
15-721 Project Final 
Presentation
By Abigale Kim, Yuchen Liang, Chi Zhang
May 5th, 2023



Update on Goals

- Write a framework that determines whether extensions are likely 
incompatible with each other and fixes some incompatibilities (partially 
✅)

- Create an extension that manages extensions, get this to work for 
pg_stat_statement and pg_hint_plan; only need to #include “pgextmgr.h” 
without significant code change. (✅)



pgextmgrext

- Postgres Extension Manager as an Extension



pgextmgrext in compatibility mode

pg_stat_statements

planner_hook

Postgres



pgextmgrext in compatibility mode

pg_stat_statements

planner_hook

Postgres
pg_hint_plan
prev_planner



pgextmgrext in compatibility mode

pgextmgrext

planner_hook

Postgres



pgextmgrext in compatibility mode

pgextmgrext

planner_hook

Postgres

pg_stat_statements__PG_init

pgext_before_pg_init(“pg_stat_statements”);

planner_callback

By including the pgext header, we will do some work before / 
after the actual init process.



pgextmgrext in compatibility mode

pgextmgrext

planner_hook

Postgres

pg_stat_statements__PG_init

planner_callback

prev_planner

By including the pgext header, we will do some work before / 
after the actual init process.



pgextmgrext in compatibility mode

pgextmgrext

planner_hook

Postgres

pg_stat_statements__PG_init

planner_callback

prev_planner

pgext_after_pg_init

planner_hooks

By including the pgext header, we will do some work before / 
after the actual init process.



pgextmgrext in compatibility mode

pgextmgrext planner_hook

Postgres

pg_stat_statements

planner_callback

We are able to reorder/disable/enable 
hooks and detect missing calls within 
the manager.

prev_planner

planner_hooks

pg_hint_plan
prev_planner

12

3

4

1. pgextmgrext calls pg_stat_statements
2. pg_stat_statements calls back to pgextmgrext
3. pgextmgrext calls pg_hint_plan
4. pg_hint_plancalls back to pgextmgrext



pgextmgrext

● Easy to integrate – include a single header to use existing extensions with 
pgextmgr.

● Easy to adapt – no need to build Postgres from source code, it is an 
extmgr as an extension!

● Extensibility – adding new APIs and functionalities over existing Postgres 
hooks so that developers can build extensions easier and write less code.



Demo Video: here 

https://drive.google.com/file/d/1ZISaqpcJXZetsSdoUw1RnwSsZ1XZNhSL/view?usp=share_link


pg_poop

- Toy extension that uses our extension as a manager to replace all 
VARCHAR/TEXT output with poop emojis

- 200 LoCs -> 70 LoCs by using pgextmgrext!
- Using pgextmgr’s output rewriter APIs (which is build upon existing 

ExecutorRun hook)



Postgres Extension Compatibility Analysis

- Spent time understanding the extension environment (hook case studies, 
extension case studies)

- Tested general compatibility (installation, basic tests) of 38 extensions 
with each other

- Determined that only 57 of these pairs failed (8% incompatibility)



Extension Compatibility Table



… since that is mostly unreadable…

- TLDR: 8% is a low result–we’re aiming for a higher incompatibility rate!
- Potentially interesting findings

- Some extensions have checks to ensure that proper ordering (e.g. pg_queryid)
- Some heavyweight extensions tend to clash with a lot of other extensions (Citus, plprofiler)
- These are pretty good leads!



Testing + Code Quality

- General extension testing framework is well-tested (interface works for a 
lot of different extensions)

- pgextmgrext has a proof of concept implementation (pg_poop) but is 
otherwise not tested much (not production ready!)

- Code quality:
- Ran cargo fmt + cargo clippy to ensure decent code style
- We have validation of arguments in our software
- Code is not documented very well 😭



Future Work

- Focus extension compatibility testing to extensions that share the same 
hooks, and extend testing to try to catch more conflicts

- Redesigning PostgreSQL extensions API using findings from pgextmgrext 
and related work (e.g. MySQL server, Redis modules, eBPF)



Thank you for listening! 


