
L
e

c
tu

re
 #

2
2

Query Optimizer
Cost Models
@Andy_Pavlo // 15-721 // Spring 2020

ADVANCED
DATABASE
SYSTEMS

https://15721.courses.cs.cmu.edu/spring2020/
http://db.cs.cmu.edu/
https://twitter.com/andy_pavlo

15-721 (Spring 2020)

Cost Models

Cost Estimation

2

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

COST-BASED QUERY PL ANNING

Generate an estimate of the cost of executing a
particular query plan for the current state of the
database.
→ Estimates are only meaningful internally.

This is independent of the search strategies that
we talked about last class.

3

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

COST MODEL COMPONENTS

Choice #1: Physical Costs
→ Predict CPU cycles, I/O, cache misses, RAM

consumption, pre-fetching, etc…
→ Depends heavily on hardware.

Choice #2: Logical Costs
→ Estimate result sizes per operator.
→ Independent of the operator algorithm.
→ Need estimations for operator result sizes.

Choice #3: Algorithmic Costs
→ Complexity of the operator algorithm implementation.

4

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

DISK-BASED DBMS COST MODEL

The number of disk accesses will always dominate
the execution time of a query.
→ CPU costs are negligible.
→ Have to consider sequential vs. random I/O.

This is easier to model if the DBMS has full
control over buffer management.
→ We will know the replacement strategy, pinning, and

assume exclusive access to disk.

5

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

POSTGRES COST MODEL

Uses a combination of CPU and I/O costs that are
weighted by “magic” constant factors.

Default settings are obviously for a disk-resident
database without a lot of memory:
→ Processing a tuple in memory is 400x faster than reading

a tuple from disk.
→ Sequential I/O is 4x faster than random I/O.

6

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

POSTGRES COST MODEL

Uses a combination of CPU and I/O costs that are
weighted by “magic” constant factors.

Default settings are obviously for a disk-resident
database without a lot of memory:
→ Processing a tuple in memory is 400x faster than reading

a tuple from disk.
→ Sequential I/O is 4x faster than random I/O.

6

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.postgresql.org/docs/current/static/runtime-config-query.html

15-721 (Spring 2020)

IBM DB2 COST MODEL

Database characteristics in system catalogs

Hardware environment (microbenchmarks)

Storage device characteristics (microbenchmarks)

Communications bandwidth (distributed only)

Memory resources (buffer pools, sort heaps)

Concurrency Environment
→ Average number of users
→ Isolation level / blocking
→ Number of available locks

7

Source: Guy Lohman

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://cs.stanford.edu/people/widom/cs346/db2-talk.pdf

15-721 (Spring 2020)

IN-MEMORY DBMS COST MODEL

No I/O costs, but now we have to account for
CPU and memory access costs.

Memory cost is more difficult because the DBMS
has no control cache management.
→ Unknown replacement strategy, no pinning, shared

caches, non-uniform memory access.

The number of tuples processed per operator is a
reasonable estimate for the CPU cost.

8

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SMALLBASE COST MODEL

Two-phase model that automatically generates
hardware costs from a logical model.

Phase #1: Identify Execution Primitives
→ List of ops that the DBMS does when executing a query
→ Example: evaluating predicate, index probe, sorting.

Phase #2: Microbenchmark
→ On start-up, profile ops to compute CPU/memory costs
→ These measurements are used in formulas that compute

operator cost based on table size.

9

MODELLING COSTS FOR A MM-DBMS
REAL-TIME DATABASES 1996

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://gram.eng.uci.edu/faculty/klin/rtdb/LM.ps
http://gram.eng.uci.edu/faculty/klin/rtdb/LM.ps

15-721 (Spring 2020)

SELECTIVIT Y

The selectivity of an operator is the percentage
of data accessed for a predicate.
→ Modeled as probability of whether a predicate on any

given tuple will be satisfied.

The DBMS estimates selectivities using:
→ Domain Constraints
→ Precomputed Statistics (Zone Maps)
→ Histograms / Approximations
→ Sampling

11

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

OBSERVATION

The number of tuples processed per operator
depends on three factors:
→ The access methods available per table
→ The distribution of values in the database’s attributes
→ The predicates used in the query

Simple queries are easy to estimate.
More complex queries are not.

12

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

APPROXIMATIONS

Maintaining exact statistics about the database is
expensive and slow.

Use approximate data structures called sketches
to generate error-bounded estimates.
→ Count Distinct
→ Quantiles
→ Frequent Items
→ Tuple Sketch

See Yahoo! Sketching Library

14

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://datasketches.github.io/

15-721 (Spring 2020)

SAMPLING

Execute a predicate on a random sample of the
target data set.

The # of tuples to examine depends on the size of
the table.

Approach #1: Maintain Read-Only Copy
→ Periodically refresh to maintain accuracy.

Approach #2: Sample Real Tables
→ Use READ UNCOMMITTED isolation.
→ May read multiple versions of same logical tuple.

15

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

RESULT CARDINALIT Y

The number of tuples that will be generated per
operator is computed from its selectivity
multiplied by the number of tuples in its input.

16

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

RESULT CARDINALIT Y

Assumption #1: Uniform Data
→ The distribution of values (except for the heavy hitters) is

the same.

Assumption #2: Independent Predicates
→ The predicates on attributes are independent

Assumption #3: Inclusion Principle
→ The domain of join keys overlap such that each key in the

inner relation will also exist in the outer table.

17

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CORREL ATED AT TRIBUTES

Consider a database of automobiles:
→ # of Makes = 10, # of Models = 100

And the following query:
→ (make="Honda" AND model="Accord")

With the independence and uniformity
assumptions, the selectivity is:
→ 1/10 × 1/100 = 0.001

But since only Honda makes Accords the real
selectivity is 1/100 = 0.01

18

Source: Guy Lohman

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://wp.sigmod.org/?p=1075

15-721 (Spring 2020)

COLUMN GROUP STATISTICS

The DBMS can track statistics for groups of
attributes together rather than just treating them
all as independent variables.
→ Only supported in commercial systems.
→ Requires the DBA to declare manually.

19

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

ESTIMATION PROBLEM

20

SELECT A.id
FROM A, B, C
WHERE A.id = B.id
AND A.id = C.id
AND B.id > 100

A

⨝A.id=B.id

B
B.id>100

C

A.id=C.id

A.id

⨝
π

Compute the cardinality of base tables

Compute the cardinality of join results

A → |A|
B.id>100 → |B|×sel(B.id>100)
C → |C|

A⨝B = (|A|×|B|) /
max(sel(A.id=B.id), sel(B.id>100))

(A⨝B)⨝C = (|A|×|B|×|C|) /
max(sel(A.id=B.id), sel(B.id>100),

sel(A.id=C.id))

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

ESTIMATOR QUALIT Y

Evaluate the correctness of cardinality estimates
generated by DBMS optimizers as the number of
joins increases.
→ Let each DBMS perform its stats collection.
→ Extract measurements from query plan.

Compared five DBMSs using 100k queries.

21

HOW GOOD ARE QUERY OPTIMIZERS, REALLY?
VLDB 2015

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2017/papers/16-costmodels/p204-leis.pdf
http://15721.courses.cs.cmu.edu/spring2017/papers/16-costmodels/p204-leis.pdf

15-721 (Spring 2020)

ESTIMATOR QUALIT Y

22

Source: Viktor Leis

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://db.in.tum.de/~leis/

15-721 (Spring 2020)

EXECUTION SLOWDOWN

23

Source: Viktor Leis Slowdown compared to using true cardinalities

Postgres 9.4 – JOB Workload

Default Planner No NL Join Dynamic Rehashing

60.6%

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://db.in.tum.de/~leis/

15-721 (Spring 2020)

LESSONS FROM THE GERMANS

Query opt is more important than a fast engine
→ Cost-based join ordering is necessary

Cardinality estimates are routinely wrong
→ Try to use operators that do not rely on estimates

Hash joins + seq scans are a robust exec model
→ The more indexes that are available, the more brittle the

plans become (but also faster on average)

Working on accurate models is a waste of time
→ Better to improve cardinality estimation instead

24

Source: Viktor Leis

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://db.in.tum.de/~leis/

15-721 (Spring 2020)

PARTING THOUGHTS

Using number of tuples processed is a reasonable
cost model for in-memory DBMSs.
→ But computing this is non-trivial.

I think that a combination of sampling + sketches
are the way to achieve accurate estimations.

25

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

