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15-721 (Spring 2020)

QUERY OPTIMIZATION

For a given query, find a correct execution plan 
that has the lowest "cost".

This is the part of a DBMS that is the hardest to 
implement well (proven to be NP-Complete).

No optimizer truly produces the "optimal" plan
→ Use estimation techniques to guess real plan cost.
→ Use heuristics to limit the search space.
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QUERY OPTIMIZATION STRATEGIES

Choice #1: Heuristics
→ INGRES, Oracle (until mid 1990s)

Choice #2: Heuristics + Cost-based Join Search
→ System R, early IBM DB2, most open-source DBMSs

Choice #3: Randomized Search
→ Academics in the 1980s, current Postgres

Choice #4: Stratified Search
→ IBM’s STARBURST (late 1980s), now IBM DB2 + Oracle

Choice #5: Unified Search
→ Volcano/Cascades in 1990s, now MSSQL + Greenplum
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STRATIFIED SEARCH

First rewrite the logical query plan using 
transformation rules.
→ The engine checks whether the transformation is allowed 

before it can be applied.
→ Cost is never considered in this step.

Then perform a cost-based search to map the 
logical plan to a physical plan.

4

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

UNIFIED SEARCH

Unify the notion of both logical→logical and 
logical→physical transformations.
→ No need for separate stages because everything is 

transformations.

This approach generates a lot more 
transformations so it makes heavy use of 
memoization to reduce redundant work.

5

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

TOP-DOWN VS.  BOT TOM-UP

Top-down Optimization
→ Start with the final outcome that you want, and then 

work down the tree to find the optimal plan that gets you 
to that goal.

→ Example: Volcano, Cascades

Bottom-up Optimization
→ Start with nothing and then build up the plan to get to 

the final outcome that you want.
→ Examples: System R, Starburst
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Logical Query Optimization

Cascades / Columbia

Dynamic Programming

Other Implementations

Project #3 Code Reviews
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LOGICAL QUERY OPTIMIZATION

Transform a logical plan into an equivalent logical 
plan using pattern matching rules.

The goal is to increase the likelihood of 
enumerating the optimal plan in the search.

Cannot compare plans because there is no cost 
model but can "direct" a transformation to a 
preferred side.
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LOGICAL QUERY OPTIMIZATION

Split Conjunctive Predicates

Predicate Pushdown

Replace Cartesian Products with Joins

Projection Pushdown

9

Source: Thomas Neumann
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SPLIT CONJUNCTIVE PREDICATES

10

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID 
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

×
ARTIST

ARTIST.ID=APPEARS.ARTIST_ID AND
APPEARS.ALBUM_ID=ALBUM.ID AND
ALBUM.NAME="Andy's OG Remix"

s

APPEARS ALBUM

×

Decompose predicates into their 
simplest forms to make it easier 
for the optimizer to move them 
around.

ARTIST.NAMEp
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SPLIT CONJUNCTIVE PREDICATES

10

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID 
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

×
ARTIST APPEARS ALBUM

×

Decompose predicates into their 
simplest forms to make it easier 
for the optimizer to move them 
around.

ARTIST.NAMEp
ARTIST.ID=APPEARS.ARTIST_IDs

ALBUM.NAME="Andy's OG Remix"s
APPEARS.ALBUM_ID=ALBUM.IDs
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PREDICATE PUSHDOWN

11

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID 
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

ARTIST APPEARS ALBUM

Move the predicate to the lowest 
point in the plan after Cartesian 
products.

×

ARTIST.NAMEp

×

ARTIST.ID=APPEARS.ARTIST_IDs

ALBUM.NAME="Andy's OG Remix"s
APPEARS.ALBUM_ID=ALBUM.IDs
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PREDICATE PUSHDOWN

11

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID 
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

ARTIST APPEARS ALBUM

Move the predicate to the lowest 
point in the plan after Cartesian 
products.

×

ARTIST.NAMEp

ARTIST.ID=APPEARS.ARTIST_IDs
ALBUM.NAME="Andy's OG Remix"s

APPEARS.ALBUM_ID=ALBUM.IDs
×
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REPL ACE CARTESIAN PRODUCTS

12

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID 
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

Replace all Cartesian Products 
with inner joins using the join 
predicates.

ARTIST APPEARS ALBUM

ARTIST.NAMEp

ALBUM.NAME="Andy's OG Remix"s

×
ARTIST.ID=APPEARS.ARTIST_IDs

APPEARS.ALBUM_ID=ALBUM.IDs
×
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http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

REPL ACE CARTESIAN PRODUCTS

12

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID 
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

Replace all Cartesian Products 
with inner joins using the join 
predicates.

ARTIST APPEARS ALBUM

ARTIST.NAMEp

ALBUM.NAME="Andy's OG Remix"s
ARTIST.ID=APPEARS.ARTIST_ID⨝

APPEARS.ALBUM_ID=ALBUM.ID⨝
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PROJECTION PUSHDOWN

13

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID 
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

Eliminate redundant attributes 
before pipeline breakers to 
reduce materialization cost.

ARTIST APPEARS ALBUM

ARTIST.NAMEp

ARTIST.ID=APPEARS.ARTIST_ID⨝

APPEARS.ALBUM_ID=ALBUM.ID⨝

ALBUM.NAME="Andy's OG Remix"s

https://db.cs.cmu.edu/
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PROJECTION PUSHDOWN

13

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID 
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

Eliminate redundant attributes 
before pipeline breakers to 
reduce materialization cost.

ARTIST APPEARS ALBUM

ARTIST.NAMEp

ALBUM.NAME="Andy's OG Remix"s

IDpARTIST.NAME,
APPEARS.ALBUM_IDp

ID,NAMEp ARTIST_ID,
ALBUM_IDp

ARTIST.ID=
APPEARS.ARTIST_ID⨝

APPEARS.ALBUM_ID=ALBUM.ID⨝
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PHYSICAL QUERY OPTIMIZATION

Transform a query plan's logical operators into 
physical operators.
→ Add more execution information
→ Select indexes / access paths
→ Choose operator implementations
→ Choose when to materialize (i.e., temp tables).

This stage must support cost model estimates.

14
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OBSERVATION

All the queries we have looked at so far have had 
the following properties:
→ Equi/Inner Joins
→ Simple join predicates that reference only two tables.
→ No cross products

Real-world queries are much more complex:
→ Outer Joins
→ Semi-joins
→ Anti-joins

15
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REORDERING LIMITATIONS

No valid reordering is possible.

16

SELECT * FROM A
LEFT OUTER JOIN B
ON A.id = B.id

FULL OUTER JOIN C
ON B.val = C.id;

B

⟕

B.val=C.id⟗

A C

A.id=B.id

Source: Pit Fender
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REORDERING LIMITATIONS

No valid reordering is possible.

The A⟕B operator is not 
commutative with B⟗C. 
→ The DBMS does not know the value 

of B.val until after computing the 
join with A.

16

SELECT * FROM A
LEFT OUTER JOIN B
ON A.id = B.id

FULL OUTER JOIN C
ON B.val = C.id;

B

⟕

B.val=C.id⟗

A C

A.id=B.id

Source: Pit Fender
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PL AN ENUMERATION

Approach #1: Transformation
→ Modify some part of an existing query plan to transform 

it into an alternative plan that is equivalent.

Approach #2: Generative
→ Assemble building blocks to generate a query plan.

17

ON THE CORRECT AND COMPLETE ENUMERATION 
OF THE CORE SEARCH SPACE
SIGMOD 2013
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DYNAMIC PROGRAMMING OPTIMIZER

Model the query as a hypergraph and then 
incrementally expand to enumerate new plans.

Algorithm Overview:
→ Iterate connected sub-graphs and incrementally add new 

edges to other nodes to complete query plan.
→ Use rules to determine which nodes the traversal is 

allowed to visit and expand.
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DYNAMIC PROGRAMMING STRIKES BACK
SIGMOD 2008

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2020/papers/20-optimizer2/p539-moerkotte.pdf
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CASCADES OPTIMIZER

Object-oriented implementation of the Volcano 
query optimizer.

Supports simplistic expression re-writing through 
a direct mapping function rather than an 
exhaustive search.
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THE CASCADES FRAMEWORK FOR 
QUERY OPTIMIZATION
IEEE DATA ENGINEERING BULLETIN 1995

Graefe

https://db.cs.cmu.edu/
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CASCADES OPTIMIZER

Optimization tasks as data structures.

Rules to place property enforcers.

Ordering of moves by promise.

Predicates as logical/physical operators.
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EFFICIENCY IN THE COLUMBIA DATABASE QUERY OPTIMIZER
PORTLAND STATE UNIVERSITY MS THESIS 1998
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CASCADES EXPRESSIONS

An expression is an operator with zero or more 
input expressions.

Logical Expression: (A ⨝ B) ⨝ C

Physical Expression: (ASeq ⨝HJ BSeq) ⨝NL CIdx

21

SELECT * FROM A
JOIN B ON A.id = B.id
JOIN C ON C.id = A.id;

https://db.cs.cmu.edu/
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CASCADES GROUPS

A group is a set of logically equivalent logical and 
physical expressions that produce the same output.
→ All logical forms of an expression.
→ All physical expressions that can be derived from 

selecting the allowable physical operators for the 
corresponding logical forms.

22

Output:
[ABC]

Logical Exps
1. (A⨝B)⨝C
2. (B⨝C)⨝A
3. (A⨝C)⨝B
4. A⨝(B⨝C)
⋮

Physical Exps
1.(ASeq⨝NLBSeq)⨝NLCSeq
2.(BSeq⨝NLCSeq)⨝NLASeq
3.(ASeq⨝NLCSeq)⨝NLBSeq
4.ASeq⨝NL(CSeq⨝NLBSeq)
⋮

https://db.cs.cmu.edu/
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CASCADES GROUPS

A group is a set of logically equivalent logical and 
physical expressions that produce the same output.
→ All logical forms of an expression.
→ All physical expressions that can be derived from 

selecting the allowable physical operators for the 
corresponding logical forms.

22

Output:
[ABC]

Logical Exps
1. (A⨝B)⨝C
2. (B⨝C)⨝A
3. (A⨝C)⨝B
4. A⨝(B⨝C)
⋮

Physical Exps
1.(ASeq⨝NLBSeq)⨝NLCSeq
2.(BSeq⨝NLCSeq)⨝NLASeq
3.(ASeq⨝NLCSeq)⨝NLBSeq
4.ASeq⨝NL(CSeq⨝NLBSeq)
⋮

G
ro

u
p
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CASCADES GROUPS

A group is a set of logically equivalent logical and 
physical expressions that produce the same output.
→ All logical forms of an expression.
→ All physical expressions that can be derived from 

selecting the allowable physical operators for the 
corresponding logical forms.

22

Output:
[ABC]

Logical Exps
1. (A⨝B)⨝C
2. (B⨝C)⨝A
3. (A⨝C)⨝B
4. A⨝(B⨝C)
⋮

Physical Exps
1.(ASeq⨝NLBSeq)⨝NLCSeq
2.(BSeq⨝NLCSeq)⨝NLASeq
3.(ASeq⨝NLCSeq)⨝NLBSeq
4.ASeq⨝NL(CSeq⨝NLBSeq)
⋮

Equivalent
Expressions

G
ro

u
p
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CASCADES MULTI-EXPRESSION

Instead of explicitly instantiating all possible 
expressions in a group, the optimizer implicitly 
represents redundant expressions in a group as a 
multi-expression.
→ This reduces the number of transformations, storage 

overhead, and repeated cost estimations.

23

Output:
[ABC]

Logical Multi-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [A]⨝[BC]
⋮

Physical Multi-Exps
1. [AB]⨝SM[C]
2. [AB]⨝HJ[C]
3. [AB]⨝NL[C]
4. [BC]⨝SM[A]
⋮

https://db.cs.cmu.edu/
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CASCADES RULES

A rule is a transformation of an expression to a 
logically equivalent expression.
→ Transformation Rule: Logical to Logical
→ Implementation Rule: Logical to Physical

Each rule is represented as a pair of attributes:
→ Pattern: Defines the structure of the logical expression 

that can be applied to the rule.
→ Substitute: Defines the structure of the result after 

applying the rule.

24
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Pattern

CASCADES RULES

25

EQJOIN

EQJOIN

GROUP 1 GROUP 2

GROUP 3

Transformation Rule
Rotate Left-to-Right

Implementation Rule
EQJOIN→SORTMERGE

A⨝[BC]

GET(A)

GET(B) GET(C)

B⨝C

[AB]⨝SMC

A⨝SMB

GET(A) GET(B)

GET(C)

[AB]⨝C

A⨝B

GET(A) GET(B)

GET(C)

Matching Plan
Group

Logical Expr

Physical Expr

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
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CASCADES MEMO TABLE

Stores all previously explored alternatives in a 
compact graph structure / hash table.

Equivalent operator trees and their corresponding 
plans are stored together in groups.

Provides memoization, duplicate detection, and 
property + cost management.

26
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PRINCIPLE OF OPTIMALIT Y

Every sub-plan of an optimal plan is itself optimal.

This allows the optimizer to restrict the search 
space to a smaller set of expressions.
→ The optimizer never has to consider a plan containing 

sub-plan P1 that has a greater cost than equivalent plan 
P2 with the same physical properties.

27

EXPLOITING UPPER AND LOWER BOUNDS IN 
TOP-DOWN QUERY OPTIMIZATION
IDEAS 2001

https://db.cs.cmu.edu/
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CASCADES MEMO TABLE

28

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

https://db.cs.cmu.edu/
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CASCADES MEMO TABLE

28

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝SM[B]
3. [B]⨝NL[A]

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

https://db.cs.cmu.edu/
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CASCADES MEMO TABLE

28

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝SM[B]
3. [B]⨝NL[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

https://db.cs.cmu.edu/
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CASCADES MEMO TABLE

28

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝SM[B]
3. [B]⨝NL[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

CASCADES MEMO TABLE

28

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝SM[B]
3. [B]⨝NL[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Cost: 10

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

https://db.cs.cmu.edu/
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CASCADES MEMO TABLE

28

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝SM[B]
3. [B]⨝NL[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Cost: 10

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

https://db.cs.cmu.edu/
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CASCADES MEMO TABLE

28

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝SM[B]
3. [B]⨝NL[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Cost: 10 Cost: 20

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

SeqScan(B) 20
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CASCADES MEMO TABLE

28

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝SM[B]
3. [B]⨝NL[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Cost: 10 Cost: 20

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

SeqScan(B) 20
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CASCADES MEMO TABLE

28

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝SM[B]
3. [B]⨝NL[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Cost: 10 Cost: 20

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

SeqScan(B) 20
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CASCADES MEMO TABLE

28

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝SM[B]
3. [B]⨝NL[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Cost: 10 Cost: 20

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

SeqScan(B) 20
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CASCADES MEMO TABLE

28

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝SM[B]
3. [B]⨝NL[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Cost: 10 Cost: 20

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

SeqScan(B) 20
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CASCADES MEMO TABLE

28

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝SM[B]
3. [B]⨝NL[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Cost: 10 Cost: 20

Cost: 50+(10+20)

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

SeqScan(B) 20

[A]⨝SM[B] 80
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CASCADES MEMO TABLE

28

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝SM[B]
3. [B]⨝NL[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Output:
[C]

Logical M-Exps
1. GET(C)

Physical M-Exps
1. SeqScan(C)
2. IdxScan(C)

Cost: 10 Cost: 20

Cost: 50+(10+20)

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

SeqScan(B) 20

[A]⨝SM[B] 80
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CASCADES MEMO TABLE

28

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝SM[B]
3. [B]⨝NL[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Output:
[C]

Logical M-Exps
1. GET(C)

Physical M-Exps
1. SeqScan(C)
2. IdxScan(C)

Cost: 10 Cost: 20

Cost: 50+(10+20) Cost: 5

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

SeqScan(B) 20

IdxScan(C) 5

[A]⨝SM[B] 80
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CASCADES MEMO TABLE

28

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝SM[B]
3. [B]⨝NL[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Output:
[C]

Logical M-Exps
1. GET(C)

Physical M-Exps
1. SeqScan(C)
2. IdxScan(C)

Cost: 10 Cost: 20

Cost: 50+(10+20) Cost: 5

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

SeqScan(B) 20

IdxScan(C) 5

[A]⨝SM[B] 80
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CASCADES MEMO TABLE

28

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝SM[B]
3. [B]⨝NL[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Output:
[C]

Logical M-Exps
1. GET(C)

Physical M-Exps
1. SeqScan(C)
2. IdxScan(C)

Cost: 10 Cost: 20

Cost: 50+(10+20) Cost: 5

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

SeqScan(B) 20

IdxScan(C) 5

[A]⨝SM[B] 80
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CASCADES MEMO TABLE

28

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝SM[B]
3. [B]⨝NL[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Output:
[C]

Logical M-Exps
1. GET(C)

Physical M-Exps
1. SeqScan(C)
2. IdxScan(C)

Cost: 10 Cost: 20

Cost: 50+(10+20) Cost: 5

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

Output:
[BC]

Logical M-Exps
1. [B]⨝[C]
2. [C]⨝[B]

Physical M-Exps

Output:
[AC]

Logical M-Exps
1. [A]⨝[C]
2. [C]⨝[A]

Physical M-Exps

SeqScan(A) 10

SeqScan(B) 20

IdxScan(C) 5

[A]⨝SM[B] 80
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SEARCH TERMINATION

Approach #1: Wall-clock Time
→ Stop after the optimizer runs for some length of time.

Approach #2: Cost Threshold
→ Stop when the optimizer finds a plan that has a lower 

cost than some threshold.

Approach #3: Transformation Exhaustion
→ Stop when there are no more ways to transform the 

target plan. Usually done per group.

29
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CASCADES IMPLEMENTATIONS

Standalone:
→ Wisconsin OPT++ (1990s)
→ Portland State Columbia (1990s)
→ Pivotal Orca (2010s)
→ Apache Calcite (2010s)

Integrated:
→ Microsoft SQL Server (1990s)
→ Tandem NonStop SQL (1990s)
→ Clustrix (2000s)
→ CMU Peloton (2010s – RIP)

30

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://pages.cs.wisc.edu/~navin/research/apg.html
http://web.cecs.pdx.edu/~len/Columbia/
https://github.com/greenplum-db/gporca
https://calcite.apache.org/
http://www.vldb.org/conf/1996/P592.PDF
http://docs.clustrix.com/display/CLXDOC/Query+Optimizer
https://github.com/cmu-db/peloton/tree/master/src/optimizer
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PIVOTAL ORCA

Standalone Cascades implementation.
→ Originally written for Greenplum.
→ Extended to support HAWQ.

A DBMS can use Orca by implementing API to 
send catalog + stats + logical plans and then 
retrieve physical plans.

Supports multi-threaded search.

31

ORCA: A MODULAR QUERY OPTIMIZER 
ARCHITECTURE FOR BIG DATA
SIGMOD 2014

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://greenplum.org/
http://hawq.apache.org/
https://dl.acm.org/doi/10.1145/2588555.2595637
https://dl.acm.org/doi/10.1145/2588555.2595637
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ORCA ENGINEERING 

Issue #1: Remote Debugging
→ Automatically dump the state of the optimizer (with 

inputs) whenever an error occurs.
→ The dump is enough to put the optimizer back in the 

exact same state later for further debugging.

Issue #2: Optimizer Accuracy
→ Automatically check whether the ordering of the estimate 

cost of two plans matches their actual execution cost.

32
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APACHE CALCITE

Standalone extensible query optimization 
framework for data processing systems.
→ Support for pluggable query languages, cost models, and 

rules.
→ Does not distinguish between logical and physical 

operators. Physical properties are provided as 
annotations.

Originally part of LucidDB.

33

APACHE CALCITE: A FOUNDATIONAL FRAMEWORK FOR OPTIMIZED 
QUERY PROCESSING OVER HETEROGENEOUS DATA SOURCES
SIGMOD 2018

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://dbdb.io/db/luciddb
https://dl.acm.org/doi/10.1145/3183713.3190662
https://dl.acm.org/doi/10.1145/3183713.3190662
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MEMSQL OPTIMIZER

Rewriter
→ Logical-to-logical transformations with access to the 

cost-model.

Enumerator
→ Logical-to-physical transformations.
→ Mostly join ordering.

Planner
→ Convert physical plans back to SQL.
→ Contains MemSQL-specific commands for moving data.

34

THE MEMSQL QUERY OPTIMIZER
VLDB 2017

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://www.vldb.org/pvldb/vol9/p1401-chen.pdf
http://www.vldb.org/pvldb/vol9/p1401-chen.pdf
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MEMSQL OPTIMIZER OVERVIEW

35

Parser
Abstract

Syntax
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Rewriter
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Planner

Physical 
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PARTING THOUGHTS

All of this relies on a good cost model.
A good cost model needs good statistics.

36
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All of this relies on a good cost model.
A good cost model needs good statistics.
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Project  #3

CODE REVIEW
GUIDE
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CODE REVIEWS

Each group will send a pull request to the CMU-
DB master branch.
→ This will automatically run tests + coverage calculation.
→ PR must be able to merge cleanly into master branch.
→ Reviewing group will write comments on that request.
→ Add the URL to the Google spreadsheet and notify the 

reviewing team that it is ready.

Please be helpful and courteous.

38
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GENERAL TIPS

The dev team should provide you with a summary 
of what files/functions the reviewing team should 
look at.

Review fewer than 400 lines of code at a time and 
only for at most 60 minutes.

Use a checklist to outline what kind of problems 
you are looking for.

39

Source: SmartBear

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://smartbear.com/learn/code-review/best-practices-for-peer-code-review/
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CHECKLIST GENERAL

Does the code work?

Is all the code easily understood?

Is there any redundant or duplicate code?

Is the code as modular as possible?

Can any global variables be replaced?

Is there any commented out code?

Is it using proper debug log functions?

40

Source: Gareth Wilson

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://blog.fogcreek.com/increase-defect-detection-with-our-code-review-checklist-example/
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CHECKLIST DOCUMENTATION

Do comments describe the intent of the code?

Are all functions commented?

Is any unusual behavior described?

Is the use of 3rd-party libraries documented?

Is there any incomplete code?

41

Source: Gareth Wilson

https://db.cs.cmu.edu/
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http://blog.fogcreek.com/increase-defect-detection-with-our-code-review-checklist-example/
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CHECKLIST TESTING

Do tests exist and are they comprehensive?

Are the tests really testing the feature?

Are they relying on hardcoded answers?

What is the code coverage?

42

Source: Gareth Wilson
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NEXT CL ASS

Non-Traditional Query Optimization Methods

43
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