
Transpiling
PL/pgSQL UDF

in DuckDB
Adrian Abedon, Yuchen Liu, Arvin Wu

Goal: We want to generate C++ code for PL/pgSQL UDFs

Supported by
DuckDB

Not supported by
DuckDB

Further Goals

● Support DuckDB
vectorization

● Inline DuckDB
operators during
compilation

Current
Architecture Overview

Lexer/Parser

Simple typechecker

Raw PL/pgSQL

Transpile control structures

JSON AST

C++ code

https://jsoneditoronline.org/#left=cloud.f7e557fd377c49cb94ea49e55d623fdb
https://jsoneditoronline.org/#left=cloud.f7e557fd377c49cb94ea49e55d623fdb

Phase I
Transpile PL/pgSQL into a scalar UDF

● Essentially the control flow in the UDF
● Pass SQL queries not parsed to be

handled by DuckDB

Phase III
Compile SQL queries through operator inlining

● Gradually support the compilation of certain
queries

- Comparators >, <
- Numeric Operators +, -, *
- DuckDB built-in functions

Project Roadmap

Phase II
Transpile PL/pgSQL into a vectorized UDF

● Still calling DuckDB to handle queries

Phase I: Transpile PL/pgSQL into a scalar UDF

● Focus was on transpiling control structures
○ Function body and arguments
○ If statements
○ For/While loops

● Let DuckDB handle queries
○

● Issues with DuckDB scalar UDF API
○ Only supports 3 arguments
○ Loose precision with DECIMAL type
○ Difficult to interpret certain types such as DATE since they are passed as int32

Phase II: Transpile PL/pgSQL into a vectorized UDF
Motivation

● All the drawbacks of scalar UDF
● The bottleneck of performance: HUGE overhead of calling DuckDB’s query

○ ~1 ms ≈ 106 CPU cycles for each simple query: select l_quantity+1

By switching to the vectorized UDF framework, we can share that overhead
in the vector

● Most DuckDB operators are vectorized
○

○ Important when operators are inlined in Phase III

Phase II: Transpile PL/pgSQL into a vectorized UDF

● Rewrite control structures to support vectorization
○ Function body and arguments
○ If statements
○ For/While loops

● Use vectorized prepared statements
● Explore how to write vectorized UDF

○ Interact directly with duckdb vectors
■ Flat vector
■ Constant vector
■ Dictionary vector

Phase II: Transpile PL/pgSQL into a vectorized UDF

● Have to rewrite control structures to support vectorization
○ Function body and arguments
○ If statements
○ For/While loops

● Use vectorized prepared statements
● Exploring how to write vectorized UDF

https://duckdb.org/docs/api/cpp#:~:text=//-,TODO,-Search%20Shortcut%20cmd

Phase II: Transpile PL/pgSQL into a vectorized UDF

● Have to rewrite control structures to support vectorization
○ Function body and arguments
○ If statements
○ For/While loops

● Use vectorized prepared statements
● Exploring how to write vectorized UDF

DEPREC
ATED

https://duckdb.org/docs/api/cpp#:~:text=//-,TODO,-Search%20Shortcut%20cmd
https://duckdb.org/docs/api/cpp#:~:text=%3B%0A%09input.-,Orrify,-(args.

Vectorized control structures

● Vectorizing arbitrary control structures is difficult
● Our approach was to keep track of “active lanes” (std::vector<bool>)

○ Set upon if condition, return, break, or continue
● If a lane is inactive, no computation happens on that lane

Example:
a = [5,10,4,13]
b = [1,11,3,14]
if(a < b): -> active lanes = [0,1,0,1]

a = a+b -> a = [5,21,4,27]

Example:
a = [5,10,4,13]
b = [1,11,3,14]
if(a < b): -> active lanes = [0,1,0,1]

a = a+b -> a = [5,21,4,27]

● Vectorizing arbitrary control structures is difficult
● Our approach was to keep track of “active lanes” (std::vector<bool>)

○ Set upon if condition, return, break, or continue
● If a lane is inactive, no computation happens on that lane

Vectorized control structures

Phase III: Compile queries

● Not yet implemented
● Support only queries that do not access a table

○ i.e.
● Inline DuckDB operators and functions

○ /, *, <, +, =,...
○ date_add, date_part, cast

● Current vectorized transpiler provides a great foundation to add compilation

Correctness Test

● Run TPC-H queries with and without UDF’s and compared results
○ Queries 1, 3, 4, 5, 6, 7, 9, 10, 12, 14, 19 from Froid Preprint

Query 3 with no UDF’s Query 3 with UDF’s

https://arxiv.org/pdf/1712.00498.pdf

Performance without Query Compilation

TLDR: Its slow right now but

it can be pretty fast

● Current version is significantly bottlenecked by making calls
to DuckDB inside of UDF’s

Performance without Query Compilation

~900 times slower

Query 12 Performance with full UDF Compilation

Query 12 Performance with full UDF Compilation

Query 12 Performance with full UDF Compilation

Query 12 Performance with full UDF Compilation

Query 4 Performance with full UDF Compilation

Conclusions from Benchmarks

● Calling DuckDB to execute queries in UDF’s is way to slow
● Need to compile DuckDB operators
● Compiling UDFs makes sense if it is performing general computation, such

as inside the SELECT
● Compiling UDFs does NOT make sense if it is used to filter rows

○ DuckDB (and other databases) will not be able to apply
■ block skipping
■ short circuiting predicate evaluations with AND

○ Better to use Froid/APFEL approach
● We can potentially improve performance with UDFs

Code Quality

● The framework we have developed for transpilation is extensible
○ Can choose to compile certain operators
○ For unsupported operators we can call DuckDB

● All C++ building blocks come from yaml templates
○ Can easily modify C++ output

● We feel that code is past the prototype stage but far from production ready
○ Clean up code
○ Generated C++ code is not formatted

Future Work

● Compile DuckDB operators
● Support more PL/pgSQL

○ nested blocks
○ block labels

● Support UDF calls within UDF’s
○ Limitation of current approach of calling DuckDB for queries
○ This will come with compilation

Thank you

