Transpiling
PL/pgSOL UDF
in DckDB

Adrian Abedon, Yuc

Goal: We want to generate G++ code for PL/pgSQL UDFs

CREATE OR REPLACE FUNCTION add_one(i integer)
RETURNS integer AS
$$
BEGIN
RETURN i + 1;
END;
$$
LANGUAGE plpgsql;

Not supported by
DuckDB

—>

int64_t add one(int64_t a) {
return a + 1;

}

Supported by
DuckDB

Further Goals

e Inline DuckDB
operators during
compilation

e Support DuckDB
vectorization

Current Raw PL/pgSQL
Architecture Overview [}
Lexer/Parser

[
Y

JSON AST

;
s A

Simple typechecker

\. v

:

[Transpile control structures }

C++ code

https://jsoneditoronline.org/#left=cloud.f7e557fd377c49cb94ea49e55d623fdb
https://jsoneditoronline.org/#left=cloud.f7e557fd377c49cb94ea49e55d623fdb

Project Roadmap

Phase |
Transpile PL/pgSQL into a scalar UDF
e Essentially the control flow in the UDF

e Pass SQL queries not parsed to be
handled by DuckDB

Phase Il

Transpile PL/pgSQL into a vectorized UDF
e Sitill calling DuckDB to handle queries

Phase lll
Compile SQL queries through operator inlining
e Gradually support the compilation of certain
queries
- Comparators >, <
- Numeric Operators +, -, *
- DuckDB built-in functions

Phase |: Transpile PL/pgSQL into a scalar UDF

e Focus was on transpiling control structures

o Function body and arguments
o If statements
o For/While loops

e Let DuckDB handle queries

o [return a+10; —»[return con.Query("select $1+10", a);

e Issues with DuckDB scalar UDF API

o Only supports 3 arguments
o Loose precision with DECIMAL type
o Difficult to interpret certain types such as DATE since they are passed as int32

Phase II: Transpile PL/pgSQL into a vectorized UDF
Motivation

e All the drawbacks of scalar UDF
e The bottleneck of performance: HUGE overhead of calling DuckDB’s query

o ~1ms ~ 10° CPU cycles for each simple query: select] quantity+1

By switching to the vectorized UDF framework, we can share that overhead
in the vector

e Most DuckDB operators are vectorized

O [void Equals(Vector &left, Vector &right, Vector &result, idx_t count);]

o Important when operators are inlined in Phase III

Phase IlI: Transpile PL/pgSQL into a vectorized UDF

e Rewrite control structures to support vectorization
o Function body and arguments

o If statements
o For/While loops

e Use vectorized prepared statements

e Explore how to write vectorized UDF
o Interact directly with duckdb vectors
m Flatvector
m Constantvector
m Dictionary vector

Phase IlI: Transpile PL/pgSQL into a vectorized UDF

e Have to rewrite control structures to support vectorization
o Function body and arguments
o If statements
o _™ar/While loops

o tem 1~
o Us] p7"3't‘9<t)'pename TR 1t tatements
’ YDename.

https://duckdb.org/docs/api/cpp#:~:text=//-,TODO,-Search%20Shortcut%20cmd

Phase IlI: Transpile PL/pgSQL into a vectorized UDF

e Have to rewrite control structures to support vectorization
o Function body and arguments
o If statements
o _™ar/While loops

- ten 3
o Us . Dlate<typename o= 1 ~+tatements tor
Void Cpeatevect] ’ tYDename. o jUt \je(,:
° Scalap functig Orizedryp in| -
= n_t yn-
: ge L
// A0
§An
] ‘ Y
D
yecte

https://duckdb.org/docs/api/cpp#:~:text=//-,TODO,-Search%20Shortcut%20cmd
https://duckdb.org/docs/api/cpp#:~:text=%3B%0A%09input.-,Orrify,-(args.

Vectorized control structures

e Vectorizing arbitrary control structures is difficult

e Our approach was to keep track of “active lanes” (std::vector<bool>)
o Setupon if condition, return, break, or continue

e Ifalane is inactive, no computation happens on that lane

create function line_count(oprio char, mode varchar)
returns int as $$
declare val int = 0;

Example: Peeix
a = [5,10,4,13] if (mode = 'high') then

if (oprio = '1-URGENT' OR oprio = '2-HIGH') then
b = [1,11,3,14] val = 1;
H . end if;
If(a < b): -> aCtlve Ianes = [0,1,0,1] elsif(mode = 'low') then
a= a+b -> g = [5 21 4 27] if (oprio <> '1-URGENT' AND oprio <> '2-HIGH') then
4 rer val = 1;
end if;
end if;
return val;
end 3
LANGUAGE PLPGSQL;

std::vector<duckdb: :Value> tempvarli6é = query26(shipdate, &active2, &returnsl, NULL, NULL);
std: :vector<bool> active3 = active2;
for (size t tempvarll5 = ©; tempvarll5 < tempvarill6.size(); tempvarllS5++)

if (!tempvarli6[tempvarll5].IsNull()

active3[tempvarll5] = active3[tempvarll5] && (tempvarlil6|[tempvarll5].template GetValue<bool>());

td: :vector<duckdb: :vValue> tempvarll4 = const_vector_gen(9);
or (size t tempvarill3 = @; tempvarll3 < args.size(); tempvarili3++)

e D » DL A

if (active3[tempvarll3] && !returnsi[tempvarii3]

returnsi[tempvarii3] = true;

return_values[tempvarli3] = tempvarili4|tempvarii3];

for (size t tempvarill5 = @; tempvarllS5 < active3.size(); tempvarlilS5++)
if (!tempvarilil6[tempvarllS5].IsNull()

active3[tempvarliil5] = !active3[tempvarlil5];

Phase ll: Compile queries

e Notyetimplemented
e Support only queries that do not access a table
O i.e. | select (x*2.0) < 20;]
e Inline DuckDB operators and functions
o /¥ <, +, =,
o date_add, date_part, cast
e C(urrent vectorized transpiler provides a great foundation to add compilation

Correctness Test

e Run TPC-H queries with and without UDF’s and compared results
o Queries 1,3, 4,5, 6,79, 10, 12, 14, 19 from Froid Preprint

Query 3 with no UDF’s

Query 3 with UDF’s

select
1_orderkey,

sum(1l_extendedprice * (1 - 1_discount)) as revenue,

o_orderdate,
o_shippriority
from
customer,
orders,
lineitem
where
c_mktsegment = 'BUILDING'
and c_custkey = o_custkey
and 1_orderkey = o_orderkey
and o_orderdate < date '1995-03-15'
and 1_shipdate > date '1995-03-15'
group by
1_orderkey,
o_orderdate,
o_shippriority
order by
revenue desc,
o_orderdate
limit 10;

select
1_orderkey,
suml_extendedprice, 1_discount)) as revenue,
o_orderdate,
o_shippriority
from
customer,
orders,
lineitem
where
c_custkey = o_custkey
and 1_orderkey = o_orderkey
andc_mktsegment, o_orderdate, 1_shipdate) = 1
group by
1_orderkey,
o_orderdate,
o_shippriority
order by
revenue desc,
o_orderdate
limit
10

https://arxiv.org/pdf/1712.00498.pdf

Performance without Query Compilation

e (Currentversion is significantly bottlenecked by making calls

to DuckDB inside of UDF’s \)“t
. At NOW
1s SO gl
. s\
TLDY;\) orely fa
L

Performance without Query Compilation

TPC-H Performance Benchmarks

B with UDFs [without UDFs

50000

10000
5000
1000
500
100
50 l
i Al i 1.
1 3 5 6 7 9 10 12 14 19

~900 times slower TPC-H Query

Execution Time (ms)

Query 12 Performance with full UDF Compilation

1500
»
E
o
= 1000
=
)
=
0
0]
X
o
o 500
Pt
o
2
C
0

Baseline no UDF compile line_count compile line_count & conditions

Query Type

Query 12 execution time (ms)

Query 12 Performance with full UDF Compilation

1500

1000

500

Baseline no UDF

compile line_count

Query Type

compile line_count & condi

select
1_shipmode,
sum(case
when o_orderpriority = '1-URGENT'
or o_orderpriority = '2-HIGH'
then 1
else 0
end) as high line_count,
sum(case
when o_orderpriority <> '1-URGENT'
and o_orderpriority <> '2-HIGH'
then 1
else 0
end) as low_line_count
from
orders,
lineitem
where
o_orderkey = 1_orderkey
and 1_shipmode in ('MAIL', 'SHIP')
and 1 _commitdate < 1_receiptdate
and 1_shipdate < 1_commitdate
and 1_receiptdate >= date '1994-01-01'
and 1_receiptdate < date '1994-01-01' + interval 'l' year
group by
1_shipmode
order by
1_shipmode;

Query 12 execution time (ms)

Query 12 Performance with full UDF Compilation

1500

1000

500

Baseline no UDF

compile line_count

Query Type

selec

t
1_shipmode,

sum(line_count(o_orderpriority, 'high')) as high line_count
sum(line_count(o_orderpriority, 'low')) as low_line count

from

where

orders,
lineitem

o_orderkey = 1_orderkey

and 1_shipmode in ('MAIL', 'SHIP')

and 1_commitdate < 1_receiptdate

and 1_shipdate < 1_commitdate

and 1_receiptdate >= date '1994-01-01'

and 1_receiptdate < date '1994-01-01' + interval 'l' year

group by

1_shipmode

order by

1_shipmode;

compile line_count & conditions

Query 12 execution time (ms)

Query 12 Performance with full UDF Compilation

1500

1000

500

Baseline no UDF compile line_count

Query Type

o _orderkey = 1 orderkey
and ql2conditions/(
1_shipmode,

1 _commitdate,
1_receiptdate,
1_shipdate
) =1
group by
1_shipmode
order by
1_shipmode;

select
1 shipmode,
sum(line_count(o_orderpriority, 'high')) as high line_count
sum(line_count(o_orderpriority, 'low')) as low_line_count
from
orders,
lineitem
where

compile line_count & conditions

Query 4 Performance with full UDF Compilation

80

iE), 60
o
S
5

= 40
(&)
o}
>
)
<
Py

) 20
= |
(€]

0

Baseline no UDF compile part of condition

Query Type

Conclusions from Benchmarks

e (alling DuckDB to execute queries in UDFE’s is way to slow

e Need to compile DuckDB operators

e Compiling UDFs makes sense if it is performing general computation, such
as inside the SELECT

e Compiling UDFs does NOT make sense if it is used to filter rows
o DuckDB (and other databases) will not be able to apply
m block skipping
m short circuiting predicate evaluations with AND
o Better to use Froid/APFEL approach

e We can potentially improve performance with UDFs

Code Quality

e The framework we have developed for transpilation is extensible
o (Can choose to compile certain operators
o Forunsupported operators we can call DuckDB
e All C++ building blocks come from yaml templates
o Can easily modify C++ output
e We feel that code is past the prototype stage but far from production ready

o Clean up code
o Generated C++ code is not formatted

Future Work

e Compile DuckDB operators
e Support more PL/pgSOL

o nested blocks
o block labels

e Support UDF calls within UDF’s

o Limitation of current approach of calling DuckDB for queries
o This will come with compilation

Thank you

