
Adaptive Query Opt.
(PostgreSQL)

Team members: Aolei Zhou,
Jiayin Zheng, Xinyi Jiang

Motivation

High-level Goal of this Project

Our goal is to research the possibility to
switch query plan at the execution phase!

Adaptively Plan Node Switching (75% goal) — Done
Plan Node Can be adaptively replaced

● Template-based
● Implement as a wrapper
● Stop the query execution if

certain conditions are satisfied
● Index scan -> Seq scan

(finished before mid-term)

Plan Node Switching -> Plan Tree Switching
Goal: switch join method + switch join order

Why don’t we use plan node switching?
● Needs complex transformation between data structures. (6 transformers)
● Missing information.
● Single-level join order switching is not enough.
● It’s difficult to implement multi-level join ordering switch.
● Wants a unified and generalized method.

Nested Loop Join

Merge Join Hash Join

Switch Join Method? – Done (90% goal)
Adaptively Plan Tree Switching

1. Store the sub-optimal plan in advance (different join methods)
2. If aqo is enabled & need switching,

● Initialize the sub-optimal plan
● Re-execute using the sub-optimal plan

We cannot guarantee the performance of the suboptimal plan since the
production of the suboptimal plan can still based on wrong estimations.

How to solve the problem?
Let’s welcome Machine Learning!
-> better estimation

If the new plan is obviously
better than the old one, we
stop the execution and
switch to the new plan.

Can we do better? (105% goal)
The current KNN is fast but we may need more complex methods later,
which will possibly take more time.

Multi-processing !

Key Points:
How to start a new process:

+ aqo_bgworker_background_process_startup()
+ RegisterDynamicBackgroundWorker(&worker, &handle)
+ startup_background_process_main(Datum main_arg)
+ Tried Using shared memory :(

How to achieve “communication”:

+ Store the old plan
+ The subprocess reads the old plan and compares it with the new plan
+ If better (estimated cost < old cost), send a signal + write down the new plan
+ If main process receives the signal -> stop execution + change plan + initialize

and execute the plan
+ Main process -> Do no use for estimation but collect feed stats to the model

Background process -> Use ML for estimation

Baseline query plan: Multiprocess version:

Evil bug 😈

Evil bug 😈
There is a reason people treat warnings as failures!

Current Test Coverage
1. Test case for correctness

1. AQO make check to make sure that model is running correctly

1. Run benchmark for both correctness and performance

Code quality
● Good:

○ Use a guc variable for control (flexible + generalized)
○ Abstract the common part (concise + readable)
○ Write comments (easy to understand + maintain)
○ Validation check (security + robustness)

● Bad:
○ Insufficient Script Check
○ Hard coding

Introduction to our benchmark: JOB
● Join Ordering Benchmark:

○ "How Good Are Query Optimizers, Really?" by
Viktor Leis at., PVLDB Volume 9, No. 3, 2015

● IMDB Dataset:
○ Based on real-world dataset "Internet

Movie Database"
○ Full of correlations and non-uniform data

distributions
○ Contains 21 tables and is very large

● JOB Queries:
○ Based on IMDB Dataset
○ Focus on join ordering
○ challenging for cardinality estimators From paper “How Good Are Query

Optimizers, Really?”

Benchmark Results on JOB (125% goal)
Execution time
calculated until ML
converge (few trail
trains not counted
here)

Benchmark Results on JOB (125% goal)

50% Faster!!

Benchmark Results on JOB (125% goal)

● Pro:
○ Great performance (36.7%)

Improvement in Simple Query
○ ML have chance to learn better

query plans through trial
● Con:

○ ML performance worse than
baseline in first few runs

○ ML performance is unstable
○ Hard to converge on complex

queries

Execution time calculated until ML converge (few trail trains not
counted here)

Future Work
● Better testing: Unit test
● Add execution time to the current cost
● Using more complex ML algorithms
● Considering other techniques including sampling

Resources
1. Join Order Benchmark (JOB)
2. Adaptive query optimization: https://github.com/postgrespro/aqo
3. Computation resources
4. Code review pipeline
5. Kudos to various PostgreSQL extension resources from Wan and Abby

https://github.com/gregrahn/join-order-benchmark

