plan for the current state of the database.
→ Interactions with other work in DBMS
→ Size of intermediate results
→ Choices of algorithms, access methods
→ Resource utilization (CPU, I/O, network)
→ Data properties (skew, order, placement)

We will discuss this more next week…
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DESIGN DECISIONS

Optimization Granularity

Optimization Timing

Prepared Statements

Plan Stability

Search Termination
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OPTIMIZATION GRANUL ARIT Y

Choice #1: Single Query
→ Much smaller search space.
→ DBMS (usually) does not reuse results across queries.
→ To account for resource contention, the cost model must 

consider what is currently running.

Choice #2: Multiple Queries
→ More efficient if there are many similar queries.
→ Search space is much larger.
→ Useful for data / intermediate result sharing.
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OPTIMIZATION TIMING

Choice #1: Static Optimization
→ Select the best plan prior to execution.
→ Plan quality is dependent on cost model accuracy.
→ Can amortize over executions with prepared statements.

Choice #2: Dynamic Optimization
→ Select operator plans on-the-fly as queries execute.
→ Will have re-optimize for multiple executions.
→ Difficult to implement/debug (non-deterministic)

Choice #3: Adaptive Optimization
→ Compile using a static algorithm.
→ If the estimate errors > threshold, change or re-optimize.

12

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

PREPARED STATEMENTS

13

SELECT A.id, B.val
FROM A, B, C

WHERE A.id = B.id
AND B.id = C.id
AND A.val > 100
AND B.val > 99
AND C.val > 5000
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PREPARED STATEMENTS

13

PREPARE myQuery AS 
SELECT A.id, B.val
FROM A, B, C
WHERE A.id = B.id
AND B.id = C.id
AND A.val > 100
AND B.val > 99
AND C.val > 5000

EXECUTE myQuery;
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PREPARED STATEMENTS

13

PREPARE myQuery AS 
SELECT A.id, B.val
FROM A, B, C
WHERE A.id = B.id
AND B.id = C.id
AND A.val > 100
AND B.val > 99
AND C.val > 5000

EXECUTE myQuery;
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PREPARED STATEMENTS

13

EXECUTE myQuery(100, 99, 5000);

PREPARE myQuery(int, int, int) AS 
SELECT A.id, B.val
FROM A, B, C
WHERE A.id = B.id
AND B.id = C.id
AND A.val > ?
AND B.val > ?
AND C.val > ?
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PREPARED STATEMENTS

13

What should be the join 
order for A, B, and C?

B

A.id=B.id⨝

B.val>?s

B.id=C.id⨝

A

A.val>?s

C

C.val>?s
EXECUTE myQuery(100, 99, 5000);

PREPARE myQuery(int, int, int) AS 
SELECT A.id, B.val
FROM A, B, C
WHERE A.id = B.id
AND B.id = C.id
AND A.val > ?
AND B.val > ?
AND C.val > ?
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PREPARED STATEMENTS

Choice #1: Reuse Last Plan
→ Use the plan generated for the previous invocation.

Choice #2: Re-Optimize
→ Rerun optimizer each time the query is invoked.
→ Tricky to reuse existing plan as starting point.

Choice #3: Multiple Plans
→ Generate multiple plans for different values of the 

parameters (e.g., buckets).

Choice #4: Average Plan
→ Choose the average value for a parameter and use that for 

all invocations.
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PL AN STABILIT Y

Choice #1: Hints
→ Allow the DBA to provide hints to the optimizer.

Choice #2: Fixed Optimizer Versions
→ Set the optimizer version number and migrate queries 

one-by-one to the new optimizer.

Choice #3: Backwards-Compatible Plans
→ Save query plan from old version and provide it to the 

new DBMS.
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SEARCH TERMINATION

Approach #1: Wall-clock Time
→ Stop after the optimizer runs for some length of time.

Approach #2: Cost Threshold
→ Stop when the optimizer finds a plan that has a lower 

cost than some threshold.

Approach #3: Exhaustion
→ Stop when there are no more enumerations of the target 

plan. Usually done per group.
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OPTIMIZATION SEARCH STRATEGIES

Heuristics

Heuristics + Cost-based Join Order Search

Randomized Algorithms

Stratified Search

Unified Search

17

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

HEURISTIC-BASED OPTIMIZATION

Define static rules that transform logical operators 
to a physical plan.
→ Perform most restrictive selection early
→ Perform all selections before joins
→ Predicate/Limit/Projection pushdowns
→ Join ordering based on cardinality

Examples: INGRES and Oracle (until mid 1990s).
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QUERY PROCESSING IN A RELATIONAL DATABASE 
MANAGEMENT SYSTEM
VLDB 1979

Stonebraker
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EXAMPLE DATABASE

19

CREATE TABLE APPEARS (
ARTIST_ID INT
⮱REFERENCES ARTIST(ID),
ALBUM_ID INT
⮱REFERENCES ALBUM(ID),
PRIMARY KEY
⮱(ARTIST_ID, ALBUM_ID)

);

CREATE TABLE ARTIST (
ID INT PRIMARY KEY,
NAME VARCHAR(32)

);

CREATE TABLE ALBUM (
ID INT PRIMARY KEY,
NAME VARCHAR(32) UNIQUE

);
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INGRES OPTIMIZER

20

Step #1: Decompose into single-value queries 

SELECT ALBUM.ID AS ALBUM_ID INTO TEMP1
FROM ALBUM
WHERE ALBUM.NAME="Andy's OG Remix"

Q1

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, TEMP1
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=TEMP1.ALBUM_ID

Q2

Retrieve the names of people that appear on Andy's mixtape

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID 
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"
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INGRES OPTIMIZER

20

Step #1: Decompose into single-value queries 

SELECT ALBUM.ID AS ALBUM_ID INTO TEMP1
FROM ALBUM
WHERE ALBUM.NAME="Andy's OG Remix"

Q1

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, TEMP1
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=TEMP1.ALBUM_ID

Q2

Retrieve the names of people that appear on Andy's mixtape

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID 
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"
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INGRES OPTIMIZER

20

Step #1: Decompose into single-value queries 

SELECT ALBUM.ID AS ALBUM_ID INTO TEMP1
FROM ALBUM
WHERE ALBUM.NAME="Andy's OG Remix"

Q1

SELECT APPEARS.ARTIST_ID INTO TEMP2
FROM APPEARS, TEMP1
WHERE APPEARS.ALBUM_ID=TEMP1.ALBUM_ID

Q3

SELECT ARTIST.NAME
FROM ARTIST, TEMP2
WHERE ARTIST.ARTIST_ID=TEMP2.ARTIST_ID

Q4

Retrieve the names of people that appear on Andy's mixtape

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID 
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"
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INGRES OPTIMIZER

20

Step #1: Decompose into single-value queries 

SELECT ALBUM.ID AS ALBUM_ID INTO TEMP1
FROM ALBUM
WHERE ALBUM.NAME="Andy's OG Remix"

Q1

SELECT APPEARS.ARTIST_ID INTO TEMP2
FROM APPEARS, TEMP1
WHERE APPEARS.ALBUM_ID=TEMP1.ALBUM_ID

Q3

SELECT ARTIST.NAME
FROM ARTIST, TEMP2
WHERE ARTIST.ARTIST_ID=TEMP2.ARTIST_ID

Q4Step #2: Substitute the values from Q1→Q3→Q4

Retrieve the names of people that appear on Andy's mixtape

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID 
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"
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INGRES OPTIMIZER

20

Step #1: Decompose into single-value queries 

SELECT APPEARS.ARTIST_ID INTO TEMP2
FROM APPEARS, TEMP1
WHERE APPEARS.ALBUM_ID=TEMP1.ALBUM_ID

Q3

SELECT ARTIST.NAME
FROM ARTIST, TEMP2
WHERE ARTIST.ARTIST_ID=TEMP2.ARTIST_ID

Q4Step #2: Substitute the values from Q1→Q3→Q4

ALBUM_ID

9999

Retrieve the names of people that appear on Andy's mixtape

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID 
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"
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INGRES OPTIMIZER

20

Step #1: Decompose into single-value queries 

SELECT ARTIST.NAME
FROM ARTIST, TEMP2
WHERE ARTIST.ARTIST_ID=TEMP2.ARTIST_ID

Q4Step #2: Substitute the values from Q1→Q3→Q4

ALBUM_ID

9999

SELECT APPEARS.ARTIST_ID
FROM APPEARS
WHERE APPEARS.ALBUM_ID=9999

Retrieve the names of people that appear on Andy's mixtape

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID 
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"
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INGRES OPTIMIZER

20

Step #1: Decompose into single-value queries 

SELECT ARTIST.NAME
FROM ARTIST, TEMP2
WHERE ARTIST.ARTIST_ID=TEMP2.ARTIST_ID

Q4Step #2: Substitute the values from Q1→Q3→Q4

ALBUM_ID

9999

ARTIST_ID

123
456

Retrieve the names of people that appear on Andy's mixtape

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID 
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"
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INGRES OPTIMIZER

20

Step #1: Decompose into single-value queries 

Step #2: Substitute the values from Q1→Q3→Q4 SELECT ARTIST.NAME
FROM ARTIST
WHERE ARTIST.ARTIST_ID=123

SELECT ARTIST.NAME
FROM ARTIST
WHERE ARTIST.ARTIST_ID=456

ALBUM_ID

9999

ARTIST_ID

123
456

Retrieve the names of people that appear on Andy's mixtape

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID 
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"
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INGRES OPTIMIZER

20

Step #1: Decompose into single-value queries 

Step #2: Substitute the values from Q1→Q3→Q4

ALBUM_ID

9999

ARTIST_ID

123
456

NAME

O.D.B.

NAME

DJ Premier

Retrieve the names of people that appear on Andy's mixtape

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID 
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"
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http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

HEURISTIC-BASED OPTIMIZATION

Advantages:
→ Easy to implement and debug.
→ Works reasonably well and is fast for simple queries.

Disadvantages:
→ Relies on magic constants that predict the efficacy of a 

planning decision.
→ Nearly impossible to generate good plans when operators 

have complex inter-dependencies.

29
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HEURISTICS + COST-BASED JOIN SEARCH

Use static rules to perform initial optimization.
Then use dynamic programming to determine
the best join order for tables.
→ First cost-based query optimizer 
→ Bottom-up planning (forward chaining) using a divide-

and-conquer search method

Examples: System R, early IBM DB2, most open-
source DBMSs.

30

ACCESS PATH SELECTION IN A RELATIONAL DATABASE 
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SIGMOD 1979
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SYSTEM R OPTIMIZER

Break query up into blocks and generate the logical 
operators for each block.

For each logical operator, generate a set of physical 
operators that implement it.
→ All combinations of join algorithms and access paths

Then iteratively construct a “left-deep” join tree 
that minimizes the estimated amount of work to 
execute the plan.

31
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SYSTEM R OPTIMIZER

32

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID 
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME=“Andy's OG Remix”

ORDER BY ARTIST.ID

Retrieve the names of people that appear on Andy’s mixtape
ordered by their artist id.
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SYSTEM R OPTIMIZER

32

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID 
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME=“Andy's OG Remix”

ORDER BY ARTIST.ID

Retrieve the names of people that appear on Andy’s mixtape
ordered by their artist id.

Step #1: Choose the best access paths to 
each table 

ARTIST: Sequential Scan

APPEARS: Sequential Scan

ALBUM: Index Look-up on NAME

https://db.cs.cmu.edu/
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SYSTEM R OPTIMIZER

32

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID 
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME=“Andy's OG Remix”

ORDER BY ARTIST.ID

Retrieve the names of people that appear on Andy’s mixtape
ordered by their artist id.

Step #1: Choose the best access paths to 
each table 

ARTIST: Sequential Scan

APPEARS: Sequential Scan

ALBUM: Index Look-up on NAME

ARTIST  ⨝ APPEARS ⨝ ALBUM
APPEARS ⨝ ALBUM   ⨝ ARTIST
ALBUM   ⨝ APPEARS ⨝ ARTIST
APPEARS ⨝ ARTIST  ⨝ ALBUM
ARTIST  × ALBUM   ⨝ APPEARS
ALBUM   × ARTIST  ⨝ APPEARS
⋮ ⋮ ⋮

Step #2: Enumerate all possible join 
orderings for tables

https://db.cs.cmu.edu/
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SYSTEM R OPTIMIZER

32

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID 
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME=“Andy's OG Remix”

ORDER BY ARTIST.ID

Retrieve the names of people that appear on Andy’s mixtape
ordered by their artist id.

Step #1: Choose the best access paths to 
each table 

Step #3: Determine the join ordering 
with the lowest cost

ARTIST: Sequential Scan

APPEARS: Sequential Scan

ALBUM: Index Look-up on NAME

ARTIST  ⨝ APPEARS ⨝ ALBUM
APPEARS ⨝ ALBUM   ⨝ ARTIST
ALBUM   ⨝ APPEARS ⨝ ARTIST
APPEARS ⨝ ARTIST  ⨝ ALBUM
ARTIST  × ALBUM   ⨝ APPEARS
ALBUM   × ARTIST  ⨝ APPEARS
⋮ ⋮ ⋮

Step #2: Enumerate all possible join 
orderings for tables

https://db.cs.cmu.edu/
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SYSTEM R OPTIMIZER

33

ARTIST ALBUM APPEARS

ARTIST ⨝ APPEARS ⨝ ALBUM

https://db.cs.cmu.edu/
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SYSTEM R OPTIMIZER

33

ARTIST ALBUM APPEARS

ARTIST⨝APPEARS
ALBUM

ALBUM⨝APPEARS
ARTIST

APPEARS⨝ALBUM
ARTIST • • •

HASH_JOIN(A1,A3) SM_JOIN(A1,A3) HASH_JOIN(A2,A3) SM_JOIN(A2,A3) HASH_JOIN(A3,A2) SM_JOIN(A3,A2) • • •

ARTIST ⨝ APPEARS ⨝ ALBUM

ARTIST.ID=APPEARS.ARTIST_ID

ALBUM.ID=APPEARS.ALBUM_ID

APPEARS.ALBUM_ID=ALBUM.ID

https://db.cs.cmu.edu/
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SYSTEM R OPTIMIZER

33

ARTIST ALBUM APPEARS

ARTIST⨝APPEARS
ALBUM

ALBUM⨝APPEARS
ARTIST

APPEARS⨝ALBUM
ARTIST • • •

HASH_JOIN(A1,A3) HASH_JOIN(A2,A3) SM_JOIN(A3,A2) • • •

ARTIST ⨝ APPEARS ⨝ ALBUM

ARTIST.ID=APPEARS.ARTIST_ID

ALBUM.ID=APPEARS.ALBUM_ID

APPEARS.ALBUM_ID=ALBUM.ID
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SYSTEM R OPTIMIZER

33

ARTIST ALBUM APPEARS

ARTIST⨝APPEARS
ALBUM

ALBUM⨝APPEARS
ARTIST

APPEARS⨝ALBUM
ARTIST • • •

HASH_JOIN(A1,A3) HASH_JOIN(A2,A3) SM_JOIN(A3,A2) • • •

HASH_JOIN(A1⨝A3,A2) SM_JOIN(A1⨝A3,A2) HASH_JOIN(A2⨝A3,A1) SM_JOIN(A2⨝A3,A1) HASH_JOIN(A3⨝A2,A1) • • •SM_JOIN(A3⨝A2,A1)

ARTIST ⨝ APPEARS ⨝ ALBUM

ARTIST.ID=APPEARS.ARTIST_ID

ALBUM.ID=APPEARS.ALBUM_ID

APPEARS.ALBUM_ID=ALBUM.ID

APPEARS.ALBUM_ID=ALBUM.ID

APPEARS.ARTIST_ID=ARTIST.ID

APPEARS.ARTIST_ID=ARTIST.ID
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SYSTEM R OPTIMIZER

33

ARTIST ALBUM APPEARS

ARTIST⨝APPEARS
ALBUM

ALBUM⨝APPEARS
ARTIST

APPEARS⨝ALBUM
ARTIST • • •

HASH_JOIN(A1,A3) HASH_JOIN(A2,A3) SM_JOIN(A3,A2) • • •

HASH_JOIN(A1⨝A3,A2) HASH_JOIN(A2⨝A3,A1) HASH_JOIN(A3⨝A2,A1) • • •

ARTIST ⨝ APPEARS ⨝ ALBUM

ARTIST.ID=APPEARS.ARTIST_ID

ALBUM.ID=APPEARS.ALBUM_ID

APPEARS.ALBUM_ID=ALBUM.ID

APPEARS.ALBUM_ID=ALBUM.ID

APPEARS.ARTIST_ID=ARTIST.ID

APPEARS.ARTIST_ID=ARTIST.ID
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SYSTEM R OPTIMIZER

33

ARTIST ALBUM APPEARS

ALBUM⨝APPEARS
ARTIST

HASH_JOIN(A2,A3)

HASH_JOIN(A2⨝A3,A1)

ARTIST ⨝ APPEARS ⨝ ALBUM

ALBUM.ID=APPEARS.ALBUM_ID

APPEARS.ARTIST_ID=ARTIST.ID

https://db.cs.cmu.edu/
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SYSTEM R OPTIMIZER

33

ARTIST ALBUM APPEARS

ALBUM⨝APPEARS
ARTIST

HASH_JOIN(A2,A3)

HASH_JOIN(A2⨝A3,A1)

ARTIST ⨝ APPEARS ⨝ ALBUM

The query has ORDER BY on 
ARTIST.ID but the logical plans 
do not contain sorting properties.

ALBUM.ID=APPEARS.ALBUM_ID

APPEARS.ARTIST_ID=ARTIST.ID
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TOP-DOWN VS.  BOT TOM-UP

Top-down Optimization
→ Start with the outcome that you want, and then work 

down the tree to find the optimal plan that gets you to 
that goal.

→ Examples: Volcano, Cascades

Bottom-up Optimization
→ Start with nothing and then build up the plan to get to 

the outcome that you want.
→ Examples: System R, Starburst

34
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POSTGRES OPTIMIZER

Imposes a rigid workflow for query optimization:
→ First stage performs initial rewriting with heuristics
→ It then executes a cost-based search to find optimal join 

ordering.
→ Everything else is treated as an “add-on”.
→ Then recursively descends into sub-queries.

Difficult to modify or extend because the ordering 
must be preserved. 

35
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HEURISTICS + COST-BASED JOIN SEARCH

Advantages:
→ Usually finds a reasonable plan without having to 

perform an exhaustive search.

Disadvantages:
→ All the same problems as the heuristic-only approach.
→ Left-deep join trees are not always optimal.
→ Must take in consideration the physical properties of data 

in the cost model (e.g., sort order).

36
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RANDOMIZED ALGORITHMS

Perform a random walk over a solution space of all 
possible (valid) plans for a query.

Continue searching until a cost threshold is 
reached or the optimizer runs for a length of time.

Examples: Postgres’ genetic algorithm.

37
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SIMUL ATED ANNEALING

Start with a query plan that is generated using the 
heuristic-only approach.

Compute random permutations of operators (e.g., 
swap the join order of two tables)
→ Always accept a change that reduces cost
→ Only accept a change that increases cost with some 

probability.
→ Reject any change that violates correctness (e.g., sort 

ordering)

38

QUERY OPTIMIZATION BY SIMULATED ANNEALING 
SIGMOD 1987
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POSTGRES GENETIC OPTIMIZER

More complicated queries use a genetic 
algorithm that selects join orderings (GEQO).

At the beginning of each round, generate different 
variants of the query plan.

Select the plans that have the lowest cost and 
permute them with other plans. Repeat.
→ The mutator function only generates valid plans.

39

Source: Postgres Documentation
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POSTGRES GENETIC OPTIMIZER
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POSTGRES GENETIC OPTIMIZER
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POSTGRES GENETIC OPTIMIZER
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POSTGRES GENETIC OPTIMIZER
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POSTGRES GENETIC OPTIMIZER
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POSTGRES GENETIC OPTIMIZER
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POSTGRES GENETIC OPTIMIZER
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POSTGRES GENETIC OPTIMIZER
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RANDOMIZED ALGORITHMS

Advantages:
→ Jumping around the search space randomly allows the 

optimizer to get out of local minimums.
→ Low memory overhead (if no history is kept).

Disadvantages:
→ Difficult to determine why the DBMS may have chosen a 

plan.
→ Must do extra work to ensure that query plans are 

deterministic.
→ Still must implement correctness rules.

41
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OBSERVATION

Writing query transformation rules in a 
procedural language is hard and error-prone.
→ No easy way to verify that the rules are correct without 

running a lot of fuzz tests.
→ Generation of physical operators per logical operator is 

decoupled from deeper semantics about query.

A better approach is to use a declarative DSL to 
write the transformation rules and then have the 
optimizer enforce them during planning.

42
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OPTIMIZER GENERATORS

Framework to allow a DBMS implementer to 
write the declarative rules for optimizing queries.
→ Separate the search strategy from the data model.
→ Separate the transformation rules and logical operators 

from physical rules and physical operators.

Implementation can be independent of the 
optimizer's search strategy.

Examples: Starburst, Exodus, Volcano, Cascades, 
OPT++

43
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OPTIMIZER GENERATORS

Use a rule engine that allows transformations to 
modify the query plan operators.

The physical properties of data is embedded with 
the operators themselves.

Choice #1: Stratified Search
→ Planning is done in multiple stages

Choice #2: Unified Search
→ Perform query planning all at once.

44
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STRATIFIED SEARCH

First rewrite the logical query plan using 
transformation rules.
→ The engine checks whether the transformation is allowed 

before it can be applied.
→ Cost is never considered in this step.

Then perform a cost-based search to map the 
logical plan to a physical plan.

45
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STARBURST OPTIMIZER

Better implementation of the System R optimizer 
that uses declarative rules.

Stage #1: Query Rewrite
→ Compute a SQL-block-level, relational calculus-like 

representation of queries.

Stage #2: Plan Optimization
→ Execute a System R-style dynamic programming phase 

once query rewrite has completed.

Example: Latest version of IBM DB2
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GRAMMAR-LIKE FUNCTIONAL RULES FOR REPRESENTING 
QUERY OPTIMIZATION ALTERNATIVES
SIGMOD 1988

Lohman
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STARBURST OPTIMIZER

Advantages:
→ Works well in practice with fast performance.

Disadvantages:
→ Difficult to assign priorities to transformations
→ Some transformations are difficult to assess without 

computing multiple cost estimations.
→ Rules maintenance is a huge pain.

47
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UNIFIED SEARCH

Unify the notion of both logical→logical and 
logical→physical transformations.
→ No need for separate stages because everything is 

transformations.

This approach generates many transformations, so 
it makes heavy use of memoization to reduce 
redundant work.

48
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VOLCANO OPTIMIZER

General purpose cost-based query optimizer, based 
on equivalence rules on algebras.
→ Easily add new operations and equivalence rules.
→ Treats physical properties of data as first-class entities 

during planning.
→ Top-down approach (backward chaining) using 

branch-and-bound search.

Example: Academic prototypes

49

THE VOLCANO OPTIMIZER GENERATOR: 
EXTENSIBILITY AND EFFICIENT SEARCH
ICDE 1993

Graefe
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http://15721.courses.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2017/papers/14-optimizer1/graefe-icde1993.pdf
http://15721.courses.cs.cmu.edu/spring2017/papers/14-optimizer1/graefe-icde1993.pdf


15-721 (Spring 2020)

VOLCANO OPTIMIZER

50

Start with a logical plan of what 
we want the query to be.

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)
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VOLCANO OPTIMIZER

50

Start with a logical plan of what 
we want the query to be.

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes and 
traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)

→ Logical→Physical: 
JOIN(A,B) to HASH_JOIN(A,B)
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VOLCANO OPTIMIZER

50

Start with a logical plan of what 
we want the query to be.

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes and 
traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)

→ Logical→Physical: 
JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS
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VOLCANO OPTIMIZER

50

Start with a logical plan of what 
we want the query to be.

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes and 
traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)

→ Logical→Physical: 
JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

SM_JOIN(A1⨝A2,A3)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS
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VOLCANO OPTIMIZER

50

Start with a logical plan of what 
we want the query to be.

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes and 
traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)

→ Logical→Physical: 
JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

SM_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS
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VOLCANO OPTIMIZER

50

Start with a logical plan of what 
we want the query to be.

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes and 
traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)

→ Logical→Physical: 
JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

SM_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

SM_JOIN(A1,A2)
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VOLCANO OPTIMIZER

50

Start with a logical plan of what 
we want the query to be.

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes and 
traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)

→ Logical→Physical: 
JOIN(A,B) to HASH_JOIN(A,B)

Can create “enforcer” rules that 
require input to have certain 
properties.

ARTIST ALBUM APPEARS

SM_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

HASH_JOIN(A1⨝A2,A3)

SM_JOIN(A1,A2)
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VOLCANO OPTIMIZER

50

Start with a logical plan of what 
we want the query to be.

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes and 
traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)

→ Logical→Physical: 
JOIN(A,B) to HASH_JOIN(A,B)

Can create “enforcer” rules that 
require input to have certain 
properties.

ARTIST ALBUM APPEARS

SM_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

HASH_JOIN(A1⨝A2,A3)X

SM_JOIN(A1,A2)
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VOLCANO OPTIMIZER

50

Start with a logical plan of what 
we want the query to be.

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes and 
traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)

→ Logical→Physical: 
JOIN(A,B) to HASH_JOIN(A,B)

Can create “enforcer” rules that 
require input to have certain 
properties.

ARTIST ALBUM APPEARS

QUICKSORT(A1.ID)

SM_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

HASH_JOIN(A1⨝A2,A3)X

SM_JOIN(A1,A2)
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VOLCANO OPTIMIZER

50

Start with a logical plan of what 
we want the query to be.

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes and 
traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)

→ Logical→Physical: 
JOIN(A,B) to HASH_JOIN(A,B)

Can create “enforcer” rules that 
require input to have certain 
properties.

ARTIST ALBUM APPEARS

HASH_JOIN(A1⨝A2,A3)

QUICKSORT(A1.ID)

SM_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

HASH_JOIN(A1⨝A2,A3)X

SM_JOIN(A1,A2)
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VOLCANO OPTIMIZER

50

Start with a logical plan of what 
we want the query to be.

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes and 
traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)

→ Logical→Physical: 
JOIN(A,B) to HASH_JOIN(A,B)

Can create “enforcer” rules that 
require input to have certain 
properties.

ARTIST ALBUM APPEARS

HASH_JOIN(A1⨝A2,A3)

QUICKSORT(A1.ID)

SM_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

HASH_JOIN(A1⨝A2,A3)X
X

SM_JOIN(A1,A2)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

VOLCANO OPTIMIZER

Advantages:
→ Use declarative rules to generate transformations.
→ Better extensibility with an efficient search engine. 

Reduce redundant estimations using memoization.

Disadvantages:
→ All equivalence classes are completely expanded to 

generate all possible logical operators before the 
optimization search.

→ Not easy to modify predicates.

51

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

PARTING THOUGHTS

Query optimization is hard.

This difficulty is why NoSQL systems didn’t 
implement optimizers (at first).
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NEXT CL ASS

Optimizers! First Blood, Part II

Dynamic Programming vs. Cascades
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