
L
e

c
tu

re
 #

2
5

Databases on New Hardware

@Andy_Pavlo // 15-721 // Spring 2020

ADVANCED
DATABASE
SYSTEMS

https://15721.courses.cs.cmu.edu/spring2020/
http://db.cs.cmu.edu/
https://twitter.com/andy_pavlo

15-721 (Spring 2020)

ADMINISTRIVIA

April 29: Guest Speaker (Live)

May 4: Code Review #2 Submission

May 5: Final Presentations (Live)

May 13: Final Exam Due Date

May 16: Hack-a-Thon (Extra Credit, Optional)

2

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

ADMINISTRIVIA

Course Evaluation
→ Please tell me what you really think of me.
→ I take your feedback in consideration.
→ Take revenge on next year's students.

https://cmu.smartevals.com/

3

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://cmu.smartevals.com/

15-721 (Spring 2020)

DATABASE HARDWARE

People have been thinking about using hardware
to accelerate DBMSs for decades.

1980s: Database Machines

2000s: FPGAs + Appliances

2010s: FPGAs + GPUs

2020s: PM + FPGAs + GPUs + CSAs + More!

4

DATABASE MACHINES: AN IDEA WHOSE TIME HAS PASSED? A CRITIQUE
OF THE FUTURE OF DATABASE MACHINES
UNIVERSITY OF WISCONSIN 1983

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://en.wikichip.org/wiki/intel/configurable_spatial_accelerator
https://minds.wisconsin.edu/handle/1793/58446
https://minds.wisconsin.edu/handle/1793/58446

15-721 (Spring 2020)

Persistent Memory

GPU Acceleration

Hardware Transactional Memory

5

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PERSISTENT MEMORY

Emerging storage technology that provide low
latency read/writes like DRAM, but with
persistent writes and large capacities like SSDs.
→ aka Storage-class Memory, Non-Volatile Memory

First devices are block-addressable (NVMe)

Later devices are byte-addressable.

6

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://en.wikipedia.org/wiki/NVM_Express

15-721 (Spring 2020)

FUNDAMENTAL ELEMENTS OF CIRCUITS

7

Capacitor
(1745)

Resistor
(1827)

Inductor
(1831)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

FUNDAMENTAL ELEMENTS OF CIRCUITS

In 1971, Leon Chua at Berkeley predicted the
existence of a fourth fundamental element.

A two-terminal device whose resistance depends
on the voltage applied to it, but when that voltage
is turned off it permanently remembers its last
resistive state.

8

TWO CENTURIES OF MEMRISTORS
NATURE MATERIALS 2012

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.eecs.berkeley.edu/Faculty/Homepages/chua.html
http://www.nature.com/nmat/journal/v11/n6/full/nmat3338.html
http://www.nature.com/nmat/journal/v11/n6/full/nmat3338.html

15-721 (Spring 2020)

FUNDAMENTAL ELEMENTS OF CIRCUITS

9

Capacitor
(1745)

Resistor
(1827)

Inductor
(1831)

Memristor
(1971)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MERISTORS

A team at HP Labs led by Stanley Williams
stumbled upon a nano-device that had weird
properties that they could not understand.

It wasn’t until they found Chua’s 1971 paper that
they realized what they had invented.

10

HOW WE FOUND THE MISSING MEMRISTOR
IEEE SPECTRUM 2008

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://en.wikipedia.org/wiki/R._Stanley_Williams
http://spectrum.ieee.org/semiconductors/processors/how-we-found-the-missing-memristor
http://spectrum.ieee.org/semiconductors/processors/how-we-found-the-missing-memristor

Andy Pavlo // Carnegie Mellon University // Spring 2016

11Source: Luke Kilpatrick

https://www.flickr.com/photos/17638385@N05/4728649107/in/album-72157624344076304/

15-721 (Spring 2020)

TECHNOLOGIES

Phase-Change Memory (PRAM)

Resistive RAM (ReRAM)

Magnetoresistive RAM (MRAM)

13

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PHASE-CHANGE MEMORY

Storage cell is comprised of two metal electrodes
separated by a resistive heater and the phase
change material (chalcogenide).

The value of the cell is changed based on
how the material is heated.
→ A short pulse changes the cell to a ‘0’.
→ A long, gradual pulse changes the cell to a ‘1’.

14

PHASE CHANGE MEMORY ARCHITECTURE AND THE
QUEST FOR SCALABILITY
COMMUNICATIONS OF THE ACM 2010

Heater

Bitline

Access

chalcogenide

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://cacm.acm.org/magazines/2010/7/95046-phase-change-memory-architecture-and-the-quest-for-scalability/fulltext
http://cacm.acm.org/magazines/2010/7/95046-phase-change-memory-architecture-and-the-quest-for-scalability/fulltext

15-721 (Spring 2020)

RESISTIVE RAM

Two metal layers with two TiO2 layers in between.
Running a current one direction moves electrons
from the top TiO2 layer to the bottom, thereby
changing the resistance.

Potential programmable storage fabric…
→ Bertrand Russell’s Material Implication Logic

15

HOW WE FOUND THE MISSING MEMRISTOR
IEEE SPECTRUM 2008

Platinum

Platinum

TiO2 Layer

TiO2-x Layer

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://spectrum.ieee.org/semiconductors/processors/how-we-found-the-missing-memristor
http://spectrum.ieee.org/semiconductors/processors/how-we-found-the-missing-memristor

15-721 (Spring 2020)

MAGNETORESISTIVE RAM

Stores data using magnetic storage elements
instead of electric charge or current flows.

Spin-Transfer Torque (STT-MRAM) is the
leading technology for this type of PM.
→ Supposedly able to scale to very small

sizes (10nm) and have SRAM latencies.

16

Fixed FM Layer→

Oxide Layer

Free FM Layer ↔

SPIN MEMORY SHOWS ITS MIGHT
IEEE SPECTRUM 2014

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://spectrum.ieee.org/semiconductors/memory/spin-memory-shows-its-might
http://spectrum.ieee.org/semiconductors/memory/spin-memory-shows-its-might

15-721 (Spring 2020)

WHY THIS IS FOR REAL

Industry has agreed to standard technologies and
form factors (JDEC).

Linux and Microsoft added support for PM in
their kernels (DAX).

Intel added new instructions for flushing cache
lines to PM (CLFLUSH, CLWB).

17

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

WHY THIS IS FOR REAL

Industry has agreed to standard technologies and
form factors (JDEC).

Linux and Microsoft added support for PM in
their kernels (DAX).

Intel added new instructions for flushing cache
lines to PM (CLFLUSH, CLWB).

17

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PMDRAM

PM Next to
DRAM

DBMS

Virtual Memory Subsystem

DBMS Address Space

PM

DRAM

DRAM as Hardware-
Managed Cache

DBMS

DBMS Address Space

Virtual Memory Subsystem

PM CONFIGURATIONS

18

Source: Ismail Oukid

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://sigmod2017.org/wp-content/uploads/2017/05/06-Data-Structures-Engineering-For-Byte-Addressable-Non-Volatile-Memory.pdf

15-721 (Spring 2020)

PM FOR DATABASE SYSTEMS

Block-addressable PM is not that interesting.

Byte-addressable PM will be a game changer but
will require some work to use correctly.
→ In-memory DBMSs will be better positioned to use byte-

addressable PM.
→ Disk-oriented DBMSs will initially treat PM as just a

faster SSD.

19

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

STORAGE & RECOVERY METHODS

Understand how a DBMS will behave on a system
that only has byte-addressable PM.

Develop PM-optimized implementations of
standard DBMS architectures.

Based on the N-Store prototype DBMS.

20

LET'S TALK ABOUT STORAGE & RECOVERY METHODS FOR NON-
VOLATILE MEMORY DATABASE SYSTEMS
SIGMOD 2015

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://github.com/jarulraj/storage
https://dl.acm.org/doi/10.1145/2723372.2749441
https://dl.acm.org/doi/10.1145/2723372.2749441

15-721 (Spring 2020)

SYNCHRONIZATION

Existing programming models assume that any
write to memory is non-volatile.
→ CPU decides when to move data from caches to DRAM.

The DBMS needs a way to ensure that data is
flushed from caches to PM.

21

STORE CLWB

L1 Cache

L2 Cache

ADR
Memory

Controller

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

NAMING

If the DBMS process restarts, we need to make
sure that all the pointers for in-memory data point
to the same data.

22

Table Heap

Tuple #00

Tuple #02

Tuple #01

Index

Tuple #00 (v2)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

NAMING

If the DBMS process restarts, we need to make
sure that all the pointers for in-memory data point
to the same data.

22

Table Heap

Tuple #00

Tuple #02

Tuple #01

Index

Tuple #00 (v2)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

NAMING

If the DBMS process restarts, we need to make
sure that all the pointers for in-memory data point
to the same data.

22

Table Heap

Tuple #00

Tuple #02

Tuple #01

Index

Tuple #00 (v2)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PM-AWARE MEMORY ALLOCATOR

Feature #1: Synchronization
→ The allocator writes back CPU cache lines to PM using

the CLFLUSH instruction.
→ It then issues a SFENCE instruction to wait for the data to

become durable on PM.

Feature #2: Naming
→ The allocator ensures that virtual memory addresses

assigned to a memory-mapped region never change even
after the OS or DBMS restarts.

23

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

DBMS ENGINE ARCHITECTURES

Choice #1: In-place Updates
→ Table heap with a write-ahead log + snapshots.
→ Example: VoltDB

Choice #2: Copy-on-Write
→ Create a shadow copy of the table when updated.
→ No write-ahead log.
→ Example: LMDB

Choice #3: Log-structured
→ All writes are appended to log. No table heap.
→ Example: RocksDB

24

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

IN-PL ACE UPDATES ENGINE

25

In-Memory
Table Heap

Tuple #00

Tuple #02

Durable
Storage

Write-Ahead Log

Tuple Delta

In-Memory
Index

Tuple #01

Snapshots

1

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

IN-PL ACE UPDATES ENGINE

25

In-Memory
Table Heap

Tuple #00

Tuple #02

Durable
Storage

Write-Ahead Log

Tuple Delta

In-Memory
Index

Tuple #01

Snapshots

Tuple #01 (!) 1
2

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

IN-PL ACE UPDATES ENGINE

25

In-Memory
Table Heap

Tuple #00

Tuple #02

Durable
Storage

Write-Ahead Log

Tuple Delta

In-Memory
Index

Tuple #01

Snapshots

Tuple #01 (!)

Tuple #01 (!) 1
2

3

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

IN-PL ACE UPDATES ENGINE

25

In-Memory
Table Heap

Tuple #00

Tuple #02

Durable
Storage

Write-Ahead Log

Tuple Delta

In-Memory
Index

Tuple #01

Snapshots

Tuple #01 (!)

Tuple #01 (!) 1
2

3

Duplicate Data

Recovery Latency

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PM-OPTIMIZED ARCHITECTURES

Leverage the allocator’s non-volatile pointers to
only record what changed rather than how it
changed.

The DBMS only must maintain a transient UNDO
log for a txn until it commits.
→ Dirty cache lines from an uncommitted txn can be

flushed by hardware to the memory controller.
→ No REDO log because we flush all the changes to PM at

the time of commit.

26

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PM IN-PL ACE UPDATES ENGINE

27

PM
Table Heap

Tuple #00

Tuple #02

PM
Storage

Write-Ahead Log

Tuple Pointers

PM
Index

Tuple #01 1

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PM IN-PL ACE UPDATES ENGINE

27

PM
Table Heap

Tuple #00

Tuple #02

PM
Storage

Write-Ahead Log

Tuple Pointers

PM
Index

Tuple #01Tuple #01 (!) 1
2

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

COPY-ON-WRITE ENGINE

28

Current Directory

Master Record

Leaf 1 Leaf 2

Page #00 Page #01

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

COPY-ON-WRITE ENGINE

28

Current Directory

Master Record

Leaf 1 Leaf 2 1

Page #00 Page #01

Updated Leaf 1

Page #00

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

COPY-ON-WRITE ENGINE

28

Current Directory Dirty Directory

Master Record

Leaf 1 Leaf 2 1

2

Page #00 Page #01

Updated Leaf 1

Page #00

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

COPY-ON-WRITE ENGINE

28

Current Directory Dirty Directory

Master Record

Leaf 1 Leaf 2 1

2

3

Page #00 Page #01

Updated Leaf 1

Page #00

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

COPY-ON-WRITE ENGINE

28

Current Directory Dirty Directory

Master Record

Leaf 1 Leaf 2 1

2

3Expensive Copies

Page #00 Page #01

Updated Leaf 1

Page #00

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PM COPY-ON-WRITE ENGINE

29

Current Directory

Tuple #00

Master Record

Leaf 1 Leaf 2

Tuple #01

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PM COPY-ON-WRITE ENGINE

29

Current Directory

Tuple #00

Master Record

Leaf 1 Leaf 2 Updated Leaf 1

Tuple #00 (!)

1

Tuple #01

Only Copy
Pointers

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PM COPY-ON-WRITE ENGINE

29

Current Directory Dirty Directory

Tuple #00

Master Record

Leaf 1 Leaf 2 Updated Leaf 1

Tuple #00 (!)

1

2

3

Tuple #01

Only Copy
Pointers

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

LOG-STRUCTURED ENGINE

30

SSTableMemTable

Write-Ahead Log

Tuple Delta

Bloom Filter

1

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

LOG-STRUCTURED ENGINE

30

SSTableMemTable

Write-Ahead Log

Tuple Delta

Bloom Filter

Tuple Delta

Tuple Data

1
2

3

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

LOG-STRUCTURED ENGINE

30

SSTableMemTable

Write-Ahead Log

Tuple Delta

Bloom Filter

Tuple Delta

Tuple Data

1
2

3

Duplicate Data

Compactions

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PM LOG -STRUCTURED ENGINE

31

SSTableMemTable

Write-Ahead Log

Tuple Delta

Bloom Filter

Tuple Delta

Tuple Data

1
2

3

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PM LOG -STRUCTURED ENGINE

31

SSTableMemTable

Write-Ahead Log

Tuple Delta

Bloom Filter

Tuple Delta

Tuple Data

1
2

3

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PM LOG -STRUCTURED ENGINE

31

MemTable

Write-Ahead Log

Tuple Delta 1

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

OBSERVATION

WAL serves two purposes
→ Transform random writes into sequential log writes.
→ Support transaction rollback.
→ Design makes sense for disks with slow random writes.

But PM supports fast random writes
→ Directly write data to the multi-versioned database.
→ Only record meta-data about committed txns in log.

32

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

WRITE-BEHIND LOGGING

PM-centric logging protocol that provides instant
recovery and minimal duplication overhead.
→ Directly propagate changes to the database.
→ Only record meta-data in log.

Recover the database almost instantaneously.
→ Need to record meta-data about in-flight transactions.
→ In case of failure, ignore their effects.

33

WRITE-BEHIND LOGGING
VLDB 2017

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://db.cs.cmu.edu/papers/2016/p337-arulraj.pdf
http://db.cs.cmu.edu/papers/2016/p337-arulraj.pdf

15-721 (Spring 2020)

WRITE-BEHIND LOGGING

34

Table Heap

Table Heap Log

DRAM

PM

UPDATE table SET val=ABC
WHERE id=123

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

WRITE-BEHIND LOGGING

34

Table Heap

Table Heap Log
2

1

Updated Tuple

Updated Tuple

3 Meta-data

UPDATE table SET val=ABC
WHERE id=123

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

WRITE-BEHIND LOGGING

DBMS assigns timestamps to transactions
→ Get timestamps within same group commit timestamp

range to identify and ignore effects of in-flight txns.

Use failed group commit timestamp range:
→ DBMS uses range during tuple visibility checks.
→ Ignores tuples created or updated within this range.
→ UNDO is implicitly done via visibility checks.

35

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

WRITE-BEHIND LOGGING

Recovery consists of only analysis phase
→ The DBMS can immediately start processing transactions

after restart with explicit UNDO/REDO phases.

Garbage collection eventually kicks in to remove
the physical versions of uncommitted transactions.
→ Using timestamp range information in write-behind log.
→ After this finishes, no need to do extra visibility checks.

36

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

METADATA FOR INSTANT RECOVERY

Use group commit timestamp range to ignore
effects of transactions in failed group commit.
→ Maintain list of failed timestamp ranges.

37

(T1, T2) (T2, T3) (T3, T4) (T4, T5)

T1 T4T3T2

(T1, T2) (T1, T2)

Current Range

Failed Ranges

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

WRITE-BEHIND LOGGING RECOVERY

38

1

10

100

1,000

10,000

Hard Disk Drive Solid State Drive Persistent Memory

R
ec

ov
er

y
T

im
e

(s
ec

)

Write-Ahead Write-Behind

↓1000× ↓1000× ↓1000×

Replay Log with 1m TPC-C Transactions
PM 2× Latency Relative to DRAM

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

WRITE-BEHIND LOGGING RUNTIME

39

1

10

100

1,000

10,000

100,000

Hard Disk Drive Solid State Drive Persistent Memory

T
hr

ou
gh

pu
t (

tx
n

/s
ec

)

Write-Ahead Write-Behind

↓10×

↓10×

↑1.2×

TPC-C Transactions (Eight Warehouses)
PM 2× Latency Relative to DRAM

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PM SUMMARY

Storage Optimizations
→ Leverage byte-addressability to avoid unnecessary data

duplication.

Recovery Optimizations
→ PM-optimized recovery protocols avoid the overhead of

processing a log.
→ Non-volatile data structures ensure consistency.

40

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

GPU ACCELERATION

GPUs excel at performing (relatively simple)
repetitive operations on large amounts of data
over multiple streams of data.

Target operations that do not require blocking for
input or branches:
→ Good: Sequential scans with predicates
→ Bad: B+Tree index probes

AFAIK, GPU memory is not cache coherent with
CPU memory.

41

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

GPU ACCELERATION

42

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

GPU ACCELERATION

42

DDR4 (~40 GB/s)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

GPU ACCELERATION

42

PCIe Bus (~16 GB/s)

DDR4 (~40 GB/s) NVLink (~25 GB/s)

NVLink (~25 GB/s)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

GPU ACCELERATION

Choice #1: Entire Database
→ Store the database in the GPU(s) VRAM.
→ All queries perform massively parallel seq scans.

Choice #2: Important Columns
→ Return the offsets of records that match the portion of

the query that accesses GPU-resident columns.
→ Must materialize full results in CPU.

Choice #3: Streaming
→ Transfer data from CPU to GPU on the fly.

43

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

GPU ACCELERATION

Choice #1: Entire Database
→ Store the database in the GPU(s) VRAM.
→ All queries perform massively parallel seq scans.

Choice #2: Important Columns
→ Return the offsets of records that match the portion of

the query that accesses GPU-resident columns.
→ Must materialize full results in CPU.

Choice #3: Streaming
→ Transfer data from CPU to GPU on the fly.

43

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://db.cs.cmu.edu/seminar2018
https://db.cs.cmu.edu/seminar2018

15-721 (Spring 2020)

HARDWARE TRANSACTIONAL MEMORY

Create critical sections in software that are
managed by hardware.
→ Leverages same cache coherency protocol to detect

transaction conflicts.
→ Intel x86: Transactional Synchronization Extensions

Read/write set of transactions must fit in L1 cache.
→ This means that it is not useful for general purpose txns.
→ It can be used to create latch-free indexes.

TO LOCK, SWAP OR ELIDE: ON THE INTERPLAY OF HARDWARE
TRANSACTIONAL MEMORY AND LOCK-FREE INDEXING
VLDB 2015

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://en.wikipedia.org/wiki/Transactional_Synchronization_Extensions
http://www.vldb.org/pvldb/vol8/p1298-makreshanski.pdf
http://www.vldb.org/pvldb/vol8/p1298-makreshanski.pdf

15-721 (Spring 2020)

HTM PROGRAMMING MODEL

Hardware Lock Elision (HLE)
→ Optimistically execute critical section by eliding the write

to a lock so that it appears to be free to other threads.
→ If there is a conflict, re-execute the code but take locks

the second time.

Restricted Transactional Memory (RTM)
→ Like HLE but with an optional fallback codepath that the

CPU jumps to if the txn aborts.

45

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

HTM L ATCH ELISION

46

A

B

D G

20

10 35

6 12 23 38 44

C

E F

Insert Key 25 TSX-START {
LATCH A
Read A
LATCH C
UNLATCH A
Read C
LATCH F
UNLATCH C

}
TSX-COMMIT
Insert 25
UNLATCH F

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

HTM L ATCH ELISION

46

A

B

D G

20

10 35

6 12 23 38 44

C

E F
X

Insert Key 25 TSX-START {
LATCH A
Read A
LATCH C
UNLATCH A
Read C
LATCH F
UNLATCH C

}
TSX-COMMIT
Insert 25
UNLATCH F

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PARTING THOUGHTS

Byte-addressable PM is going to be a game
changer when it comes out.

We are likely to see many new computational
components that DBMSs can use in the next
decade.
→ The core ideas / algorithms will still be the same.

47

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

FINAL PARTING THOUGHTS

You now are aware of the major topics involved in
building a modern, single-node DBMS.

You have a foundation for reasoning about
systems in order to discern whether claims are
legitimate or marketing hype.

48

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

FINAL PARTING THOUGHTS

You now are aware of the major topics involved in
building a modern, single-node DBMS.

You have a foundation for reasoning about
systems in order to discern whether claims are
legitimate or marketing hype.

48

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

FINAL PARTING THOUGHTS

You now are aware of the major topics involved in
building a modern, single-node DBMS.

You have a foundation for reasoning about
systems in order to discern whether claims are
legitimate or marketing hype.

48

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://news.ycombinator.com/item?id=22869478

15-721 (Spring 2020)

NEXT CL ASS

49

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

