
Fast Fixed-Point Decimals

Jekyeom Jeon
Taoxi Jiang

Yuttapichai (Guide) Kerdcharoen

Final Presentation



Re-iterate the motivation…

Source: https://www.youtube.com/watch?v=rhxd_xaeMPU

https://www.youtube.com/watch?v=rhxd_xaeMPU


What we did (in a slide)

CMU-DB’s standalone 
128-bit fixed-point decimal

● Documented libfixeypointy
● Hardened libfixeypointy
● Improved libfixeypointy’s multiplication and division performance
● Evaluated libfixeypointy against other standalone decimal 

implementations

libfixeypointy as 
PostgreSQL’s UDT

● Integrated libfixeypointy as PostgreSQL user-defined types, fxypty
○ Including arithmetic and relative operators
○ Basic aggregators (sum, min, max, count)

● Evaluated fxypty against PostgreSQL NUMERIC (its built-in fixed-point 
decimal type) and DOUBLE, REAL (its floating-point type)



All the code are documented

Doxygen Comment

Complex Code Explanation

Doxygen Comment



More libfixeypointy boundary cases are handled

Division by zero Overflow



The performance bottleneck is grade-school multiply

● Both multiplication and division (by magic number) use 128-bit grade-school multiplication
● An existing grade-school multiply implementation contains a number of loops and potential 

bubbles

Observation

● Unwinding the loop and manually reordering instructions (to avoid bubbles) could improve 
multiplication and division performance 

Assumption

128-bit Grade-School Multiply 128-bit Grade-School Multiply



Optimizing by unwinding loops and reordering instructions

1. Let m and n = 2 and 
unwind loops

2. Reorder/remove 
instructions



Grade-school multiply is no longer bottleneck

GS Multiply GS Multiply

Before

GS 
Multiply

GS 
Multiply

After

Apply loop unwinding and 
instruction reordering

1.45x speedup



Division
- Specify custom predefined magic number to speed up division (and 

multiplication)
- Not too many of them (depending on the operations you normally want to do)
- No magic number -> predicate small -> hot path taking the branch (good)
- A few magic number -> hot path not taking the branch -> predicate small 

(good)
- Lots of magic number -> predicate big -> access pattern uniform anyway, 

doesn’t make sense to add those magic number (bad)
- Generate and cache all seen magic numbers? -> will test in the future

Todo: Macro to convert static hashtable lookup to compiled predicates … Magic Number Division

… div by zero / power of 2 check



Verification

● Python decimal (hybrid of fixed point and float)
○ Random op1 +-*/ op2, repeated millions of times
○ Compare rounded off values

● Java BigDecimal
○ Long random chain op1 +-*/ op2 +-*/ op3 …
○ Compare error handling behavior (overflow), report and revert to previous value when error 

encountered
○ Compare exact values
○ Results exactly match



Evaluation (Standalone Lib performance)

Operations on decimals stored in 32bit size, most digits before decimal point (scale is small)
Dataset fits in L3 cache. Larger dataset results will come in future.



Evaluation (Standalone Lib performance)

BigDecimal optim for small scale decimals
Libfixeypointy does not, runtime consistent



Evaluation (Standalone Lib performance)

BigDecimal change both storage and mult 
algo for bigger decimals



Evaluation (Standalone Lib performance)

If we force BigDecimal to use our 
fixed max precision (28) and then 
round to scale, it becomes ~10x 
slower

10x
10x



Integrating libfixeypointy as PostgreSQL’s UDT

http://www.youtube.com/watch?v=HFNh91730j0


Evaluation (PostgreSQL operation performance)

⇒ All Data Types have different sizes

Fixed-Point Floating-Point



Evaluation (PostgreSQL operation performance)

pgfixeypointy is faster than NUMERIC in division



Evaluation (PostgreSQL operation performance)

pgfixeypointy is faster than NUMERIC in division

pgfixeypointy is slower than NUMERIC (ToString() is slow)



Evaluation (PostgreSQL operation performance)

pgfixeypointy performs better for 
aggregation



Evaluation (PostgreSQL operation performance)

pgfixeypointy performs better for 
aggregation. But, this is result when 
we’re using a single worker



Future Work

➢ Support variable size: store a small decimal in a 64-bit or 32-bit

➢ Parallel aggregation to improve throughput

➢ Running perf to find an opportunity for optimizing multiplication performance

➢ Improve result writing (probably, string conversion) performance

➢ More Aggregator support: AVG, STD, VAR

➢ Type Casting: Operations between different types (e.g., double+libfixeypointy)

➢ More realistic workloads



Resources

● libfixeypointy - https://github.com/cmu-db/libfixeypointy/tree/develop
● pgfixeypointy - https://github.com/pnxguide/pgfixeypointy

https://github.com/cmu-db/libfixeypointy/tree/develop
https://github.com/pnxguide/pgfixeypointy


Prompt: a fast stream of 128-bit fixed-point decimals


