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ABSTRACT
While numerous indexing and storage schemes have been devel-

oped to address the core functionality of predicate evaluation in

data systems, they all require specific workload properties (query

selectivity, data distribution, data clustering) to provide good per-

formance and fail in other cases. We present a new class of indexing

scheme, termed a Column Sketch, which improves the performance

of predicate evaluation independently of workload properties. Col-

umn Sketches work primarily through the use of lossy compression

schemes which are designed so that the index ingests data quickly,

evaluates any query performantly, and has small memory footprint.

A Column Sketch works by applying this lossy compression on

a value-by-value basis, mapping base data to a representation of

smaller fixed width codes. Queries are evaluated affirmatively or

negatively for the vast majority of values using the compressed

data, and only if needed check the base data for the remaining val-

ues. Column Sketches work over column, row, and hybrid storage

layouts.

We demonstrate that by using a Column Sketch, the select op-

erator in modern analytic systems attains better CPU efficiency

and less data movement than state-of-the-art storage and indexing

schemes. Compared to standard scans, Column Sketches provide

an improvement of 3×-6× for numerical attributes and 2.7× for

categorical attributes. Compared to state-of-the-art scan accelera-

tors such as Column Imprints and BitWeaving, Column Sketches

perform 1.4 - 4.8× better.
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1 INTRODUCTION
Modern Data Access Methods. Base data access and methods for

predicate evaluation are of central importance to analytical data-

base performance. Indeed, as every query requires either an index

or full table scan, the performance of the select operator acts as

a baseline for system performance. Because of this, there exists

a myriad of methods and optimizations for enhancing predicate
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Figure 1: For certain workloads, no state of the art methods
provide any significant performance benefit over a scan.

evaluation [14, 17, 23, 25, 28, 29, 33, 38]. Despite the large volume of

work done, existing access methods each have situations in which

they perform suboptimally. Figure 1 shows an example where dif-

ferent classes of access methods from traditional indexing such as

B-trees to scan accelerators such as Zone Maps [25] and BitWeav-

ing [23] do not bring any improvement over a plain scan. We use

Figure 1 throughout this section as we discuss the performance

characteristics of state-of-the-art indexing and scan accelerator

methods, and use their performance to motivate Column Sketches.

Traditional Indexes. A long term staple of database systems, tra-

ditional secondary indices such as B-trees localize data access to tu-

ples of interest, and thus provide excellent performance for queries

that contain a low selectivity predicate [8]. However, once selec-

tivity reaches even moderate levels, the performance of B-trees is

notably worse than other methods. Figure 1 shows such an example

with low selectivity at 3%.

To achieve their performance on highly selective queries, B-trees

introduce several inherent shortcomings. First, traditional indices

look at data in the order of the domain, not in the order of the

table. Thus their output leaves a choice: either sort the output of

the index by the order of the table or continue through the rest

of query execution looking at values out of order. Second, sorted

order indices require gaps, as in the form of non-full leaf nodes

for B-trees, for new insertions to amortize update costs. These

gaps then require jumping around in memory during predicate

evaluation, continually interrupting the processor so that it can

wait for data. Both of these contrast with the modern scan, which

relies on comparisons in tight for loops over contiguous data in

memory, and which looks at data in the order of the table. Third,

traditional indices have updates scattered throughout their domain

and thus don’t interact well with the append-only file systems [1, 2]

that many analytic databases run over [9, 19, 36]. Additionally,

recent changes such as the change in storage layout from row-

oriented to column-oriented and increasing memory capacities

have made traditional scans more performant relative to traditional
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Workload→

Technique ↓

Low Selectivity

Scan

Arbitrary Scan:

Skewed Data

Arbitrary Scan:

Uniform Data

Arbitrary Scan:

Clustered Data

B-Trees Best ✗ ✗ ✗

Zone Maps ✓ ✗ ✗ Best

Early Pruning ✓ ✗ Best ✓

Column

Sketches

✓ Best Best ✓

✗: poor performance, ✓: great performance, Best: best performance

Table 1: Each technique has scenarios where it is the best for
select performance. However, Column Sketches are the only
technique which improves performance in every scenario.

indices. Currently, scans outperform B-trees for query selectivities

as low as 1% [18].

Lightweight Indices. Recently, lightweight indexing techniques
havemade an impact on scan performance. These techniques largely

work as a way to skip data while doing an in-order scan. Zone Maps

are amongst the most widely used techniques today, and work by

storing small amounts of metadata such as min and max for blocks

of data [26]. This small amount of metadata exploits natural clus-

tering properties in data and allows scans to skip over blocks that

either entirely qualify or entirely do not qualify. Other techniques

such as Column Imprints [33] or Feature Based Data Skipping [35]

take more sophisticated approaches, but the high level idea is the

same: they use summary statistics over groups of data to enable data-

skipping. While incredibly useful in the right circumstances, the

approach of using summary statistics over groups of data provides

no help in the general case where data does not exhibit clustering

properties [30]. Figure 1 shows such a case, where the column’s

values are independent of their positions; then, Zone Maps bring

no advantage and the scan performance with and without Zone

Maps is the same.

Early Pruning Methods. Early pruning methods such as Byte-

Slicing [14], Bit-Slicing [23, 27], and Approximate and Refine [28]

techniques work by bitwise-decomposing data elements. On a phys-

ical level, this means partitioning single values into multiple sub-

values, either along each bit [23], each byte [14], or along arbitrary

boundaries [28]. After physically partitioning the data, each tech-

nique takes a predicate over the value and decomposes the predicate

into conjunctions of disjoint sub-predicates. As an example, check-

ing whether a two byte numeric value equals 100 is equivalent to

checking if the high order byte is equal to 0 and the lower order

byte is equal to 100. After decomposing the predicate into disjoint

parts, each technique evaluates the predicates in order of highest

order bit(s) to lowest order bit(s), skipping predicate evaluation for

predicates later in the evaluation order if groups of tuples in some

block are all certain to have qualified or not qualified. Substantial

amounts of data are skipped if the data in the high order bytes is

informative, however these techniques can suffer under data skew.

For instance, continuing with the above example, if a significant

portion of high order bytes have value 0 then the predicate over

the first byte is largely uninformative and the predicate over the

second order byte is almost always evaluated. This is what happens

in the case of Figure 1; the high order bits are biased towards zero,

enabling very little pruning. As a result early pruning brings no

significant advantage over a traditional scan.

Rapid andRobust Indexing via Column Sketches.We propose

a new indexing scheme, Column Sketches, that unlike prior tech-

niques, is robust to selectivity, data value distribution, and data

clustering. A Column Sketch works by applying lossy compression

on a value-by-value basis to create an auxiliary column of codes

which is a “sketch” of the base data. Then, predicate evaluation is

broken up into (1) a predicate evaluation over the sketched data,

and, if necessary, (2) a predicate evaluation over a small amount of

data from the base data.

Lossy Compression. By using lossy instead of lossless compres-

sion, Column Sketches simultaneously achieve three major goals.

First, lossy compression allows for efficient algorithms to find en-

coding schemes that make code values always informative. Second,

lossy compression guarantees that informative encodings can be

achieved while being space efficient, with the resulting Column

Sketch being significantly smaller than the base data. Third, lossy

compression allows for faster ingestion speeds than indexing based

off lossless encoding techniques. This is because the resulting codes

are small, thus the structure necessary to store the mapping from

values to codes is small, making the translation from value to code

fast. As well, in contrast to lossless encoding such as dictionary

compression, lossy compression means this mapping does not need

to be injective and so new values in the domain do not cause a

Column Sketch to rewrite old code values.

Technical Distinctions. Column Sketches achieve robust perfor-

mance by differing from past techniques in key ways. In contrast

to traditional indexing, data is seen in the order of the table, not in

the order of the domain. The compressed auxiliary column lies in

contiguous memory addresses and so no pointer chasing occurs. In

contrast to lightweight indices, Column Sketches work on a value

by value basis, allowing for data skipping even when groups of

values mix values which satisfy and don’t satisfy a predicate. In

contrast to early pruning methods, lossy compression is tightly

wedded with physical layout to enable guaranteed fast predicate

evaluation and ingestion speeds. Other state-of-the-art acceleration

techniques used in modern scans, such as SIMD, multi-core, and

scan sharing, apply to Column Sketches as is. This is because at

their core Column Sketches employ a sequential scan over a column

of codes. The result is Table 1, with Column Sketches providing

performance benefits for equality and range queries in all scenarios.

Contributions. The contributions of this paper are as follows:

(1) We introduce the Column Sketch, a data structure for ac-

celerating scans which uses lossy compression to improve

performance regardless of selectivity, data-value distribution,

and data clustering (§2).

(2) We show how lossy compression can be used to create infor-

mative bit representations while keeping memory overhead

low (§3).

(3) We provide algorithms for efficient scans over a Column

Sketch (§4), give models for Column Sketch performance

(§5), and show howColumn Sketches can be easily integrated

into modern system architectures (§6).

(4) We demonstrate both analytically and experimentally that

Column Sketches improve scan performance by 3×-6× for

numerical data, 2.7× for categorical data, and improve upon

current state-of-the-art techniques for scan accelerators (§7).
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code values in the sketched column. These codes are thenused to filtermost values in the base data during predicate evaluation.

2 COLUMN SKETCHES OVERVIEW
We begin with an illustrative example to describe the main idea and

the storage scheme. For ease of presentation we use a simple lossy

compression function and scan algorithm in the example. The rest

of the paper then builds on the logical concepts covered here and

shows how Column Sketches use these concepts to deliver robust,

efficient performance.

Supported Base Data Format. The only requirement for the base

data is that given a position i and base attribute B, that it be able to
produce a value B[i] for that position. Column Sketches work over

row, column-group, or columnar data layouts, with the main body

of this paper focusing on Column Sketches over columnar data

layouts. Appendix C discusses alternative layouts. As is common

in state-of-the-art analytic systems, all base columns of a table are

assumed to be positionally aligned and thus positions are used to

identify values of the same tuple across columns [3]. For numerical

data types and dictionary encoded string data, the base data is an

array of fixed-width values, with the value of position i at index
i in the array. For unencoded variable length data such as strings

there is one level of indirection, with an array of offsets pointing

into a blob data structure containing the values.

Column Sketch Format. A Column Sketch consists of two struc-

tures. The first structure in a Column Sketch is the compressionmap,

a function denoted by S (x ). The second structure is the sketched

column. The compression map uses the function S to map the val-

ues in the base data to their assigned codes in the sketched column.

The term Column Sketch refers to the joint pairing of both the com-

pression map and the sketched column, and an example is shown

in Figure 2.

(1) Compression Map. The compression map S is stored in one

of two formats. If S is order-preserving, then we call the resulting

Column Sketch order-preserving and the compression map is stored

as an array of sorted values. The value in the array at position i
gives the last element included in code i . For example, if position

i − 1 holds the value 1000 and position i holds the value 2400, then
code i represents values between 1001 and 2400. In addition to the

value at index i , there is a single bit used to denote whether the

code is “unique”. Unique codes are discussed in Section 3.

For non-order preserving Column Sketches, the function S is

composed of a hash table containing unique codes and a hash

function. In this format, frequent values are given unique codes

and stored in the hash table. Infrequent values do not have their

codes stored and are instead computed as the output of a (separate)

hash function.

(2) Sketched Column. The sketched column Bs is a fixed width

and dense array, with position i storing the output of the function

S applied to the value at position i of the base data. To differentiate

between values in the base data and the sketched column, we will

refer to the values in the base data as simply values and the values

in the sketched column as codes or code values.

Example: Building & Querying a Column Sketch. Consider
the example shown in Figure 2, where we use the function S , defined
by the array in the middle, to map from the 8 bit unsigned integers

I8 to the 2 bit unsigned integers I2. S is order preserving and so it

has the following properties:

(1) for x ,y ∈ I8, S (x ) , S (y) ⇒ x , y
(2) for x ,y ∈ I8, S (x ) < S (y) ⇒ x < y

Furthermore, S produces an output that is fixed-width (two bits)

and assigns an equal number of values in the base data to each

code.

We use S to build a smaller sketched column from the base data.

For each position i in the base attribute B, we set position i in the

sketched column to S (B[i]). The sketched column is
1

4
the size of the

original column, and thus scanning it takes less data movement. As

an example, consider the evaluation of a query with the predicate

WHERE B < x . Because S is order preserving, a Column Sketch

can translate this predicate into (Bs < S (x )) OR (Bs = S (x ) AND
B < x ).

To evaluate a predicate, the Column Sketch first computes S (x ).
Then, it scans the sketched column Bs and checks both Bs < S (x )
and Bs = S (x ). For values less than S (x ), their base value qualifies.
For values greater than S (x ), their values in the base data do not

qualify. For values equal to S (x ), their base value may or may not

qualify and so we evaluate B < x using the base data. Algorithm 1

depicts this process.

Figure 2 shows an example. Positions 1 and 4 in the sketched

column qualify without seeing the base data. Positions 5 and 6 need

to be checked in the base data, and of these two, only position 6

qualifies. In the example, the Column Sketch needs to go to the

base data twice while checking 8 values. This is explained by the
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Algorithm 1 Select where B < x

Require: S is a function which is order preserving, B is the base attribute,

Bs is the sketched column

1: for i = 0 to B.size do
2: if Bs [i] < S (x ) then
3: write position i to result output

4: else if Bs [i] == S (x ) then
5: if B[i] < x then
6: write position i to result output

small number of bits in the compressed codes. In general, each code

in a Column Sketch has a relatively equal number of values, and a

Column Sketch needs to check the base data whenever it sees the

mapped predicate value S (x ). As a result, we expect to need to go

to the base data once for every 2
#bits

values.

Byte Alignment. Column Sketches work for any code size. How-

ever, we find that on modern hardware there exists around a 30%

performance penalty for using non-byte aligned codes. Thus, we

give special attention to 8 bit Column Sketches and to 16 bit Column

Sketches.

3 CONSTRUCTING COMPRESSION MAPS
We now show how to construct compression maps for a Column

Sketch. By definition, this map is a function from the domain of

the base data to the domain of the sketched column. To go over

compression maps, we discuss their objectives in Section 3.1, give

guarantees of their utility in Section 3.2, and discuss how to build

them for numerical and categorical attributes in Sections 3.3 & 3.4.

3.1 Compression Map Objectives
The goal of the compression map is to limit the number of times

we need to access the base data, and to efficiently support data

modifications. To achieve this, compression maps:

(1) Assign frequently seen values their ownunique code.When

checking the endpoint of a query such as B < x , a Column Sketch

scan needs to check the base data for code S (x ). If x is a value that

has its own code (i.e. S−1 (S (x )) = {x }), then we do not need to

check the base data and can directly answer the query through only

the Column Sketch. This property holds for both range predicates

and equality predicates.

To achieve robust scan performance, we identify frequent values

and give them their own unique code. As a simple example to

see why this is critical for robust performance, if we have a value

that accounts for 10% of tuples and it has a non-unique code, then

predicates on this value’s assigned code need to access the base

data a significant number of times. Because accessing any item of

data in a cache line brings the entire cache line to the processor,

accessing 10% of tuples is likely to make performance similar to a

traditional scan. Thus, we identify the frequent values so that we

can limit the amount of base data we touch for any predicate.

(2) Assign non-unique codes similar numbers of values. The
reasoning for this is similar to the reasoning for why frequent values

need unique codes. We assign each non-unique code a relatively

even and small portion of the data set so that we need only a small

number of base data accesses for any scan.

(3) Preserve order when necessary. Certain attributes see range

predicates whereas others do not. For attributes which see range

predicates, the compression map should be order-preserving so that

range queries can be evaluated using the Column Sketch.

(4)Handle unseen values in the domainwithout re-encoding.
Re-encoding should be a rare and on-demand operation. By nature

of being lossy, lossy compression means new values are allowed to

be indistinguishable from already occuring values. Thus, provided

we define our encoding smartly, new values do not require a Col-

umn Sketch to be re-encoded. For ordered Column Sketches to not

need re-encoding, there cannot be consecutive unique codes. For

instance, if S assigns the unique codes i to “gale” and i + 1 to “gate”,
then input strings such as “game” have no code value. Changing the

code for “gate” to be non-unique solves this problem. For unordered

Column Sketches, every unseen value has a possible value as long

as there exists at least one non-unique code.

(5) Optional: Exploit Frequently Queried Values. Exploiting
frequently queried values can give extra performance benefits; how-

ever, unlike frequent data values, identifying frequent query values

makes query performance less robust. We focus on describing how

to achieve efficient and robust performance for any query in the

main part of the paper, and include details on exploiting frequently

queried values in Appendix F.

3.2 Bounding Base Data Accesses
The following two theorems hold regarding how we can limit the

number of values assigned to non-unique codes.

Theorem 1. Let X be any finite domain with elements x1,x2,
. . . ,xm and order x1 < x2 < · · · < xm . Let each element xi have
associated frequency fi with

∑m
i=1 fi = 1. Let Y be a domain of size

256 and have elements y1,y2, . . . ,yn . Then there exists an order-
preserving function S : X → Y such that for each element yi of Y ,
either

∑
x ∈S−1 (yi ) fx ≤

2

n or S−1 (yi ) is a single element of X .

This theorem for an order preserving function then implies the

result holds for a non-order preserving function as well.

Corollary 2. Let X be any finite domain with elements x1,x2,
. . . ,xm and let each element have associated frequency f1, f2, . . . , fm
such that

∑m
i=1 fi = 1. Let Y be a domain of size n and have elements

y1,y2, . . . ,yn . Then there exists a function S such that for each ele-
mentyi of Y , either

∑
x ∈S−1 (yi ) fx ≤

2

n or S−1 (yi ) is a single element
of X .

The theorem and corollary prove that we can create mappings

that limit the amount of values in the base data assigned to any non

unique code. This directly implies that we can limit the amount

of times we need to access the base data. The proof of Theorem 1

and Corollary 2 are given in Appendices A and B respectively, with

both proofs giving an algorithm for the explicit construction of S .
The proofs are given separately for each, as the algorithm given for

creating the unordered compression map would give a map with

less variance in the number of values in each non-unique code.

Finally, we note that Theorem 1 and Corollary 2 apply when the

domainX is a compound space. For instance,X could be the domain

of (country, city, biological sex, marital status, employment status)

and the theorem would still apply. Appendix C includes further

discussion and experiments with multi-column Column Sketches.
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Figure 3: Bucket sizes track the distribution of the data.
3.3 Numerical Compression Maps
Lossless Numerical Compression. For numeric data types, loss-

less compression techniques such as frame-of-reference (FOR), pre-

fix suppression, and null suppression work by storing the value

as a relative value from some offset [11, 37, 42]. All three tech-

niques support operations in compressed form; in particular, they

can execute equality predicates, range predicates, and aggregation

operators without decompressing. However, to support aggregation

efficiently, each of these techniques conserves differences; that is,

given base values a and b, their encoded values ea and eb satisfy

ea − eb = a − b. This limits their ability to change the entropy of

high order bits, and these bits can only be truncated if every value

in a column has all 0’s or all 1’s on these high order bits.

Constructing Numerical Compression Maps. In contrast to

lossless techniques, lossy compression is focused only on maxi-

mizing the utility of the bits in the sketch. The simplest way to

do this while preserving order is to construct an equi-depth his-

togram which approximates the CDF of the input data, and then

to create codes based on the endpoints of each histogram bucket.

When given a value in our numerical domain, the output of the map

is then simply the histogram bucket that a value belongs to. We

create approximately equi-depth histograms by sampling values

uniformly from the base column, sorting these values, and then

generating the endpoints of each bucket based off of this sorted list.

Because histogram buckets are contiguous, storing the endpoint

of each bucket i is enough to know the range that histogram bucket

covers. Figures 3a and 3b show examples of mappings using his-

tograms for two different data sets. In both graphs, we use 200,000

samples to create 256 endpoints. The uniform distribution goes

from 0 to 10,000,000 and the normally distributed data is of mean

0 and variance 1000. The codes for the uniform distribution are

evenly spaced throughout, and the codes for the normal distribu-

tion are farther apart towards the endpoints of the distribution

and closer together towards the mean. The histograms capture the

distributions of both functions and evenly space the values in the

base data across the codes.

Handling Frequent Values. We define a frequent value to be a

value that appears in more than
1

z of the base data values. To handle

these frequent values, we first perform the same procedure as before

and create a sorted list of sampled values. If a value represents more

than
1

z of a sample of size n, then one of the values in the sorted list

at ( nz ,
2n
z , . . . ,

(z−1)n
z ) must be that value. Thus, for each of these

z values we can search for its first and last occurrence to check

if it represents more than
1

z of the sample. If so, mark the middle

position of that value in the list and give the value the unique code

c ∗
midpoint

n (rounded to nearest integer), where c is the number

of codes in the Column Sketch. In the case that z > c and that two

values would be given the same unique code c , the more frequent

value is given that unique code. In this paper, we use z = c . Though
a larger value of z can create faster average query times, we chose

z = c so that making a code unique does not increase the proportion

of values in non-unique codes.

After finding the values that deserve a unique code and giving

them associated code values, we equally partition the sorted lists

between each unique code and assign the remaining code values

accordingly. The identification of unique codes is in the worst case

comparable to a single pass over the sample, and the partitioning

of non-unique codes is then a constant time operation.

To make it so that updates cannot force a re-encoding, we do not

allow unique codes to occupy subsequent positions. If in the prior

procedure values vi and vi+1 would be given unique code i and
i + 1 respectively, only the more frequent value is given a unique

code. For values to be assigned subsequent codes, the less frequent

code can contain no more than
2

c of the sampled values, and so

our previous robustness results for no non-unique code having too

many values still holds. Additionally, we do not allow the first and

last codes in the compression map to be unique.

Estimating the Base Data Distribution. For the compression

map to have approximately equal numbers of values in each code,

the sampled histogram created from the empirical CDF needs to

closely follow the distribution of the base data. The Dvoretzky-

Kiefer-Wolfowitz inequality provides bounds on the convergence of

the empirical CDF Fn of n samples towards the true CDF F , stating:

P (supx ∈R ∥Fn (x ) − F (x )∥ ≥ ϵ ) ≤ 2e−nϵ
2

[10, 24]. In this equation

we can treat F , the true distribution, as an unknown quantity and

the column as an i.i.d. sample of F , or we can treat the column as a

discrete distribution having CDF exactly equal to the CDF of the

base data. In both cases, sampling from the base data n times gives

the required result on the distance of our sampled data’s empirical

CDF Fn from the true CDF F 1. We prove in Section 7 that for a one

byte Column Sketch, any column with less than
4

256
of the base

data provides 2× performance benefit over a plain scan. Since a

Column Sketch mapping never assigns a single non-unique code

any proportion of values that it estimates as over
2

256
, we targeted

ϵ = 2

256
. With 200,000 samples as in Figure 3, the chance of an error

of this amount is less than 10
−5
. Both the number of samples n and

the desired ϵ are tunable.

In Appendix G, we provide ways to deal with columns whose

value distribution shifts over time.

3.4 Categorical Compression Maps
Categorical Data and Dictionary Encoding. Unlike numerical

distributions, categorical distributions often have values which

take up significant portions of the dataset. Furthermore, certain

categorical distributions have no need for ordering.

Traditionally, categorical distributions have been encoded us-

ing (optionally order preserving) fixed width dictionary encoding.

Dictionary encoding works by giving each unique value its own

numerical code. A simple example is the states in the United States.

1
Under the case that our column is a considered an i.i.d. sample from F, this should

be without replacement. For the case that our columns CDF is our desired CDF, this

should be with replacement.
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Figure 4: Lossy dictionaries trade
uniqueness for better compression.
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Figure 6: Regardless of the level of skew, the
number of values in non-unique codes is low.

While this might be declared as a varchar column, there will be only

50 distinct values and so each state can be represented by a number

between 0 and 49. Since each distinct value requires a distinct code,

the number of bits needed to store a dictionary encoded value is

⌈log
2
n⌉, where n is the number of unique values.

Lossy Dictionaries. The compression maps for categorical distri-

butions look similar to dictionary encoding, except that rare codes

have been collapsed in on each other, making the number of code

values smaller. The primary benefit of this collapsing is that a scan

of the sketched column reads less memory. However, there is also

a processing benefit as we can choose the number of code values

in a non-injective encoding so that codes are of fixed byte length.

For instance, if we look at a dataset with 1200 unique values, then

a dictionary encoded column needs 11 bits per value. If these codes

are packed densely one after the other, they will not begin at byte

boundaries and the CPU will need to unpack the codes to align

them on byte boundaries. If they are not packed densely, then the

codes are padded to 16 bits, which in turn brings higher data move-

ment costs. With Column Sketches, the lossy encoding scheme

can choose the number of bits to be a multiple of 8, saving data

movement without creating the need for code unpacking.

Shown in Figure 4 is an example comparing an order-preserving

dictionary to an order-preserving lossy dictionary for states in the

United States. Only the unique codes are shown, with the non-

unique codes in the implied gaps. Though this is a simplified ex-

ample, it shows various properties that we wish to hold for lossy

dictionaries. The most frequent values, in this case the most pop-

ulous states, are given unique codes, whereas rarer values share

codes. California is given the unique code 1 whereas Wyoming

shares code 14 with Wisconsin, West Virginia and several other

states. The 7 unique codes cover nearly 50% of the population of

the U.S. The other 50% of the population are divided amongst the 8

non-unique codes, with each non-unique codes having an expected

6.25% of the data. However, this is due to the low number of non-

unique codes. For instance, if we were to change this to cities in

the United States, of which there are around 19,000, and have 128

unique codes and 128 non-unique codes, then each non-unique

code would have only 0.6% of the data in expectation.

Unordered Categorical Data. We first discuss assigning codes

for categorical distributions that have no need for data ordering.

Without the need for ordered code values, we are free to assign any

value to any code value. This freedom of choice makes the space of

possible compression maps very large, but also gives rise to fairly

good intuitive solutions. We have three major design decisions:

(1) How many values should be given unique codes?

(2) Which values do we give unique codes?

(3) How do we distribute values amongst the non-unique codes?

(1) Assigning Unique Codes. The simplest approach to assigning

unique codes is to give the most frequent values unique codes. This

is robust in that it bounds the amount of times we access the base

data for any predicate. More aggressive (but potentially less robust)

approaches which analyze query history to assign unique code

values are presented in Appendix F.

(2) Number of Unique Codes. The choice of how many unique

codes to create is a tunable design decision depending on the re-

quirements of the application at hand. We describe here two ways

to make this decision. One way is to give every value that occurs

with more than some frequency z in our sample a unique code

value, leaving the remaining codes to be distributed amongst all

values with frequency less than the specified cutoff. This parameter

z has the same tradeoffs as in the ordered case, and tuning it to

workload and application requirements is part of future work. In

this paper, z is set to 256, for analogous reasons to the ordered case.
The second way of assigning unique codes is to set a constant value

for the number of codes that are unique. The second method works

particularly well for certain values. For instance, if exactly half the

assigned codes are unique codes, then we can use the first or last

bit of code values to delineate unique and non-unique codes.

(3) Assigning Values to Non-Unique Codes. The fastest method

for ingesting data is to use a hash function to relatively evenly

distribute the values amongst the non-unique codes. If there are

c codes and u unique codes, we assign the unique codes to codes

0, 1, . . . ,u − 1. When encoding an incoming value, we first check

a hash table containing the frequent values to see if the incoming

value is uniquely encoded. If the value is uniquely encoded, its code

is written to the sketched column. If not, the value is then encoded

as u + [h(x )%(c − u)].

Analysis of Design Choices. By far the most important character-

istic for performance is making sure that the most frequent values

are given unique codes. Figures 5 and 6 show the maximum number

of data items given to any non-unique code as well as the average

across all non-unique codes. In both figures, we have 100,000 tuples

given 10,000 unique values, with the frequency with which we see

each value following a Zipfian distribution. The rare values are

distributed amongst the non-unique codes by hashing. In the first

figure, we keep the skew parameter at 1 and vary the number of

unique codes. In the second graph, we use 128 unique codes and
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change the skew of the dataset. As seen in Figure 5, choosing a

moderate number of unique codes guarantees each non-unique

code has a reasonable number of values in the base data. Figure 6

shows that for datasets with both high and low skew, the number

of tuples in each non-unique code is a small proportion of the data.

Ordered Categorical Data. Ordered categorical data shares prop-

erties of both unordered categorical data and of numerical data.

Like numerical data, we expect to see queries that ask questions

about some range of elements in the domain. Like unordered cat-

egorical data, we expect to see queries that predicate on equality

comparisons. Spreading values in the domain evenly across codes

achieves the properties needed by both. Thus the algorithm given

for identifying frequent values in numerical data works well for

ordered categorical data as well.

4 PREDICATE EVALUATION OVER
COLUMN SKETCHES

For any predicate that a Column Sketch evaluates, we have codes

which can be considered the endpoint of the query. For instance, the

comparison B < x given as an example in Section 2 has the endpoint

S (x ). For range predicates with both a less than and greater than

clause, such as x1 < B < x2, the predicate has two endpoints:

S (x1) and S (x2). And while technically an equality predicate has

no endpoint since it isn’t a range, for notational consistency we

can think of S (x ) as an endpoint of the predicate B = x .

SIMD Instructions. SIMD instructions provide a way to achieve

data-level parallelism by executing one instruction over multiple

data elements at a time. The instructions look like traditional CPU

instructions such as addition or multiplication, but have two ad-

ditional parameters. The first is the size of the SIMD register in

question and is either 64, 128, 256, or 512 bits. The second parameter

is the size of the data elements being operated on, and is either

8,16,32, or 64. For example, the instruction _mm256_add_epi8 (_-

_m256i a, __m256i b) takes two arrays, each with 32 elements of

size 8 bits, and produces an array of thirty-two 8 bit elements by

adding up the corresponding positions in the input in one go.

Scan API. A Column Sketch scan takes in the Column Sketch, the

predicate operation, and the values of its endpoints. It can output

a bitvector of matching positions or a list of matching positions,

with the default output being a bitvector. In general, for very low

selectivities a position list should be used and for higher selectivities

a bitvector should be used. This is because at high selectivities the

position list format requires large amounts of memory movement.

Scan Procedure. Algorithm 2 depicts the SIMD based Column

Sketch scan for a one byte Column Sketch. It uses Intel’s AVX

instruction set and produces bitvector output. For space reasons,

we omit the setup of several variables and use logical descriptions

instead of physical instructions for lengthier operations.

The inner part of the nested loop is responsible for the logical

computation of which positions match and which positions pos-

sibly match. In the first line, we load the 16 codes we need before

performing the two logical comparisons we need. For the less than

case, our only endpoint is S (x ), and we check for this value using

the equality predicate on line 10. For each position matching this

predicate, we will need to go to the base data.

Algorithm 2 Column Sketches Scan

Select where B < x , Column Sketch of one byte values

Require: S is a function which is order preserving

1: repeat_sx = _mm128_set1_epi8(S (x ))
2: for each segment b in sketched column do
3: /* Work over the code one block of data at a time */

4: position= b× segment size

5: for number of simd iterations in segment size do
6: /* Perform logical comparisons necessary for predicate evaluation

on each code. The 1,2 denote that this is done twice */

7: codes1,2 = _mm_load_si128(codes_address)

8: definite1,2 = _mm_cmplt_epi8(codes,repeat_sx)

9: possible1,2 = _mm_cmpeq_epi8(codes,repeat_sx)

10: bitvector_def1,2 = _mm128_movemask_epi8(definite1)

11: bitvector_possible1,2 = _mm128_movemask_epi8(possible1)

12: /* Store results we are certain of */

13: bitvector_def = (bitvector_def1 « 16) | bitvector_def2

14: store(bitvector_def) into result

15: /* Check if the boundary values have any matching tuples and

store qualifying positions. */

16: conditional store bitvector_possible1,2 into temp_result.

17: position + = 32

18: /* Check all tuples that we are uncertain about */

19: for position in temp_result do
20: if B[position] == x then
21: set bit position + beginning position in result

After these comparisons, we translate the definitely qualifying

positions into a bitvector and store these immediately. For the

possibly matching positions, we perform a conditional store. Left

out of our code for reasons of brevity, the conditional store first

checks if its result bitvector is all zeros. If it is not, it translates

the conditional bitvector into a position list and stores the results

in a small buffer on the stack. The result bitvector for possibly

matching values will usually be all zeros as the Column Sketch is

created so that no code holds too many values, and so the code to

translate the bitvector into a position list and store the positions

is executed infrequently. As a small detail, we found it important

that the temporary results be stored on the stack. Storing these

temporary results on the heap instead was found to have a 15%

performance penalty.

The Column Sketch scan is divided into a nested loop over

smaller segments so the algorithm can patch the result bitvector

using the base data while the result bitvector remains in the high

levels of CPU cache. If we check the possibly matching positions all

at the end, we see a minor performance degradation of around 5%.

Unique Endpoints. Unique endpoints make the scans more com-

putationally efficient. If the code S (x ) is unique, there is no need to

keep track of positions and no need for conditional store instruc-

tions. Furthermore, the algorithm only needs a single less than

comparison. After that comparison, it immediately writes out the

bitvector. More generally, given a unique code, a scan over a Col-

umn Sketch completely answers the query without referring to the

base data, and thus looks exactly like a normal scan but with less

data movement.

Equality and Between Predicates. Equality predicates and be-

tween predicates are processed similarly to Algorithm 2. For equal-

ity predicates, the major difference is that, depending on whether

the code is unique, the initial comparison only needs to store the
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partial result or the definite result. It can drop the other store in-

struction. For two-sided ranges with two-non unique endpoints,

we have both > and < comparisons and an equality check on both

endpoints. The list of possible matches is the logical or of the two

equality checks, and the list of definite matches is the logical and

of the two inequality comparisons. The rest of the algorithm is

identical. If an endpoint is unique, then similar to the one sided

case, the equality comparison for that endpoint can be removed.

Two Byte Column Sketches. Previous descriptions are based on

single byte Column Sketches. In case we have a two byte represen-

tation, the logical steps of the algorithm remain the same. The only

change is replacing the 8 bit SIMD banks with 16 bit SIMD banks.

5 PERFORMANCE MODELING
The performance model for Column Sketches assumes that perfor-

mance depends on data movement costs. This assumption is justi-

fied in our experiments for byte-aligned Column Sketches, where

we show that a Column Sketch scan saturates memory bandwidth.

Notation. Let Bb be the size of each value in the base data in bytes

and let Bs be the size of the codes used in the sketch (both possibly

non-integer such as 7/8 for a 7 bit Column Sketch). Let n be the

total number of values in the column, and letMд be the granularity

of memory access. Because the modeling in this section is aimed

at main memory, we use Mд = 64. The analysis of stable storage

based systems is given in Appendix D.

Model: Bytes Touched per Value. Let us assume that the Column

Sketch has no unique codes and consider a cache line of data in

the base data. This cache line is needed by the processor if at least

one of the corresponding codes in the sketched column matches

the endpoint of the query. If we assume that there is only one

endpoint of the query, then the probability that any value takes

on the endpoint code is
1

2
8Bs . Therefore, the probability that no

value in the cache line takes on the endpoint code is approximately

1 − ( 1

2
8Bs )

⌈
Mд
Bb
⌉
, with the ceiling coming from values which have

part of their data in the cache line. The chance we touch the cache

line is the complement of that number, and so the total number of

bytes touched per value is

Bs + Bb [1 − (1 −
1

2
8Bs

)
⌈
Mд
Bb
⌉
] (1)

Plugging in 4 for Bb , 1 for Bs , and 64 for Mд , we get the value

1.24 bytes. If we use 8 for Bb , this remains at 1.24 bytes. If we change

this to a query with two endpoints, the
1

2
∗Bs term becomes

2

2
∗Bs and

so the equation becomes Bs +Bb [1− (1−
2

2
8Bs )

⌈
Mд
Bb
⌉
] From here, if

we keep Bs = 1 andMд = 64, then Bb = 4 gives an estimated cost

of 1.47 bytes. Again, using Bb = 8 gives 1.47 bytes as well. Thus,

for both one and two endpoint queries, and for both 4 byte and

8 byte base columns, a Column Sketch scan has significantly less

data movement than a basic table scan.

We now take into account unique codes. Assume we follow the

technique for deciding on unique codes from Section 3.3, where

unique codes are given to values that take more than
1

c of the

sample. Since the codes partition the dataset, the non-unique codes

then contain less than
1

c of the dataset on average. Following similar

logic to above, the result is that creating unique codes decreases the

expected cost of a Column Sketch scan in terms of bytes touched for

non-unique codes. For unique codes the number of bytes touched

per value is 1. More detail is given on how unique codes affect the

model in Appendix E.

Performance Tradeoffs in Code Size. Assume for the moment

that non-byte aligned scans are memory-bound. Equation (1) gives

a simple optimization problem which gives to the approximate

optimal # of bits per code for a Column Sketch scan, with more

bits per code increasing the memory bandwidth needed to perform

the Column Sketch scan but decreasing the number of base data

accesses. After optimizing this value, we have various tradeoffs.

First and most apparent, more bits per code creates a larger memory

footprint for the Column Sketch. Second, more bits per code means

a larger dictionary, which slows down ingestion for ordered Column

Sketches as more comparisons are needed. Finally, more bits per

code makes the performance of the Column Sketch scan more

robust. This is because the left side of equation (1) is constant,

whereas the right side is variable (
1

2
8Bs was the expected proportion

of codes for an endpoint). By increasing the number of bits per code,

we reduce the influence of the right side of the cost equation and

therefore reduce the variance of equation (1). Currently, we find

that equation (1) only holds for byte-aligned code sizes with the

scan performance being worse by around 30% for non-byte aligned

codes, and so the tradeoffs mostly favor Bs = 1 or Bs = 2.

6 SYSTEM INTEGRATION AND
MEMORY OVERHEAD

System Integration. Many components of Column Sketches al-

ready exist partially or completely in mature database systems.

Creating the compression map requires sampling and histograms,

which are supported in nearly every major system. The SIMD scan

given in Section 4 is similar to optimized scans which already exist

in analytic databases, and Zone Maps over the base data can filter

out corresponding positionally aligned sections of a Column Sketch.

Adding data and updating data in a Column Sketch are similar to

data modifications for attributes which are dictionary encoded. In

Section 7, we show that a Column Sketch scan is always faster

than a traditional scan. Thus, optimizers can use the same selec-

tivity based access path selection between traditional indices and

a Column Sketch, with a lower crossover point. As well, Column

Sketches work naturally over any ordered data type that supports

comparisons. This contrasts with related techniques such as early

pruning techniques, which need to modify the default encodings of

various types such as floating point numbers to make them binary

comparable. Finally, Column Sketches makes no change to the base

data layout and so all other operators except for select can be left

unchanged.

MemoryOverhead. Letbs be the number of bits per element in the

Column Sketch. Then we need bs × n bits of space for the sketched

column. If we let bb be the number of bits needed for a base data

element, then each dictionary entry needsbb+1 bits of space, where
the extra bit comes from marking whether the value for that code

is unique. The size of the full dictionary is then (bb + 1) × 2
b
bits.

Notably, b is usually quite small (we use b = 8 at all points in this

paper to create byte alignment) and so the dictionary is also usually

quite small. Additionally, the size of the dictionary is independent
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of n, the size of the column, and so the overhead of the Column

Sketch approaches bs ×n bits as n grows. Additionally, we note that

a Column Sketch works best with compression techniques on the

base column that allow efficient positional access. This is normally

the case for most analytical systems when data is in memory, as

data is usually compressed using fixed width encodings [3].

7 EXPERIMENTAL ANALYSIS
We now demonstrate that, contrary to state of the art predicate

evaluation methods, Column Sketches provide an efficient and ro-

bust access method regardless of data distribution, data clustering,

or selectivity. We also show that Column Sketches efficiently in-

gest new data of all types, with order of magnitude speedups for

categorical domains.

Competitors.We compare Column Sketches against an optimized

sequential scan, BitWeaving/V (noted from here on out as just

BitWeaving), Column Imprints and a B-tree index. The scan, termed

FScan, is an optimized scan over numerical data which utilizes

SIMD, multi-core, and zone-maps. For BitWeaving and Column

Imprints, we use the original code of the authors [23, 33], with

minor modifications to Column Imprints to adapt it to the AVX

instruction set. We additionally compared against a SIMD version

of BitWeaving [29], but found the SIMD version performed slightly

less efficiently. The B-tree utilizes multi-core and has a fanout which

is tuned specifically for the underlying hardware. In addition, for

categorical data we compare Column Sketches against BitWeaving

and “SIMD-Scan” from [38, 39], which is a SIMD scan that operates

directly over bit-packed dictionary compressed data. Since we use

SIMD at various points that are not referring to “SIMD-Scan”, we

refer to this technique as CScan. All experiments are in-memory;

they include no disk I/O.

Scan API. The outputs of the scan procedure for a Column Sketch,

BitWeaving, Column Imprints and FScan are identical. As an input

the scan takes a single column and as an output it produces a single

bitvector. The B-tree index scan takes as input a single column

and outputs a list of matching positions sorted by position. This

is because B-trees store their leaves as position lists and so this

optimizes the B-tree performance.

Infrastructure. We run our experiments on a machine with 4

sockets, each equipped with an Intel Xeon E7-4820 v2 Ivy Bridge

processor running at 2.0GHz with 16MB of L3 cache. Each processor

has 8 cores and supports hyper-threading for a total of 64 hardware

threads. The machine includes 1TB of main memory distributed

evenly across the sockets and four 300GB 15K RPM disks config-

ured in a RAID-5 array. We run 64-bit Debian “Wheezy” version

7.7 on Linux 3.18.11. To eliminate the effects of NUMA on perfor-

mance, each of the experiments is run on a single socket. We give

performance measurements in terms of cycles per tuple. For this

machine and using a single socket, a completely memory bound

process achieves a maximum possible performance of 0.047 cycles

per byte touched by the processor.

Experimental Setup. We use a single byte Column Sketch for

each experiment and unless otherwise noted, the table consists of

100 million tuples. When conducting predicate evaluation, each

method is given use of all 8 cores. The numbers reported are the

average performance across 100 experimental runs.

7.1 Uniform Numerical Data
Fast and Robust Data Scans. Our first experiment demonstrates

that Column Sketches provide efficient performance regardless

of selectivity. We test over numerical data of element size four

bytes, distributed uniformly throughout the domain, and we vary

selectivity from 0 to 1. The predicate is a single sided < comparison,

with the endpoint of the query being a non-unique code of the

Column Sketch. For this experiment only, we report performance

as milliseconds per query, as the metric cycles/tuple is not very

informative for the B-Tree.

Figure 7 shows the results. It depicts the response time for all

five access methods as we vary selectivity. For very low selectivities

below 1%, the B-tree outperforms all other techniques. However,

once selectivity reaches even moderate levels, the B-tree perfor-

mance significantly degrades. This is because the B-tree index needs

to traverse the leaves at the bottom level of the tree, which stalls

the processor and so wastes cycles. In contrast to the B-tree, the

Column Sketch, Column Imprints, BitWeaving, and FScan view

data in the order of the base data and consistently feed data to the

processor.

During predicate evaluation, BitWeaving, Column Imprints, the

Column Sketch, and the optimized scan all continually saturate

memory bandwidth. However, the Column Sketch performs the best

by reading the fewest number of bytes, outperforming the optimized

scan by 2.92×, Column Imprints by 1.8 − 4.8× and BitWeaving by

1.4×. Figure 8 breaks down these results, showing the number of

L1 Cache Misses for the Column Sketch against its two closest

competitors, FScan and BitWeaving. The results align closely with

the performance numbers, with the Column Sketch seeing 1.39×

fewer L1 cache misses than BitWeaving and 3.54× fewer L1 cache

misses than the optimized scan.

In performing predicate evaluation, the optimized scan and Col-

umn Imprints see nearly every value, leading to their high data
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movement costs. This is because the Zone Map and Column Imprint

work best over data which is clustered; when data isn’t clustered,

as is the case here, these techniques provide no performance ben-

efit. BitWeaving and the Column Sketch also see every value, but

decrease data movement by viewing fewer bytes per value. BitWeav-

ing achieves this via early pruning, but this early pruning tends to

start around the 12th bit. Additionally, even if BitWeaving elimi-

nates all but one item from a segment by the 12th bit, it may need

to fetch that group for comparison multiple times to compare the

13th, 14th, and so on bits until the final item has been successfully

evaluated. In contrast to BitWeaving, the Column Sketch prunes

most data by the time the first byte has been observed, with Figure

9 showing that a single endpoint query accesses around 0.4% of

tuples in the base data. As well, in the rare case an item hasn’t

been resolved by the first byte, the Column Sketch goes directly

to the base data to evaluate the item. This makes sense, once early

pruning has reached a sparse stage where most tuples have or have

not qualified, query execution should directly evaluate the small

number of values left over.

Figure 10 shows the performance of the Column Sketch, BitWeav-

ing, and the optimized scan in terms of cycles/tuple across single

comparison and between predicates. In both cases, the Column

Sketch performs significantly better than FScan and BitWeaving. For

Fscan, its performance across both types of predicates is completely

memory bandwidth bound and constant at 0.195 cycles/tuple. For

BitWeaving, its performance on the between predicate is nearly half

of it single comparison performance, going from 0.093 cycles/tuple

to 0.167. However, this is a side effect of the distribution code we

were given, which evaluates the < predicate completely before eval-

uating the > predicate after. If the two predicates were evaluated

together, we would expect to see only a small decrease in perfor-

mance. For the Column Sketch, it sees a minor drop in performance

from 0.066 cycles/tuple to 0.074 cycles/tuple. This small drop in

performance of the Column Sketch comes from having two non-

unique endpoints, and not from increased computational costs. In

the case one of the two endpoints is unique, the performance stays

at 0.066 cycles/tuple. If both endpoints are unique, the performance

is 0.053 cycles/tuple.

ModelVerification.The performance of the Column Sketch nearly

exactly matches what our model predicts. The model predicts that

we would touch 1.24 bytes for a single non-unique endpoint, and

1.47 bytes for two endpoints. Taking into account the result bitvec-

tor and multiplying this by our saturated bandwidth performance

of 0.047 cycles/byte, we get an expected performance from our

model of 0.064 for a single endpoint and 0.075 for two endpoints.

Beta BitWeaving (cycles/code) Column Sketch (cycles/code)

1 (Uniform) 0.092 0.066

5 0.112 0.066

10 0.118 0.066

50 0.139 0.066

500 0.152 0.066

5000 0.188 0.066

Table 2: Scan Performance under Skewed Datasets

Robustness to a Bad Compression Map. Figure 11 shows the

performance of the Column Sketch asmore andmore data is put into

the single non-unique endpoint of our < comparison. The leftmost

data point in the graph shows the expected performance of the

Column Sketch, i.e. when the non-unique code has
1

256
of the data,

and each subsequent data point has an additional
1

256
of the data

assigned to that code. Notably, our analysis from Section 3.3 says

that data points beyond the first 4 points will occur with probability

less than
1

10
5
. The eventual crossover point when the performance

of a Column Sketch degrades to worse than the performance of a

basic scan is when the single endpoint holds
20

256
of the data.

Larger Element Sizes. Our second experiment shows how per-

formance changes for traditional scans, BitWeaving, and Column

Sketch scans as the element size increases from four to eight bytes.

The setup of the experiment is the same as before, i.e., we observe

the response time for queries over uniformly distributed data. We

do not use the index or Column Imprints from now on, as across all

experiments the two closest competitors are FScan and BitWeaving.

The results are shown in Figure 12.

For FScan, the larger element size means a proportional decrease

in scan performance, with codes/cycle going from 0.193 to 0.386.

However, for a Column Sketch, we can control the given code size

independently of the element size in the base data. Thus, since

we aim the Column Sketch at data in memory, we keep the code

size at one byte. The scan is then evaluated nearly identically to

the scan with base element size four bytes, and has nearly iden-

tical performance (0.067 instead of 0.066 cycles/code). Similarly,

BitWeaving prunes almost all data by the 16th bit and so sees a

negligible performance increase of 0.01 cycles/code. The overall

performance increase from using the Column Sketch is 5.76× over

the sequential scan and 1.4× over BitWeaving.

7.2 Skewed Numerical Data
Experiment Setup. For skewed data we use the Beta distribution

scaled by the maximum value in the domain. The Beta distribution,

parameterized by α and β is uniform with α = β = 1 and becomes

more skewed toward lower values as β increases with respect to α .
We use this instead of the more commonly seen zipfian distribution

as the zipfian distribution is more readily applied to categorical

data with heavy skew, whereas the Beta distribution is continuous

and better captures numerical skew. In the experiment, the element

size is 4 bytes. We keep α at 1, and vary the β parameter. All queries

are a range scan for values less than 2
8 − 1 = 255. Table 2 depicts

the results (FScan is not included as its performance is identical to

Figure 7).

Robustness to Data Distribution. As the distribution gets more

skewed towards low values, the high order bits tend to be mostly 0s.

For BitWeaving, this means the high order bits don’t give much data
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(b) Equality, Non-Unique Code
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Figure 13: Column Sketches is the fastest scan across unique and non-unique codes, and across equality and range comparisons

pruning, and as a result the performance of BitWeaving tends to

look more like the full column scan. This is a weakness of using en-

coding which preserves differences. If there are even a trace amount

of high values, then all code values need to keep the high order bits,

which will be nearly all zero. For BitWeaving, we see performance

degradation fairly quickly, as even β = 5 produces a notable per-

formance drop. As β increases, the performance degrades more. In

contrast, the performance of the Column Sketch is stable, with the

ability to prune data unaffected by the data distribution change.

7.3 Categorical Data
Categorical Attributes. Our second set of experiments verifies

that Column Sketches provide performance benefits over categori-

cal attributes as well as numerical attributes. Unlike the numerical

attributes seen in the previous experiments, categorical data con-

sists of a significant number of frequent items. The Column Sketch

was encoded with values taking up more than
1

256
of the data being

given unique codes. The resulting data set had 65 unique codes and

191 non-unique codes, with unique codes accounting for 50% of the

data and non-unique codes accounting for 50% of the data.

For the dictionary compressed columns, we vary the number

of unique elements so that the value size in the base data is be-

tween 9 and 16 bits. This matches the size of dictionary compressed

columns which take up the majority of execution time in industrial

workloads [39]. For columns whose base data takes less than 9 bits,

Column Sketches provide no benefit and systems engineers should

use other techniques.

In Figure 13a, we see that using a Column Sketch to perform

equality predicate evaluation is faster than BitWeaving and CScan.

Surprisingly, the improvement is more more than a 12% improve-

ment over BitWeaving, even for 9 bit values, and sees considerably

more improvement against CScan. For Column Sketches, the per-

formance improvement increases up to bit 12 against BitWeaving,

at which point the performance of BitWeaving becomes essentially

constant. For the CScan, the improvement varies based off the base

column element size. Due to word alignment, CScan does better on

element sizes that roughly or completely align with words (such as

12 and 16 bits). However, for all element sizes, the computational

overhead of unpacking the codes and aligning them with SIMD

registers makes it so CScan is never completely bandwidth bound.

For non-unique codes, the performance of the Column Sketch is

only slightly worse. The performance drops by 15% as compared to

unique codes, with the Column Sketch remaining more performant

Technique Numerical Data Categorical Data

(No New Values)

Categorical Data

(New Values)

BitWeaving 50.823 26.139 80.155

Column Sketches 5.483 5.379 5.531

Table 3: Time to load all batches (sec.)

than BitWeaving and CScan across all base element sizes. This is

again due to the very limited frequency with which the Column

Sketch looks at the base data; in this case, the Column Sketch is

expected to view the base data for one out of every 256 values.

We additionally conduct range comparisons on categorical data,

as shown in Figure 13c. The results are similar to Figure 13b. For

Column Sketches we observe similar performance both when we

stored the the base data as a text blob and when it was stored using

non order-preserving dictionary encoded values. This is notable,

since both blob text formats and non-order preserving dictionary

encoded values are easier to maintain during periods in which new

domain values appear frequently.

7.4 Load Performance
Experiment Setup. We test load performance for both numerical

and categorical data, showing that Column Sketches achieve fast

data ingestion regardless of data type. For both data ingestion ex-

periments, we load 100 million elements in five successive runs.

Thus at the end, the table has 500 million elements. In the numer-

ical experiment, the elements are 32 bits and the Column Sketch

contains single byte codes. In the categorical experiment, the ele-

ments are originally strings. For BitWeaving, we turn these strings

into 15 bit order preserving dictionary encoded values, so that the

BitWeaved column can efficiently conduct range predicates. For the

Column Sketch, we encode the strings in the base data as non-order

preserving dictionary encoded values, and use an order-preserving

Column Sketch. As shown in the prior section, this is efficient at

evaluating range queries. The time taken to perform the dictionary

encoding for the base data is not counted for BitWeaving or Col-

umn Sketches. The time taken to perform encoding for the Column

Sketch is counted.

The categorical ingestion experiment is then run under two

different settings: in the first setting, each of the five successive

runs sees some new element values, and so elements can have

their encoded values change from run to run. Because there are

new values, the order preserving dictionary needs to re-encode

old values, and so previous values may need to be updated. In the

second setting, there are no new values after the first batch.
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Fast Ingestion via Column Sketches. In Table 3, we see that Col-
umn Sketches outperform BitWeaving in data ingestion by 5× - 16×.

For Column Sketches, they have fast data loading performance as

the only transformation needed on each item is a dictionary lookup.

The data can then be written out as contiguous byte aligned codes.

As well, regardless of the new values in each run, the Column Sketch

always has a non-unique code for each value and thus never needs

to re-encode its code values. Thus, a Column Sketch is particularly

well suited to domains that see new values frequently, with the

Column Sketch allowing for efficient range scans without requiring

the upkeep of a sorted dictionary. In contrast to Column Sketches,

BitWeaving tends to have a high number of CPU operations to

mask out each bit and writes to scattered locations. More impor-

tantly, new element values can cause prior elements to need to

be re-encoded. Notably, this isn’t particular to BitWeaving, but an

inherent flaw in any lossless order-preserving dictionary encoding

scheme, with the only solution to include a large number of holes

in the encoding [7].

8 RELATEDWORK
Compression and Optimized Scans. The tight integration of

compression and execution into scans in column-oriented databases

started in the mid-2000’s with MonetDB and C-Store [4, 42, 42].

Since then work has been done integrating numerous types of com-

pression into scans, notably dictionary compression, delta encod-

ing, frame-of-reference encoding, and run-length encoding [16, 43].

Nowadays, mixing compression and execution is standard and is

seen in most commercial DBMSs [6, 12, 20, 32]. Recently, IBM cre-

ated Frequency Compression [31, 32], exploiting data reordering

for better scan performance.

Each of these techniques is lossless and designed to be used for

base data. Thus, these techniques could achieve higher compression

ratios through the use of lossy instead of lossless compression,

reducingmemory and disk bandwidth during scans. The potential of

lossy compression for predicate evaluation has been hypothesized

in the past but no solution has been presented [28].

Early Pruning Extensions. In [22], Li, Chasseur, and Patel look

into lossless variable-length encoding schemes for Bit-Sliced In-

dices that are aimed at making the high-order bits informative in

query processing. This solves the problem of data value skew and

[22] additionally exploits more frequently queried predicate values.

If skew is heavy enough such that frequent values or frequently

queried values would require less than 8 bits, than the resulting

bit-sliced index would be faster for querying those values than a

Column Sketch. Furthermore, as in traditional bit-sliced indices,

the resulting index is helpful even when the column’s code values

are smaller than 8 bits.

However, [22] does not consider lossy encoding schemes. By

keeping the encoding schemes lossless, the padded variable length

encoding schemes have larger memory footprint and have more

expensive write times. As well, the resulting padded variable length

encoding schemes are expensive to generate, with substantial run

time spent on generating coding schemes for code sizes of 24 bits

or less. An interesting line of future work is mixing the techniques

from [22] with Column Sketches, and using padded bitweaved

columns inside the sketched column of a Column Sketch.

Lightweight Indexing. Lightweight data skipping techniques such
as Zone Maps and their equivalent provide a way to skip over large

blocks of data by keeping simple metadata such as min and max

for each column. They are included in numerous recent systems

[15, 20, 31, 36, 40] and how to best organize both the data and

metadata is an area of ongoing research [25, 30, 33–35]. Amongst

recent approaches, Column Imprints stands out as similar in nature

to Column Sketches[33]. Column Imprints also use histograms to

better evaluate predicates, but do so for groups of values at a time

instead of single values at at time.

For datasets with clustering properties, data skipping techniques

notice that entire groups of values would evaluate the predicate

to be either true or false, and so provide incredible speedup in

these scenarios. For datasets that are not clustered, lightweight

indices can’t evaluate groups of data at a time and so scans need

to check each value individually. In contrast, Column Sketches is

able to handle these queries as it already works on an element by

element basis. Thus, lightweight indices should be used in tandem

with Column Sketches, as both have low update costs and target

different scenarios.

Other Operators over Early Pruning Techniques. The use of
early pruning techniques has been generalized to other operators

beyond predicate evaluation [13, 28]. Most of this work can be

applied to Column Sketches. For instance, a MAX operator can look

at b high order bits and prune all records which are less than the

maximum value seen using only those b bits, as they are certainly

not the max. This is similar to Column Sketches, where any value

that is not the maximum on the Column Sketch bytes is clearly not

the maximum value in the column.

SIMD Scan Optimizations. There is a recent flurry of research

on how to best integrate SIMD into column scans [14, 21, 29, 41].

The unpacking methods in this paper are based off work by Will-

halm et al. where they use SIMD lanes to unpack codes one code

per SIMD lane [38, 39]. Improvements in the computational per-

formance of scans is complementary to Column Sketches. Column

Sketches are designed to be a scannable dense array structure, and

so improvements in evaluating predicates apply equally to Column

Sketches.

9 CONCLUSION
In this paper, we show that neither traditional indexing nor light-

weight data skipping techniques provide performance benefits for

queries with moderate selectivity over unclustered data. To provide

performance improvements for this large class of queries, we intro-

duce a new indexing technique, Column Sketches, which provides

better scan performance regardless of data ordering, data distribu-

tion and query selectivity. Compared to state-of-the-art approaches

for scan accelerators, Column Sketches are significantly easier to

update and are more performant on scans over a range of differing

data distributions. Possible extensions of Column Sketches include

usage for operators other than equality and range predicates, such

as aggregations, set inclusion predicates, and approximate query

processing.
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A PROOF OF THEOREM 1
Theorem 1. Let X be any finite domain with elements x1,x2,

. . . ,xm and order x1 < x2 < · · · < xm . Let each element xi have
associated frequency fi with

∑m
i=1 fi = 1. Let Y be a domain of

size n and have elements y1,y2, . . . ,yn . Then there exists an order-
preserving function S : X → Y such that for each element yi of Y ,
either

∑
x ∈S−1 (yi ) fx ≤

2

n or S−1 (yi ) is a single element of X .

Proof. We consider the greedy strategy for assigning codes to

values of X . Assign S (x1), S (x2), . . . , S (xc−1) = y1, where c is the
first number such that

∑c
i=1 fi >

2

n . Then let S (xc ) = y2. Now by

definition,

∑
x ∈S−1 (y1 ) fx ≤

2

n and S−1 (y2) is a single element of X .

Furthermore,

∑m
i=c+1 fi ≤

n−2
n . Now, let us assume we continue

assigning y3 and y4,y5 and y6, . . . , yn−1 and yn in a similar fashion,

assigning codes to the odd yi until the next code would make∑
x ∈S−1 (yi ) fx ≥

2

n or until we have assigned xm a code. Then its

clear that for all odd i ,
∑
x ∈S−1 (yi ) fx ≤

2

n and for all even i , S−1 (yi )
is a single element. Furthermore, by yn we are guaranteed to have

seen all xm since for each pair (yi ,yi+1) up until we reach xm , we

have

∑
x j ∈S−1 (yi )∪S−1 (yi+1 ) fj >

2

n . □

Research 9: Similarity Queries & Estimation SIGMOD’18, June 10-15, 2018, Houston, TX, USA

869

https://aws.amazon.com/s3/
http://hadoop.apache.org/


B PROOF OF COROLLARY 2
Corollary 2 could be proven simply by creating any ordering on

the domain X and then using Theorem 1. However, the separate

proof of Corollary 2 is quite short and the proof gives an explicit

construction of S that produces buckets with less variance in the

number of values per non-unique code.

Corollary 2. Let X be any finite domain with elements x1,x2,
. . . ,xm and let each element have associated frequency f1, f2, . . . , fm
such that

∑m
i=1 fi = 1. Let Y be a domain of size n and have elements

y1,y2, . . . ,yn . Then there exists a function S from X to Y such that
for each element yi of Y , either

∑
x ∈S−1 (yi ) fx ≤

2

n or S−1 (yi ) is a
single element of X .

Proof. Let Xu = {xi | fi ≥
1

n }. Since
∑n
i=1 fi = 1, it follows

that there are less than n elements in Xu . Give each value in Xu a

unique code and let u = |Xu |. Then there are n − u codes left and∑
{i :xi<Xu } fi ≤ 1 − u

n .

Without loss of generality, let the values that have frequency less

than
1

n be x1,x2, . . . ,xm−u . We can map the elements xm−u+1, . . . ,
xm to codes yn−u+1, . . . ,yn , so it suffices to show that there exists

a map S which maps x1,x2, . . . ,xm−u to y1,y2, . . . ,yn−u in a way

that

∑
x ∈S−1 (yi ) fx ≤

2

n for 1 ≤ i ≤ n − u.

Let yj be a code such that

∑
x ∈S−1 (yj ) fx ≥

2

n . As each element

in S has f < 1

n , yj must be composed of multiple elements. Let p be

one of those elements. By the law of averages, there exists a bucket

yk with

∑
x ∈S−1 (yk ) fx <

1

n . Then we can change S from mapping

p to yj to mapping p to yk and

∑
x ∈S−1 (yk ) fx <

2

n . Because X is a

finite space, repeated application of this argument will eventually

make

∑
x ∈S−1 (yj ) fx <

2

n for all j. □

C MULTI-COLUMN SKETCHES
Overview.Multi-Column Sketches take as input one or more col-

umns for which the Column Sketch will be non-order preserving,

and (optionally) a single column for which order is preserved. We

expect Multi-Column Sketches to be of use in combining categorical

variables that are queried frequently together, with perhaps a single

numerical attribute. Like single columnColumn Sketches, we expect

Multi-Column Sketches to be benficial for columnar data when the

domain of the Column Sketch is larger than 256; however, the size

of the domain is measured in terms of the possible joint values of

the column, and so Multi-Column Sketches are useful in combining

various categorical attributes which individually require less than

9 bits. Because a single encoding cannot support order on multiple

attributes, we do not expect Multi-Column Sketches to be of use for

multiple numerical attributes which are queried frequently together.

Building Multi-Column Sketches.Multi-Column Sketches are

constructed via sampling much like a regular Column Sketch, with

the sample being sorted if order is necessary. For the purposes of

frequent values and unique codes, values are considered frequent

only if the joint tuple of values from each column is above the

threshold
1

b . For example, a Multi-Column Sketch on (Job, City)

would consider the joint value (“Software Engineer”, “San Fran-

cisco”) for frequent item status but not “Software Engineer” or “San

Francisco” individually.

Modeling Multi-Column Sketches. The derivation of the model

for Multi-Column Sketches is similar to the analysis for single

column Column Sketches. Let b1,b2, . . . ,bm be the base columns

with base value element sizes of Bb1 , . . . ,Bbm . If the columns are

stored in columnar fashion, with each column in a separate memory

region, then the bytes touched per value is:

Ccol = Bs +
m∑
i=1

Bbi [1 − (1 −
1

2
Bs

)

Mд
Bbi ]

For data which is stored in a column group, let BG =
∑m
i=1 Bbi

be the data size of a column group value. This value is strictly larger

than the size of each individual attribute’s data value, and so any

given memory region of sizeMд contains fewer tuples. In particular,

for a region size Mд , we have ⌈
Mд
BG ⌉ tuples per region. It follows

that the bytes touched per value is

Ccд = Bs + BG [1 − (1 −
1

2
Bs

)
Mд
BG ]

Since

Mд
BG <

Mд
Bbi

for all i , then Ccд < Ccol and so a Multi-Column

sketch over a column group strictly dominates the performance of

a Multi-Column group over columns which are stored separately.

Experimental Setup. In all experiments for Multi-Column Col-

umn Sketches the column group being sketched consists of three

columns of 8 bit dictionary encoded values. The values in each col-

umn are generated independently of one another, and each column

is generated using one of two distributions. In the first, the values

in each column are generated using the uniform distribution. In the

second, the values in each column are generated using the zipfian

distribution with z = 1.0.

We compare the performance on equality predicates of the Multi-

Column Sketch to BitWeaving and an optimized scan. For the opti-

mized scan and the Multi-Column Sketch, the base data in the three

columns is stored in either columnar format or group of columns

format. For BitWeaving, the data is always stored bit-sliced.

Experimental Results. Figure 14a shows the performance of the

Column Sketch, BitWeaving, and the optimized scan over uniformly

distributed data and over columnar base data. The optimized scan

is bandwidth bound and gets a performance of 0.156 cycles per

code. The BitWeaving scan is similar to a BitWeaving scan over

a single column with 24 bits, and so the performance is 0.091 cy-

cles/code, matching Section 7. The Multi-Column Sketch scan sees

some overhead compared to the equality predicates conducted in

Section 7.3. This is expected; the small value sizes mean there are

more values per cacheline, and so a greater chance of some code in

any cacheline matching the query endpoint. Then, for each match-

ing code, we need to go check each value in the base data. Still, the

Multi-Column Sketch is faster than BitWeaving by 20% and faster

than the optimized scan by 2×.

When the base data is changed to being in column group format,

the number of values per cacheline of base data decreases and so

more data is skipped. The result is that the performance of the

Multi-Column Sketch rises by 25%, as seen in Figure 14b, bringing

its speedup over BitWeaving to 50% and over the optimized scan to

2.8×. Finally, Figure 14c shows the same robustness to data distri-

bution holds over Multi-Column Sketches, with the Multi-Column

Sketch having the same performance over the zipfian dataset.
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Figure 14: Column Sketches retain an edge over the state-of-
the-art across different data layouts.
D PERSISTENT STORAGE SYSTEMS
We can use the modeling of Section 5 to model how a Column

Sketch would perform over systems aimed at persistent storage.

Compared to in-memory systems, the main change is the increase

inMд fromMд = 64 toMд = 4K .
We start with the model for performance for a single endpoint

query from Section 5:Cost = Bs +Bb [1− (1−
1

2
8Bs )

Mд
Bb ] Previously,

forMд = 64 we had that with Bs = 1,Bb = 4, the amount of bytes

touched was 1.24. With those parameters, the value of 1 − (1 −

1

2
8Bs )

Mд
Bb is 0.12. By moving to disk based page sizes, this value is

0.98, and thus we have almost no chance of skipping data pages.

However, for two byte Column Sketches, i.e. Bs = 2, the probability

of accessing any data page is only 0.02, and the expected number of

bytes touched per value is 2.08. For element size Bb = 8, the chance

of accessing any disk page is 0.992 and the number of bytes touched

per value is 2.06. Thus, we expect two byte Column Sketches to be

of use for persistent storage based systems.

The previous analysis assumes that the data is in columnar for-

mat and laid out entirely sequentially in persistent storage. If data is

laid out in persistent storage in some other format, such as in row-

store or PAX format [5], then the effective size of Bb may be much

larger. In this case, the term 1− (1− 1

2
8Bs )

Mд
Bb becomes larger, and a

Column Sketch skips more data. In particular, for large enough Bb ,
a single byte Column Sketch has a good chance of skipping data

and is be useful for data in persistent storage. Assuming that the

model above is perfect, we find that using 4K pages the effective

base value size needed is 7.7 (with larger gains as the base value

size rises further).

E PERFORMANCE MODEL: ACCOUNTING
FOR UNIQUE CODES

In Section 5, we explained that uniquely encoding all values which

appear with frequency greater than
1

2
Bb

improved the expected se-

lect performance over both uniquely encoded and non-uniquely en-

coded endpoints. Here, we go into more detail about how uniquely

encoding values affects Column Sketch performance.

The performance model for unique codes is trivial and says that

we simply touch Bs bytes. For non-unique codes, the logic is similar

to Section 5. Under the assumption that there are no unique codes,

the chance any value takes on the given non-unique endpoint code

is 1/28Bs . To account for unique codes, we introduce the variables n
and fn , with n the number of non-unique codes, and fn the portion

of values which are encoded by non-unique codes. For n, fn we

have 0 ≤ fn ≤ 1 and 1 ≤ n ≤ 2
8Bs

.

If we assume that each non-unique code contains roughly the

amount of values as its expectation, then the chance that any given

value takes on a given non-unique endpoint is simply
fn
n . The

chance we skip any given cacheline is then 1 − (1 −
fn
n )

Mд
Bb , and

that the number of bytes touched per value is

Bs + Bb [1 − (1 −
fn
n
)
Mд
Bb ]

F FREQUENTLY QUERIED VALUES
Tomodel the cost of frequently queried values, we continue from the

work presented in Appendix E. The eventual optimization problem

is provably NP-hard, and so we provide solutions to this problem

based on heuristics.

LetU be thet set of unique codes, and C be the total number of

codes we want to assign. For each code c ∈ C , we have the cost of
querying c as




Bs if c ∈ U

Bs + Bb [1 − (1 − fc )
Mд
Bb ] if c < U

To optimize the cost of a given workload over a dataset, we start by

incorporating into our model the variable qc , with qc representing

the portion of queries that query on code c . Our total workload cost
is then: ∑

c ∈U
qcBs +

∑
c<U

qc

(
Bs + Bb [1 − (1 − fc )

Mд
Bb ]

)
Assuming our goal is to minimize this value over all assignments

of our codes, then we can simplify this equation to:∑
c<U

qc

(
1 − (1 − fc )

Mд
Bb

)
We now provide initial steps toward optimizing this assignment,

with further optimization part of future work. Before delving into

detail, we note the following: first, an analytical solution to this

process depends on a product of terms including estimates ofqv and

fv , the proportion of all queries and data values that are on some

value v . To properly estimate these terms to sufficient accuracy

such that their product is accurate, significantly more samples will

be needed than in Section 3. Second, if we let

Mд
Bb
= 1, then we have

as a subproblem the optimization form of the partitioning problem,

which is known to be NP-hard.

Unordered Column Sketches. In unordered Column Sketches,

we have no dependencies between values and their given codes.

Thus, we start by taking the codes which cost the most according to

our cost model and making them unique. To do so, sort the values

on qv (1− (1− fv )
Mд
Bb ), which we will denote as expression д(v ). An

optimal solution to the problem will assign unique codes to some

m values which have the largest result on д. Let qN = 1 −
∑
c ∈U qc

and fN = 1 −
∑
c ∈U fc . Then, to estimate the numberm which is

optimal, we assign values to the set of unique codes U as long as

the expression

qN (1 − (1 −
fN

C − |U |
)
Mд
Bb )

decreases. After, we continue along the list of values sorted on д(v )
and greedily assign the remaining values to the non-unique code

which has the lowest value of

qc

(
1 − (1 − fc )

Mд
Bb

)
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Figure 15: Column Sketches improve scan performance on
TPC-H queries

Ordered Column Sketches. In the case that we have a number

of consecutive codes that are non-unique, the optimal solution tries

to place partition points into the sorted list of values such that

д(c ) = qc

(
1 − (1 − fc )

Mд
Bb

)
is relatively equal for all codes. Given a sorted list of n values

with qi , fi values for each, this can be done in order of the values

by deciding which partitions shift their endpoints over by a code.

For instance, if have 256 partitions, upon reading a value v , the
algorithm could decide to shift partitions 130-256 over by a single

value, and leave the endpoints of partitions 101-129 unchanged.

The decision of which code gains a new value is made greedily;

for every new value which we examine, the code which sees the

smallest increase in д by accepting a value does so.

We start the procedure for order-preserving Column Sketches by

assuming allC codes are non-unique and performing this procedure,

taking timeO (nC ). We keep track of the value in each codeC which

has the largest result forд(v ). We then proceed to examine the value

in each code c with largest д(v ). If giving v the unique code c and
shifting the other values into codes c − 1 and c + 1 produces a

decrease in ∑
c<U

qc

(
1 − (1 − fc )

Mд
Bb

)
then we give v unique code c . Otherwise, we do not. Additionally,

this procedure is again barred from giving consecutive codes unique

values, and cannot give the first or last codes unique values.

G SHIFTING DOMAINS
In order to retain robust performance, the compressionmap needs to

retain a relatively even number of values assigned to each code. The

simplest way to do this is to count the number of values assigned

to each code, and re-encode when some code is both non-unique

and has too large a proportion of the dataset. Counting the number

of values assigned to each code is easily done, as it can be done in

one pass as data is ingested or as the Column Sketch is created. Ad-

ditionally, this doesn’t take too much space as tracking the number

of values assigned to each code requires a single integer per code.

Since the number of codes is usually quite small, this is a small

memory overhead.

When re-encoding the Column Sketch, the process is similar

to its original creation and involves a sampling phase followed

by an encoding of the base column. Because the Column Sketch

is a secondary index, this process can be done in the background

and does not halt query processing. Additionally, the database can

choose to use the pre-existing Column Sketch in the interim, or it

can drop it immediately.

Finally, we look at the case of clustered data such as date columns

and similar. First, we note that columns with clustered data usually

do well with lightweight indices such as Zone Maps or Column

Imprints, and so there exist prior techniques which better suit these

scenarios. However, Column Sketches should retain there robust

behavior in these scenarios and so we provide twoways to deal with

correlated data. The first is to perform horizontal partitioning per

some amount of data. The second technique is to run a regression

on column order and column position at the initial creation time

of a Column Sketch. If the correlation is high, then we leave some

number of codes at the end of a Column Sketch empty. The number

of codes to leave empty, e , is a tunable parameter. The Column

Sketch scan will perform on average like each non-unique code has

1

256−e of the data, and the Column Sketch will need to re-encode

the Column Sketch every time the base data reaches
256

256−e × its

prior size.

H TPC-H
To run TPC-H queries we integrated Column Sketches into Mon-

etDB. The results support the main observations from the synthetic

workload experiments, with Column Sketches providing a large

boost in scan performance.

To perform the integration in MonetDB, we introduced a new

select operator for Column Sketches that takes as input the same

API as the standard MonetDB select, i.e., a single column and a

predicate. However, instead of the usual output of MonetDB which

is a position list, Column Sketches outputs a bitvector. Thus, we

also wrote a new fetch operator to use instead of the original fetch

operator in MonetDB that works with position lists. The rest of

the operators used in the TPC-H plans are the original MonetDB

operators.

Furthermore, we did not do any changes in the MonetDB opti-

mizer to use those new operators automatically. Instead, we took

the plans created from the explain command inMonetDB and edited

those plans to use Column Sketches. Then we fed those plans di-

rectly into the MAL interface of MonetDB. This means our results

do not include the optimizer cost, and so for fairness we also remove

this cost from MonetDB.

Overall, we setup these experiments by varying selectivity and

we compare plainMonetDB againstMonetDBwith ColumnSketches

(Monet w/CS) enabled. We use TPC-H scale factor 100 and provide

performance experiments against query one (Q1) and query 6 (Q6)

of TPC-H. The results can be seen in Figure 15.

For both queries, Column Sketches improves on the scan perfor-

mance of MonetDB. In Q1, this improvement is less apparent as

the majority of the time spent in query execution is spent doing

aggregation. In contrast, Q6 sees a much larger performance im-

provement as much more time is spent doing predicate evaluation.

For both queries, this improvement is roughly constant across all

selectivites. As a percentage of query time, the improvement is

largest for low selectivities and smaller for higher selectivities. The

improvement for Q1 ranges from 19% at 1% selectivity to 3% at

98% selectivity. The improvement for Q6 ranges from 54% at 1%

selectivity to 41% at 98% selectivity.
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