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Cost Models

Cost Estimation
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COST-BASED QUERY PL ANNING

Generate an estimate of the cost of executing a 
particular query plan for the current state of the 
database.
→ Estimates are only meaningful internally.

This is independent of the search strategies that 
we talked about last class.
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COST MODEL COMPONENTS

Choice #1: Physical Costs
→ Predict CPU cycles, I/O, cache misses, RAM 

consumption,  pre-fetching, etc…
→ Depends heavily on hardware.

Choice #2: Logical Costs
→ Estimate result sizes per operator.
→ Independent of the operator algorithm.
→ Need estimations for operator result sizes.

Choice #3: Algorithmic Costs
→ Complexity of the operator algorithm implementation.
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DISK-BASED DBMS COST MODEL

The number of disk accesses will always dominate 
the execution time of a query.
→ CPU costs are negligible.
→ Have to consider sequential vs. random I/O.

This is easier to model if the DBMS has full 
control over buffer management.
→ We will know the replacement strategy, pinning, and 

assume exclusive access to disk.
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POSTGRES COST MODEL

Uses a combination of CPU and I/O costs that are 
weighted by “magic” constant factors.

Default settings are obviously for a disk-resident 
database without a lot of memory:
→ Processing a tuple in memory is 400x faster than reading 

a tuple from disk.
→ Sequential I/O is 4x faster than random I/O.
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IBM DB2 COST MODEL

Database characteristics in system catalogs

Hardware environment (microbenchmarks)

Storage device characteristics (microbenchmarks)

Communications bandwidth (distributed only)

Memory resources (buffer pools, sort heaps)

Concurrency Environment
→ Average number of users
→ Isolation level / blocking
→ Number of available locks
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IN-MEMORY DBMS COST MODEL

No I/O costs, but now we have to account for 
CPU and memory access costs.

Memory cost is more difficult because the DBMS 
has no control cache management.
→ Unknown replacement strategy, no pinning, shared 

caches, non-uniform memory access.

The number of tuples processed per operator is a 
reasonable estimate for the CPU cost.
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SMALLBASE COST MODEL

Two-phase model that automatically generates 
hardware costs from a logical model.

Phase #1: Identify Execution Primitives
→ List of ops that the DBMS does when executing a query
→ Example: evaluating predicate, index probe, sorting.

Phase #2: Microbenchmark
→ On start-up, profile ops to compute CPU/memory costs
→ These measurements are used in formulas that compute 

operator cost based on table size.
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SELECTIVIT Y

The selectivity of an operator is the percentage 
of data accessed for a predicate.
→ Modeled as probability of whether a predicate on any 

given tuple will be satisfied.

The DBMS estimates selectivities using:
→ Domain Constraints
→ Precomputed Statistics (Zone Maps)
→ Histograms / Approximations
→ Sampling
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OBSERVATION

The number of tuples processed per operator 
depends on three factors:
→ The access methods available per table
→ The distribution of values in the database’s attributes
→ The predicates used in the query

Simple queries are easy to estimate.
More complex queries are not.
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APPROXIMATIONS

Maintaining exact statistics about the database is 
expensive and slow.

Use approximate data structures called sketches
to generate error-bounded estimates.
→ Count Distinct
→ Quantiles
→ Frequent Items
→ Tuple Sketch

See Yahoo! Sketching Library
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SAMPLING

Execute a predicate on a random sample of the 
target data set.

The # of tuples to examine depends on the size of 
the table.

Approach #1: Maintain Read-Only Copy
→ Periodically refresh to maintain accuracy.

Approach #2: Sample Real Tables
→ Use READ UNCOMMITTED isolation.
→ May read multiple versions of same logical tuple.
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RESULT CARDINALIT Y

The number of tuples that will be generated per 
operator is computed from its selectivity 
multiplied by the number of tuples in its input.

16

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

RESULT CARDINALIT Y

Assumption #1: Uniform Data
→ The distribution of values (except for the heavy hitters) is 

the same.

Assumption #2: Independent Predicates
→ The predicates on attributes are independent

Assumption #3: Inclusion Principle
→ The domain of join keys overlap such that each key in the 

inner relation will also exist in the outer table.
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CORREL ATED AT TRIBUTES

Consider a database of automobiles:
→ # of Makes = 10, # of Models = 100

And the following query:
→ (make="Honda" AND model="Accord")

With the independence and uniformity 
assumptions,  the selectivity is:
→ 1/10 × 1/100 = 0.001

But since only Honda makes Accords the real 
selectivity is 1/100 = 0.01
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COLUMN GROUP STATISTICS

The DBMS can track statistics for groups of 
attributes together rather than just treating them 
all as independent variables.
→ Only supported in commercial systems.
→ Requires the DBA to declare manually.
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ESTIMATION PROBLEM
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SELECT A.id
FROM A, B, C
WHERE A.id = B.id
AND A.id = C.id
AND B.id > 100

A

⨝A.id=B.id

B
B.id>100

C

A.id=C.id

A.id

⨝
π

Compute the cardinality of base tables

Compute the cardinality of join results

A → |A|
B.id>100 → |B|×sel(B.id>100)
C → |C|

A⨝B = (|A|×|B|) / 
max(sel(A.id=B.id), sel(B.id>100))

(A⨝B)⨝C = (|A|×|B|×|C|) /
max(sel(A.id=B.id), sel(B.id>100),

sel(A.id=C.id))
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ESTIMATOR QUALIT Y

Evaluate the correctness of cardinality estimates 
generated by DBMS optimizers as the number of 
joins increases.
→ Let each DBMS perform its stats collection.
→ Extract measurements from query plan.

Compared five DBMSs using 100k queries.
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ESTIMATOR QUALIT Y
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EXECUTION SLOWDOWN
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Source: Viktor Leis Slowdown compared to using true cardinalities

Postgres 9.4 – JOB Workload

Default Planner No NL Join Dynamic Rehashing

60.6%
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LESSONS FROM THE GERMANS

Query opt is more important than a fast engine
→ Cost-based join ordering is necessary

Cardinality estimates are routinely wrong
→ Try to use operators that do not rely on estimates

Hash joins + seq scans are a robust exec model
→ The more indexes that are available, the more brittle the 

plans become (but also faster on average)

Working on accurate models is a waste of time
→ Better to improve cardinality estimation instead
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PARTING THOUGHTS

Using number of tuples processed is a reasonable 
cost model for in-memory DBMSs.
→ But computing this is non-trivial.

I think that a combination of sampling + sketches 
are the way to achieve accurate estimations.
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