
Implementing & Flattening
Nested LATERAL joins

 in DuckDB

Sam Arch, Mayank Baranwal, Arham Chopra

Nested LATERAL joins
 for DuckDB
FLATERAL

Sam Arch, Mayank Baranwal, Arham Chopra

Outline
1) LATERAL joins and why we need them for UDFs

2) Project Goals

3) Live Demo

4) Approach

5) War Stories

6) Future Work & Takeaways

User-Defined Functions (UDFs)

Reusability
Modularity
Readability

UDFs are Slow

No UDF
Fast

UDF
Slow

Up to 10,000x slower

UDF Inlining to the Rescue!

LATERAL Joins
For each LATERAL:
 For each row in LHS:
 Evaluate the RHS

 You need a good
 query optimizer!

Why DuckDB?
LATERAL

JOIN
HASH
JOIN

Flattening

Implement & flatten nested LATERAL joins

 75% - Fixed depth LATERALs (i.e. depth = 2)

 100% - Arbitrary depth LATERALs

 125% - Full UDF support (Recursive CTEs + LATERALs)

Project Goals

Implement & flatten nested LATERAL joins

 75% - Fixed depth LATERALs (i.e. depth = 2)

 100% - Arbitrary depth LATERALs

 125%* - Full UDF support (Recursive CTEs + LATERALs)

* T&C Apply (expla ined later)

Project Goals

Live Demo

Approach L

L
t3t2

t1

j = 1
 i = 2

j

i

Binder: Not able to handle correlations in nested laterals

Planner: Plans nested laterals in an incorrect way, causing failures

Assumptions in the code on only one level of laterals

Original Codebase

Binder:

Bind laterals recursively

Track correlations correctly

Maintain correct depth information

Approach
L

L
t3t2

t1

j = 1
 i = 2

j

i

Planner:

Change planning order: top-down

Detect correlations correctly

Push-down correlations through all

the relevant nodes

Rewrite column bindings

Approach
L

L
t3t2

t1

j = 1
 i = 2

j

i

Tests Status

Our Stress Tests (verified against UMBRA)

PostgreSQL tests for LATERALs and Subqueries

DuckDB Tests for LATERALs and Subqueries

DuckDB Regression Tests (for PR)

DuckDB CI Tests (for PR)

SQLite Tests for LATERALs (the holy grail) Don't Exist

Validation

Now for the
War Stories

A tale of misery, suffering and joy

Let's do flattening they said
It will be easy they said

...
- Mark Raasveldt
(maybe not really)

 DuckDB has one
of the most beautiful

 C++ codebases

The Prologue

Sam

OK!

Arham Mayank

Reading the Codebase
Especially with

close to
NO COMMENTS

After weeks of procrastinating and
struggling with the code

And after multiple failed attempts

Mark when he tells us
"Godspeed"

Debugging Binder Code

Debugging Binder Code

And
Logical
Planner

Code

Debugging Binder Code

And
Logical
Planner

Code

And
Physical
Planner

Code

When 3 million tests pass

But then 2 tests fail

But then 2 tests fail
2 days before the

deadline

Revamping the whole logic

Then all tests pass

Put in a Pull Request to DuckDB (refactoring required)

Benchmark the UDFs in the ProcBench on DuckDB

Compare DuckDB and Umbra on the ProcBench

Convince the world to use UDFs

 ... So that Sam can get his PhD :)

Future Work

Takeaways
The Binder/Rewriter is extremely tricky

But when it makes sense, it just works

Extensive Testing & Rapid Prototyping go very far

Drawing diagrams & (Constructive?) Arguing = Progress

Real database development is HARD

This is why DB companies pay us the big bucks

Questions?

