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ABSTRACT
Domain encoding is a common technique to compress the columns
of a column store and to accelerate many types of queries at the
same time. It is based on the assumption that most columns contain
a relatively small set of distinct values, in particular string columns.
In this paper, we argue that domain encoding is not the end of the
story. In real world systems, we observe that a substantial amount
of the columns are of string types. Moreover, most of the memory
space is consumed by only a small fraction of these columns.

To address this issue, we make three main contributions: First we
survey several approaches and variants for dictionary compression,
i. e., data structures that store the dictionary of domain encoding in
a compressed way. As expected, there is a trade-off between size of
the data structure and its access performance. This observation can
be used to compress rarely accessed data more than frequently ac-
cessed data. Furthermore the question which approach has the best
compression ratio for a certain column heavily depends on specific
characteristics of its content. Consequently, as a second contribu-
tion, we present non-trivial sampling schemes for all our dictionary
formats, enabling us to estimate their size for a given column. This
way it is possible to identify compression schemes specialized for
the content of a specific column.

Third, we draft how to fully automate the decision of the dic-
tionary format. We sketch a compression manager that selects the
most appropriate dictionary format based on column access and up-
date patterns, characteristics of the underlying data, and costs for
set-up and access of the different data structures. We evaluate an
off-line prototype of a compression manager using a variation of
the TPC-H benchmark [15]. The compression manager can con-
figure the database system to be anywhere in a large range of the
space / time trade-off with a fine granularity, providing significantly
better trade-offs than any fixed dictionary format.

1. INTRODUCTION
In columns stores, domain encoding is a widely used technique

for compression and query acceleration, especially for string columns
[40, 1, 44, 29]. It consists of replacing the values of a column by
a unique integer value ID and storing the mapping between val-
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Figure 1: Distribution of the number of values per column.

ues and IDs in a separate data structure, the dictionary1. Under
the assumption that many values occur multiple times in a column,
domain encoding leads to a compression of the data, since every
value has to be stored only once and the codes are typically much
smaller than the original values. The resulting list of codes can
be compressed further using integer compression schemes [1, 29].
Furthermore, most queries can be processed on the codes directly,
which can be done faster thanks to the smaller and fixed size data
type [1, 42, 29, 41].

In this paper, we argue that it is necessary to go beyond domain
encoding. During the development of the SAP HANA database
[18, 19], we gained several insights about the before-mentioned
assumption and about other characteristics of the usage of string
dictionaries in real-world business applications. To share these in-
sights, we show some statistics of two enterprise resource planning
(ERP) and one business intelligence warehouse (BW) system that
the SAP HANA database department uses for testing: ERP System
1 is an anonymized SAP ERP base system (the core set of tables
that every SAP ERP system has), ERP System 2 is a snapshot of
a productive customer ERP system, BW System is a snapshot of
a productive customer BW system. Our first insight concerns the
distribution of the number of distinct values per string column, i. e.,
the distribution of dictionary sizes in terms of number of entries.

1Note that sometimes, domain encoding is also called dictionary
compression. However when we talk about dictionary compression
in this paper, we mean compressing the dictionary.
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Figure 1 shows the distribution in all three systems: by far most
dictionaries are very small and only few are very big. For every
order of magnitude of smaller size, there is half an order of mag-
nitude less dictionaries of that size. This means that the dictionary
sizes roughly follow a Zipf distribution. The high number of small
dictionaries matches the motivation of domain encoding.
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Figure 2: Distribution of memory consumption of all dictionar-
ies depending on their number of entries.

Our other insights are more surprising and seem to be ignored by
the prior work so far:

• The vast majority of columns in our systems are string columns,
especially in the ERP systems (73%, 77% and 54% in above
systems respectively).

• Large dictionaries have the largest share in memory con-
sumption, even though there are not many of them. Fig-
ure 2 shows the memory consumption of the dictionaries of
columns with different numbers of distinct values in our ex-
ample systems. It is remarkable that in ERP System 1, 87%
of the memory is consumed by the dictionaries with more
than 105 entries, which only represents 0.1% of all dictio-
naries. The skew is even more extreme in ERP System 2,
where the same memory share is consumed by just 0.01% of
the dictionaries, while it is 3% in the BW System scenario.

• Many of the string columns are of a specific format, some-
times because they actually represent different types such as
dates, but often just because they represent a specific domain
such as hashes, UUIDs, URLs, product codes, etc. Some
of these could be modelled by a more appropriate data type
today, but many legacy applications still use strings.

We propose to address these issues by going beyond domain en-
coding and applying compression directly on the dictionaries. We
concentrate on the dictionaries of the read-optimized store of the
typical column-store architecture since they are both read-only and
usually larger.

Dictionary compression naturally fits into the architecture of in-
memory column-stores: First, memory is a valuable resource. Higher
compression increases the amount of useful data a single system is
capable to handle and makes more space for indices and query pro-
cessing intermediates. Second, dictionaries reside in RAM at all

times, so explicit dictionary compression is even more important
for fast access to single entries. In contrast the page level com-
pression commonly used in disk-based systems, where entire pages
are transparently compressed with a general purpose compression
scheme, would have a considerably higher cost [34]. Third, there
are several points in the life cycle of columns in a typical column
store where it makes sense to invest the time to compress the dictio-
nary: When the write-optimized store is periodically merged into
the read-optimized store or when aged data is moved into separate
partitions, the dictionary needs to be reconstructed anyways. At
this time the format can be changed without unnecessary recon-
struction costs.

The contributions of this paper consists in proposing answers to
open questions in how to integrate dictionary compression. For
one, there is a lot of work on string dictionary compression from
other research communities, so the first question is which compres-
sion format has attractive characteristics for in-memory column-
stores. Consequently, in the first part of this paper, we implement
and compare several interesting dictionary formats. As expected,
different data structures provide different trade-offs between com-
pression and access performance: higher compression usually means
slower access. But there are also compression formats that can ben-
efit from specific properties of certain columns, such as a fixed size
or very restricted character set. The choice of the best dictionary
format therefore heavily depends on the data. We contribute a sam-
pling method to answer this question: for every dictionary variant
we survey, we build a compression model that is capable to accu-
rately predict its size by only looking at a small fraction of the data.
With these estimated sizes and the performance characteristics of
our survey, we have all the information at hand to manually pick a
dictionary format for a given situation.

For easier set-up and maintenance, we also contribute first steps
towards taking the decision of the dictionary format automatically.
This decision is complex since it involves at least the two dimen-
sions space and time. Our compression models provide knowledge
about the size dimension, but this information should be comple-
mented by information such as global memory pressure and the
size of other data structures of the column. The time dimension is
more complicated, since it is composed of the construction time of
the data structure, its construction frequency, the access time of the
forward and reverse look-up operations, and the respective access
frequencies. To keep the decision reasonably cheap, we map all
available local information onto one of the two axes, size and time,
and let a global compression manager decide what kind of trade-off
to choose depending on global information such as memory pres-
sure or CPU usage. Since we only change the compression scheme
when a dictionary is rebuilt anyways, the overhead of the automatic
selection stays at a minimum.

To validate our approach, we evaluate an off-line prototype of
our compression manager. Since it uses mostly local information,
we believe that it is easily possible to apply the same principle for
online decisions. We use workload and data of a modified TPC-H
benchmark [15] and compare the performance and memory con-
sumption of an automatic selection to the default dictionary for-
mat of the SAP HANA database. By applying an automatic selec-
tion strategy, we can reduce the over memory consumption to 60%
while maintaining the performance of the benchmarks.

The rest of the paper is organized as follows. We first discuss
related work in Section 2. Then we present a survey of dictionary
formats in Section 3 and show how to estimate their size in Sec-
tion 4. This forms the base for our automatic dictionary selection
framework presented in Section 5, which is evaluated in Section 6.
Section 7 concludes the paper.
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2. RELATED WORK
Many column stores employ domain encoding as compression

scheme [19, 40, 1, 44, 38]. Most of them also apply additional
compression on the resulting codes. However to the best of our
knowledge there is no work about dictionary compression in this
context.

The idea to specialize compression schemes for a certain content
type is as old as the idea of compression itself. In the context of
row-store databases, Cormack [13] proposes a compression scheme
that switches between a set of Huffman trees, each optimized for a
different implicit field type, thus adapting compression to different
classes of content. Domain encoding itself is also a general way to
particularly compress a column with a certain domain. By select-
ing the dictionary format with the best compression rate for each
column, we do something similar on another level.

There is a large body of work about automatic physical design for
disk based database systems. All major traditional database ven-
dors offer tools for assisting or replacing the database administra-
tor (DBA) in many physical design decisions, including Microsoft
[12, 11, 3, 8], IBM [5], and Oracle [17]. There are also publications
from research [2]. Most of the above works concerns indexes and
use variants and optimizations of an off-line what-if analysis but
there exist also proposals for on-line solutions [37, 36, 8]. How-
ever, all of the above concentrate on secondary data structures such
as indexes, while the dictionary as storage of the column content is
a primary data structure. This slightly changes the problem: while
the question about index selection is whether or not to create them,
the question about dictionaries is which format to choose.

None of the above include compression as physical design de-
cision. The first work on this topic was done by Idreos et al. [24],
which was later improved by Kimura et al. [25]. For the first time,
they take size and performance of several index compression schemes
into account when selecting a set of indexes for a system. Like we
do with our dictionaries, they describe strategies to estimate the
size of their compressed indexes. Since these estimation methods
are very specific to their index format, they cannot directly be ap-
plied to dictionaries.

In column-stores, there has been some work tackling the problem
to select the right column format. Abadi et al. [1] give a decision
tree for DBAs and Paradies et al. [32] propose how to automatically
select the format of the column depending on compression proper-
ties. While the above work concentrates on the vector of references
into the dictionary, we propose a similar approach for the dictionary
itself.

3. SURVEY OF DICTIONARY FORMATS
In this section, we survey a selection of string dictionary formats

from literature in the context of domain coding in column-stores.
We implemented a large number of variants of them, which we
evaluate and compare on a variety of data sets. This survey is the
base of the subsequent section, where we show how to estimate the
size of our dictionary variants using sampling strategies.

3.1 Basics
We start by defining the requirements for string dictionaries in

the context of an in-memory column-store.

DEFINITION 1 (STRING DICTIONARY). A string dictionary is
a read-only data structure that implements at least the following
two functions:

• Given a value ID id, extract(id) returns the corresponding
string in the dictionary.

• Given a string str, locate(str) returns the unique value ID
of str if str is in the dictionary or the value ID of the first
string greater than str otherwise.

In the context of an in-memory column-store, the following prop-
erties are desirable:

• An access to a string attribute value in a column-store database
often corresponds to an extract-operation in a string dictio-
nary. Thus, it is important that extract operations can be per-
formed very fast.

• A typical use case for the locate operation is a WHERE-
clause in an SQL statement that compares a string attribute
against a string value. Here, only one locate operation is
needed to execute the statement. Hence, the performance of
the locate operation is not as critical as the extract perfor-
mance.

• We concentrate on the static dictionaries of the read-optimized
store, so no updates are needed. However, when the write-
optimized store is merged into the read-optimized store, their
dictionaries also have to be merged. Hence, the construction
time should be minimized, too.

DEFINITION 2 (DICTIONARY COMPRESSION RATE). Let str1,
str2, . . . , strn be a set of strings stored in a string dictionary d and
|d| the memory size of the compressed dictionary. The compression
rate of d, comp(d), is defined as

comp(d) =

∑n
i=1 |stri|
|d|

3.2 Compression Schemes and Data Structures
There is a large corpus of text compression schemes in the lit-

erature that can be used to compress the strings in the dictionary.
A very popular statistical technique is Huffman encoding [23]. It
creates minimum redundancy codes based on the occurrence fre-
quency of characters. Huffman codes are prefix codes, i. e., given
the starting point of a sequence of Huffman codes, the beginning
and the end of each code can be determined without additional in-
formation.

Hu-Tucker codes [26] are similar to Huffman codes, except for
an additional restriction. Given an ordered sequence of characters
c1 < c2 < · · · < cn, the corresponding Hu-Tucker codes h(ci)
have the same binary order h(c1) < h(c2) < · · · < h(cn). This
leads to a slightly worse compression ratio but the binary order of
two text strings compressed by Hu-Tucker encoding is the same as
the initial order of the uncompressed strings. Since the elements
in a dictionary usually are stored in ascending order, the order pre-
serving property can be used to improve the search for a string and
thus, the performance of the locate operation.

If the strings consist of only a small set of characters, a folklore
compression technique is Bit Compression. Here, each character
occurring in the string dictionary is represented by a constant num-
ber of bits b ≤ 8, b being the smallest number of bits sufficient to
represent every occurring character. If the codes representing the
characters are ordered according to the order of the characters and
the uncompressed strings are binary sorted, the initial sort order is
preserved. Due to the fixed code length, Bit Compression can be
implemented more efficiently than Huffman encoding, which espe-
cially increases the performance of the extract operation.

A different approach to compress text is to create a minimal
grammar from which the text can be constructed [10]. The Re-
Pair algorithm [27] is an approximate solution to this approach. It
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replaces frequent pairs of symbols by a new symbol. Pairs of sym-
bols are replaced until there is no more pair occurring at least two
times. The compression algorithm can be implemented to run in
O(n) for an input text of length n. Despite the linear complexity,
this compression algorithm is quite complex and hence, increases
the construction time of a string dictionary.

Another folklore approach that operates on sequences of char-
acters is the N-Gram compression technique. It collects frequent
character sequences of fixed length n (n-grams) and replaces them
by 12 bit codes. Since 12 bits are usually not enough to encode
all sequences, only the 212 − 256 = 3840 most frequent n-grams
are mapped to 12 bit codes. The remaining 256 codes are used to
encode single characters. Due to the fixed code length, the extract
operation can be implemented very efficiently. On the other hand,
this algorithm does not preserve the sort order of the strings and
hence, is not optimal for locate intensive dictionaries.

Literature also provides us with a variety of dictionary data struc-
tures. Front Coding [43] is a common technique to store sorted
string dictionaries in a compressed way. The method makes use
of the fact that consecutive text strings in a sorted string dictionary
tend to share a common prefix. If two strings share a common pre-
fix, it has to be be stored only once. The remaining suffixes can be
further compressed by a statistical or dictionary-based compression
algorithm.

In [7], Brisaboa et al. give an overview of string dictionaries.
They mention Hashing [14] as a popular method to realize a basic
dictionary. The strings are mapped to an index by a hash function.
The evaluations show that the locate performance of this approach
is quite good, yet both extract performance and compression rate
are dominated by other approaches. Hence, hashing is not consid-
ered in this work.

There are other classes of pointer-based structures that could im-
plement string dictionary functionality, like compressed text self-
indexes [31, 20, 21], prefix trees [26, 22], suffix trees [39, 30],
compressed suffix trees [35, 9], or directed acyclic word graphs [6,
16]. We do not consider these data structures since practical im-
plementations of the many pointers are highly non-trivial, although
there are interesting advances in recent literature (for example [4]).

3.3 Dictionary Implementations
After reviewing the data structures and compression schemes in

the literature, we now show how to combine them to implement
compressed string dictionaries. In particular we implemented the
following string compression schemes:

• Huffman / Hu-Tucker Compression (hu): Hu-Tucker com-
pression is used only if the order preserving property is needed.

• Bit Compression (bc)

• N-Gram Compression (ng2 / ng3): Frequent 2-grams (ng2)
or 3-grams (ng3) are replaced by 12 bit codes.

• Re-Pair Compression (rp 12 / rp 16): Re-Pair Compression
using either 12 bits (rp 12) or 16 bits (rp 16) to store a rule.

We apply these compression schemes to two main dictionary
data structures:

• Array (array): One class of dictionary implementations is
based on a simple consecutive array containing the string
data. Pointers to each string in this array are maintained in a
separate array.

• Front Coding (fc block): The strings of a dictionary are di-
vided into blocks, which are encoded using Front Coding as

explained above. The resulting blocks are then stored in a
consecutive array. Pointers to each block are maintained in
a separate array. The prefix length values of one block are
stored in a header at the beginning of the block.

All of the string compression schemes (plus using uncompressed
strings) can be applied to the strings of both data structures yielding
a total of 14 variants. We denote them by concatenating the names
of the data structure and the compression scheme, e. g., array for
an array with uncompressed strings or fc block hu for a front coded
dictionary with Huffman-encoded prefixes and suffixes.

Additionally, we implemented four special-purpose variants:

• Inline Front Coding (fc inline): In order to improve sequen-
tial access, we implement a Front Coding variant that stores
the prefix lengths interleaved with the string suffixes.

• Front Coding with Difference to First (fc block df ): In or-
der to trade some space for speed, we implement another
Front Coding variant that stores the suffixes differing from
the first string of a block instead of the difference to the pre-
vious string. Hence decompression of a string essentially
consists of two memcpys.

• Fixed Length Array (array fixed): For very fast access to
small dictionaries, we realized an array implementation that
does not need pointers to the string data. For each string, the
same amount of space is allocated in a consecutive array.

• Column-Wise Bit Compression (column bc): For columns
with strings that all have the same length and a similar struc-
ture, we devised a special compression scheme. First we di-
vide the dictionary into blocks. Then we vertically partition
each block into character columns, which are then bit com-
pressed.

Note that all dictionary variants presented above are order-preserving,
i. e., they do not change the mapping between values and IDs. Futher-
more they all allow access to a single tuple without decompressing
other tuples or even the entire dictionary.

3.4 Evaluation of Dictionary Implementations
In the previous section, several dictionary implementations were

introduced. To evaluate their performance, we test them on several
data sets. We selected the following data sets to cover the most
common cases. More details about them can be found in [33].

• Ascending decimal numbers of length 18, padded with zeros
(asc),

• A list of English words2 (engl),

• Tokens from Google Books3, based on the 1-gram dataset
version 20120701, consisting of all words occurring 3 or
more times, with special characters removed (1gram),

• Salted SHA hashes of passwords, all starting with the same
prefix describing the hash algorithm (hash),

• Material numbers extracted from a customer system (mat),

• Strings of length 10, containing random characters (rand1),
2http://code.google.com/p/shooting-
stars/source/browse/trunk/Collaborative+
Text+Editor/dictionary/fulldictionary00.txt (state: 2013/03/27)
3http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
(state: 2013/04/13)
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• Strings of variable length, containing random characters (rand2),

• Source code lines, contained in a column of a customer sys-
tem (src), and

• URL templates, extracted from a test system (url).

The implementation is realized in C++. All dictionary variants
are integrated in a unified test framework. The tests are compiled
with GCC 4.3.4 and run on a machine with 24GB of main memory
and two Intel Xeon X5550, each with 4 cores running at 2.67GHz.
The operating system is Ubuntu 10.04 x86_64.
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Figure 3: Trade-off between compression rate and extract run-
times for all dictionary variants on the src data set.

Figure 3 shows the trade-offs between compression rate and ex-
tract runtime of our 18 dictionary implementations on the src data
set. We will show later how these results differ for the other data
sets. The src set contains a lot of redundancy, so almost all com-
pression schemes work as intended. Consequently most of the
implementations are close to a pareto optimal curve, yielding the
expected trade-off between “fast but big” and “small but slow”.
Generally speaking the Front-Coding variants are smaller and con-
siderably slower than their array equivalents with the same string
compression scheme. Similarly the compression schemes range
from very fast and big (uncompressed), over slightly slower but
considerably smaller (ng2, ng3, bc, hu) to maximal compression
with considerably worse performance (rp 12, rp 16). Variants with
ng2, ng3, and bc obviously incur computing overhead compared to
uncompressed schemes, but since their fixed size code words can
be extracted with more CPU friendly code, they are faster than hu
with its variable size codes and much faster than rp 12’s and rp 16’s
grammar evaluation. As expected fc block df is just a bit faster but
larger than fc block, and fc inline is just a bit slower on the random
extracts of this test. Still all three variants of Front Coding have
very similar performance and provide a very interesting trade-off
between space and speed. array fixed and, to quite an extreme ex-
tent, column bc have very unattractive properties on this data set,
since they are factors larger than the data itself (about 2 and 3.5
times respectively) without improving extract performance. How-
ever, their large size is not surprising, since both variants are opti-
mized for fixed length columns, which is not at all given in the src
data set.

While the qualitative message of Figure 3 is representative, the
quantitative picture is quite different on other data sets: For each
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Figure 5: Extract runtime of the fastest dictionary implemen-
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data set, there are “fast but big” and “small but slow” variants and
everything in between. However the variants actually lying on the
pareto optimal curve are considerably different. For example ng2
and ng3 have an interesting trade-off between compression rate and
speed when the entire text only consists of the about 212 − 256 n-
grams that have proper 12-bit codes. However if the text contains
many more n-grams, only backup codes will be used, resulting in
bad, possibly negative compression rates and slower extract run-
times. The bad properties of array fixed and column bc in Figure 3
are other examples.

Figure 4 and Figure 5 show how the best variants for the two
extremes of the trade-off, highest possible compression rate and
fastest possible extract time, vary depending on the data set. The
plots show two generally attractive variants and, for each data set,
the best value achieved by any variant (“Best”). Figure 4 shows
that the best compression rate is often achieved by fc block rp 12,
but in three cases column bc is considerably better — three data
sets with constant string lengths. For all other data sets, column
bc performs very badly: the compressed dictionary is larger than
uncompressed data. In the case of the completely random data of
the rand1 data set, fc block rp 12 also has a compression rate below
1. Figure 5 shows a similar picture for the fastest variants: on most
data sets, the uncompressed variants array and array fixed achieve
the same overall fastest performance, but in some cases array fixed
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is considerably better (again data sets with constant string lengths),
whereas the picture is inverted in other cases.

So far we have only seen the trade-off between size and extract
times. Matters are further complicated if we also take locate and
construction times into account. Due to space constraints, we can-
not present our according findings in this paper, but a more exten-
sive evaluation of the dictionary variants can be found in [33].

3.5 Summary
As our evaluation has shown, there are two challenges in picking

the “right” dictionary variant: First, their characteristics concern-
ing size and access performance heavily depend on the data they
contain. To solve this challenge, we present advanced sampling
techniques in the next section. Second, there are various trade-offs
to pick from and the “best” trade-off depends on the usage pattern
of each particular dictionary instance. In the subsequent Section 5,
we sketch how our compression manager selects a trade-off taking
the state of the database system into account.

4. PREDICTING RUNTIME AND COMPRES-
SION RATE

In this section, we describe a prediction framework that mod-
els the properties of the different dictionary implementations for a
given string column. The predictions of the framework will serve
as the basis for an automatic dictionary selection in the subsequent
section.

4.1 Runtime
We model the runtimes of each of the three methods of a dictio-

nary as a constant time per access (for extract and locate) or time
per tuple (for construction). We determine these constants with
microbenchmarks as the average of the respective runtimes of the
methods on the datasets of Section 3.4. New dictionary variants
can be added simply by determining their constants with the same
benchmarks.

Note that this is a rather simplistic model. However in exper-
iments not presented here, we investigated the accuracy of more
sophisticated models for the runtimes and did not find more robust
runtime predictions. For details we refer to [33]. We conclude that
constant runtimes are a good approximation and leave more precise
modelling as an open question for further research.

4.2 Compression Rate
For estimating the dictionary sizes, we propose more sophisti-

cated models than for the runtime. In particular they preserve the
properties of the compression better than naively compressing a
sample of the strings and extrapolating the resulting size to the en-
tire data set, while being cheaper to calculate.

4.2.1 Compression Models
In the following we give formulas for all variants presented in

Section 3.3, breaking down the size of a dictionary to properties
of the data set that are either known beforehand or can be sam-
pled. Table 1 describes the properties used by the models. The
properties that are later sampled are written in italic. As input we
assume a (sorted) dictionary, which in our case is the output of the
domain encoding of the corresponding string column. If not other-
wise mentioned, all sizes are given in bytes.

First we model the effect of the dictionary class on its size. The
array class dictionaries consist of the (possibly compressed) data of
the entire strings and of pointers to the beginning of the dictionary

Property Description / Sampling Method

# strings Number of strings in the dictionary
|pointer| Platform dependent, usually 4 or 8 byte
# blocks Number of blocks (calculated from # strings)

|block header| Block header size (implementation dependent)
# raw chars Sum of all string lengths

|data| Size of the compressed strings of a dictionary
format

|raw data| Size of the uncompressed strings of a dictio-
nary format

# chars Number of distinct characters in a sample of
strings / suffixes

entropy0 0-order entropy of the characters on a sample
of strings / suffixes

coverage Calculated with # covered n-grams and
|raw data| on sample of strings / suffixes

compr rate Compression rate of Re-Pair on a sample of
strings / suffixes

|max string| Maximum of string lengths of sample of
strings / suffixes

avg block size Average block size of sample of blocks

Table 1: Properties of dictionaries used for the compression
models.

entries. Their size can be calculated as

size = |data|+ # strings · |pointer|

The Front Coding class dictionaries (including fc inline and fc
block df ) only need a pointer per block, but also a block header.
Furthermore, the front coding reduces the number of characters per
block. We calculate their size as

size = |data|+ # blocks · (|pointer|+ |block header|)

Now we model the effect of the string compression schemes
applied to the two dictionary classes. The intent is to first use
the formulas given above to calculate the overhead needed by the
class itself as well as which parts of the strings are stored and then
to calculate independently the space needed by these strings after
string compression. We denote the size of the original string parts
raw data and the size of their compressed form |data|.

For uncompressed strings the size of the data is simply

data = |raw data|

For Bit Compression, every character is replaced by a new code
of size dlog2 # charse bits if there are # chars distinct characters
in the dictionary. The data size can thus be modelled as

data = |raw data| · 1/8 · dlog2 · # charse

Huffman / Hu-Tucker compression approximates a coding where
each character is assigned a code with a number of bits equal to the
characters order-0 entropy. We assume that the difference due to
rounding is not too big in practice and model the size of Huffman
encoded text as

data = |raw data| · entropy0

We model n-Gram compression with the ratio of n-grams in the
text covered by the 212 − 256 proper (i. e., non-backup) codes. We
call this ratio coverage and calculate it as follows: First we count
the occurrences of all n-grams in the dictionary, select the 212 −
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256 most frequent ones, and calculate the sum of their occurrences
denoted # covered n-grams. coverage can then be calculated as

coverage = # covered n-grams/(|raw data| − n+ 1)

As the compression replaces either n characters (for a covered n-
gram) or a single character (as backup) by a single 12 bit code, we
calculate the size of n-gram compressed data as

data =
12

8
· ( 1

n
· coverage + (1− coverage)) · |raw data|

The complex, grammar-based approach of Re-Pair compression
makes it difficult to be modelled precisely. We fall back to assum-
ing a uniform compression rate for the entire dictionary and calcu-
late the size of the compressed data as

data =
|raw data|
compr rate

Finally, we model the special purpose variants in isolation. In the
array fixed variant, all strings take the same space, i. e., the space
of the longest string. We calculate the size of a dictionary as

size = # strings · |longest string|

For column bc, we reduce the size of a dictionary to the average
size of its blocks:

size = # blocks · average block size

The above formulas reduce the size of each dictionary variant
to properties that are either known a priori or can be sampled (see
Table 1). For sampling the properties, we draw samples uniformly
at random with a granularity of dictionary entries or blocks as de-
scribed in the tables. The formulas above are then instantiated with
the sampled properties in order to produce an estimation of the size
of each dictionary variant for a given data set. A new dictionary
variant can be added to the framework by defining an according
model and possibly adding new properties that need to be sampled.

Note that for ease of presentation, some of these formulas are
slightly simplified. In order to make the predictions more precise,
they can be extended for example by corrections for cut-off due to
half-used machine words. For details we refer again to [33].

4.2.2 Evaluation
We now evaluate the accuracy of the predictions of the dictionary

sizes by our framework. In particular we empirically answer the
question of how much sampling is needed to get reasonably good
estimations. To that aim we compare the estimated sizes with the
actual memory consumption and calculate the relative error of the
predictions as

err =

∣∣∣∣Real Size− Predicted Size
Real Size

∣∣∣∣
We determine this prediction error for all our dictionary variants

and for all data sets of Section 3.4 for a variety of sample sizes. The
result is shown in Figure 6. For a particular sample size, the distri-
bution of errors for all combinations of dictionary variants and data
sets is summarized as a box plot. In this plot, the line inside of each
box indicates the median, the box itself indicates the first and third
quartiles, and the whiskers indicate the closest datum closer than
1.5 times the inter quartile range away from the quartiles, while the
small crosses indicate outliers4.

The first observation concerns the sample size 100%, where the
properties from the previous section are determined precisely and
4This is the default configuration of box plots in R and PGFPlots.
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Figure 6: Prediction error of the compression models

the deviance of the prediction from the actual size is due to a sim-
plification by the model and not due to sampling. The plot shows
that more than 75% of all the predictions are less than 2% off the
correct value and all values except some outliers are off by less than
5%.

We now discuss how sampling affects the prediction error. For
a sample size of 10%, the prediction errors increase with 75% of
all estimations still having an error below 4%. For a sample size of
1%, the estimations become significantly worse. 25% of all esti-
mations now deviate more than 10% from the correct value. While
this may still be acceptable, there is now a high number of outliers
and some of them have extreme errors of 100− 500% (outside the
plotted range). However, these extreme mispredictions stem mostly
from very small dictionaries, where 1% sample size represents too
few entries. We fix this corner case by taking at least 5000 string
into the sample. The last column of the plot shows that we now get
an error of less than 8% in more than 75% of the predictions and
virtually all predictions are less than 20% off. This seems like a
good trade-off between sampling costs and accuracy and is there-
fore used throughout the rest of the paper.

4.3 Summary
The prediction framework presented in this section enables us to

estimate the extract, locate, and construct runtimes as well as the
compression rate of the different dictionary implementations. For
a given string column, this gives us the possibility to choose the
trade-off between speed and space of its dictionary similar to what
Figure 3 shows in Section 3.4. Using sampling, we are able to
greatly reduce the estimation overhead while the precision remains
sufficiently good. Until here our work can be used in a tuning ad-
visor to assist the database administrator in taking the decision of
the format of the most important dictionaries manually. In the fol-
lowing section, we will go a step further and draft a compression
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manager that selects an appropriate dictionary variant completely
automatically.

5. AUTOMATIC SELECTION
In this section, we present the different components of our com-

pression manager, which decides for every string dictionary what
implementation should be used. First we motivate on an intuitive
level how the compression manager should make its decisions. We
then show how we automate these decisions, before giving details
about the different steps involved in the process.

5.1 Problem Statement and Solution Overview
There is a large number of factors that may influence the fact

which dictionary variant is the optimal one for a given string col-
umn. Our aim is to monitor or collect these factors and translate
them into an automatic decision. Intuitively, the following factors
should be taken into account:

• The access pattern of a column is an important factor. Columns
that are accessed very frequently should use a fast dictio-
nary implementation, while mostly passive data should be
compressed more heavily and intermediate cases should have
something in-between. If either locate or extract dominates,
we may want to choose an implementation that optimizes the
relevant method over the other.

• Similarly, update-intensive columns need a string dictionary
supporting fast construction times.

• As discussed in detail in Section 3.4, the properties of the im-
plementations, in particular their compression rate, depend
on the content of the column. Furthermore these properties
may change depending on the hardware.

• The size of the dictionary should also be taken into account.
As we have seen in Figure 2, a very small fraction of the
dictionaries dominates their overall memory consumption.
Compressing these huge dictionaries more heavily is there-
fore beneficial for the overall system. However, the mem-
ory consumption of these large dictionaries should be put
into relation with the memory consumption of the rest of the
column. A dictionary roughly as large as its column vector
should be compressed more than a dictionary whose size is
dominated by its column vector.

Figure 7 summarizes these factors and shows how they are taken
into account for the selection of the dictionary implementation: To
keep the decision reasonably cheap, we reduce the factors local
to the column to the two dimensions space and time. This way
we have a variety of space / time trade-offs to choose from for ev-
ery column provided by the different dictionary variants. The re-
maining factors are reduced to a single, global trade-off parameter,
which is kept up-to-date by the compression manager.

This decouples the local decisions from the global factors: The
compression manager monitors the global factors and asynchronously
updates the trade-off parameter when necessary. Every time a dic-
tionary is reconstructed, this parameter is taken into account by the
selection strategy in order to select an optimal space / time trade-
off.

Furthermore the decisions of the dictionary format of different
columns are also decoupled. This is important because they are
taken at different points in time: Depending on the usage of a table,
the write-optimized stored of the table runs full sooner or later and
needs to be merged into the read-optimized store. This entails a
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• Construct Runtime per String
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Database System

• Occupied Memory Size
• Available Memory Size

Dictionary Size

Runtime in
Dictionary

Selection
Strategy

Dictionary
Selection

Per Dictionary Variant
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Figure 7: Overview of the information taken into account by
the compression manager for selecting the dictionary imple-
mentation.

reconstruction of the dictionaries of the concerned table. The deci-
sion of their format is then simply based on the current value of the
global trade-off parameter.

5.2 Reduction of Dimensionality
We now show how we can reduce all of the above factors to either

the time dimension or the space dimension. In the space dimension,
we have the content of the dictionary and the size of the rest of the
column, i. e., the size of the (compressed) column vector. To reduce
this to a single value, we simply view the column as a single unit
and take the aggregated size of column vector and dictionary.

Formally this can be expressed as follows: Let D be the set of
dictionary implementations, c the column in question, and dict_size(d, c)
the dictionary size of c using implementation d ∈ D. Then the size
of c using d can be calculated as

size(d, c) = dict_size(d, c) + columnvector_size(c)

We suppose that columnvector_size(c) is known, since the
column vector is a product of domain encoding just like the dic-
tionary. dict_size(d, c) can be estimated using the prediction
models described in Section 4.2.

With this definition, the size of the dictionary is put into rela-
tion with the size of the entire column. If the dictionary is small
compared to the table, the size will be dominated by the size of the
column vector. Consequently differences in the compression rate
of different dictionary variants will only have a small influence on
the total column size.

In the time dimension, we have the runtime of the three meth-
ods extract, locate, and construct. Let us assume that during the
lifetime of a single dictionary instance extract and locate are called
#extracts and #locates times respectively and that the dic-
tionary contains #strings entries. Then we can calculate the
total runtime time(d) spent in this dictionary instance:

time(d) =#extracts · timee(d)+

#locates · timel(d)+

#strings · timec(d)
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The runtimes of the methods, time∗(d), are constants deter-
mined at installation time by microbenchmarks as described in Sec-
tion 4.1. We assume that at the point in time when a new dictionary
is created, the number of calls to the three methods is known or
an approximation can be deduced from the usage statistics of the
corresponding column or table.

As the final value for the time dimension, we normalize this run-
time over the lifetime of the dictionary, lifetime(d). The life-
time of a dictionary corresponds to the time between two periodic
merges of the read-optimized store into the write-optimized store
of the column. Formally this translates to

rel_time(d) =
time(d)

lifetime(d)

With this definition, the construction time of a dictionary is amor-
tized over the lifetime of the object and long living dictionaries can
afford more expensive construction time than those that are recon-
structed frequently.

5.3 Determining the Global Trade-Off Param-
eter

We now describe how a global value for ∆c is determined, the
parameter used to choose a space / time trade-off of the dictionary
format. It is periodically updated by the compression manager,
which monitors the system state, in particular the memory con-
sumption. If the memory consumption is above a certain threshold,
the memory manager decreases the value of ∆c. Dictionaries cre-
ated after this point in time will use implementations favoring small
size a bit more over access speed than before. If on the contrary
the memory consumption is below a certain threshold, the memory
manager increases the value of ∆c. New dictionaries will now use
faster implementations instead.

One can describe this process as a closed loop feedback control
system. The reference input is the desired amount of free memory.
The measured output is the currently available free memory. In or-
der to avoid over-shooting, this value is smoothed before feedback.
Using the difference between the (smoothed) measured and the de-
sired amount of free memory, the compression manager can then
decide to adjust ∆c. Figure 8 illustrates the feedback loop.

Compression
Manager

Database
System

Workload

∆c

Smoothing

Desired
Free

Memory Error
Free

Memory

−

(Smoothed)
Free Memory

Figure 8: Feedback loop to configure ∆c.

Now that we have defined the global trade-off parameter ∆c, we
can select a dictionary variant. The following section will introduce
several possible selection strategies.

5.4 Trade-Off Selection Strategy
In this section we incrementally develop a strategy to use the

global trade-off parameter to locally select a space / time trade-off
provided by the different dictionary implementations for a given
column. The main idea is similar to the approach of Lemke et al.
[28]: To select a space / time trade-off for their data structure, they
use the fastest variant that is not larger than the smallest variant
plus a fraction of ∆c. While they have a fixed value for ∆c, we let

the compression manager control this value. Furthermore, they do
not take access frequency into account.

For a first, illustrative approach, we apply this principle in a naive
manner to the trade-off introduced above. LetD, c, and size(d, c)
be defined as above. Then the size of the smallest dictionary variant
sizemin can be formalized as

sizemin = min
d∈D

(size(d, c))

and the set D̃const of variants not larger than sizemin plus a fraction
of ∆c can be formalized as

D̃const = {d ∈ D | size(d, c) ≤ (1 + ∆c) · sizemin}

We can now formally introduce tradeoff_strategyconst,
which selects the smallest variant from D̃const, as

tradeoff_strategyconst(c) = arg min
d∈D̃const

(rel_time(d))

To illustrate tradeoff_strategyconst, Figure 9 shows a pos-
sible dictionary performance distribution. It was generated using
the src input file and arbitrarily chosen extract and locate frequen-
cies, as well as an arbitrarily chosen merge interval. Absolute size
values are not relevant for illustration purposes and are therefore
omitted. Each point represents a dictionary variant, the diamond
corresponds to the dictionary variant with the smallest size. The
parameter ∆c can be seen as a dividing line, separating “allowed”
dictionary variants (included) from “too big” ones (excluded). All
points below this line correspond to dictionary variants with a com-
pression rate high enough to fulfill the size requirement defined by
∆c. From these variants, we choose the one with the lowest run-
time, i. e., the leftmost one, plotted as a black dot.
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Figure 9: Possible distribution of dictionary performances.

While this naive approach may look convincing on first sight, it
does not fulfill important design goals set forth at the beginning of
this section. Note that D̃const only depends on the sizes of the dic-
tionaries and not on the access frequency of the column. In terms
of the plot, changing frequencies only scale the plot on the x-axis
and (through a changing mix of the methods extract, locate, and
construct) potentially the relative order of the dictionary variants.
D̃const however is invariant to changes on the x-axis, so the allowed
size of variants is not increased by higher access rates.

To address this issue, we extend the principle from Lemke et al.
to take access frequencies into account. We keep the general idea
to define a subset of the dictionary variants and then to select the
fastest one of this subset. But we generalize the approach to use a
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subset defined by an arbitrary dividing function. For any function
f , we define D̃f as

D̃f = {d ∈ D | size(d, c) ≤ f (rel_time(d))}

and we define tradeoff_strategyf (c), the corresponding se-
lection strategy, as

tradeoff_strategyf (c) = arg min
d∈D̃f

(rel_time(d))

The naive approach with a constant offset naturally fits into this
definition with f(t) = fconst(t) = (1+∆c)·sizemin. Furthermore
we propose two other strategies that take the access frequency into
account. Both of them define f in terms of the smallest dictionary
variant dmin.

• tradeoff_strategyrel shifts the dividing line up by a
multiple of rel_time(dmin), the runtime of the smallest
dictionary variant. It is defined with f = frel with

frel(t) = (1+∆c·(1+rel_time(dmin)·α))·size(dmin, c)

where α is a configuration parameter. Note that frel = fconst

for α = 0. Since a higher access frequency of the dictionary
increases size(dmin, c), the size threshold for dictionaries
in D̃ is also increased.

• tradeoff_strategytilt tilts the dividing line in favor of
faster but bigger variants than dmin. In order insure that we
include more dictionaries than with fconst, we define ftilt such
that it crosses fconst at the x-value of dmin, i. e., we define ftilt

as

f(t) = −α · rel_time(dmin) · t+ b

such that b is defined by the equation f (rel_time(dmin)) =
(1 + ∆c) · sizemin. Again α is a configuration parameter
that specifies the slope of f .

The last open question is how to choose the parameter α used
in both above functions. It adjusts how much the new dividing
function differs from the dividing line defined by fconst. There are
at least the following two possibilities:

• Experiment with different values for α and try to find a good
trade-off for dictionaries with high access frequencies, or

• Add another constraint to the function f(t) that defines α.

We opt for the latter using the following intuitive constraint: if the
runtime of the smallest dictionary variant is greater than or equal
to 100% of the available time until the next merge operation, the
fastest dictionary variant should be chosen. Formally this trans-
lates into setting rel_time(dmin) = 1 and solving the equation
f(rel_time(dspeed)) = size(dspeed) for α, where dspeed is the
fastest dictionary variant. Note that for tradeoff_strategyrel,
this constraint cannot be applied for ∆c = 0 since in this case frel

is a constant function (equal to the old dividing line).

5.5 Summary
As presented in this section, the compression manager takes the

decision of the dictionary format of a column in two steps: On a
global level it maintains a trade-off parameter ∆c indicating the
need of the overall system to trade space for speed. On a local
level upon dictionary reconstruction, it maps all characteristics of
a column to the dimensions space and time and uses ∆c to select a
trade-off between the two dimensions. The next section shows how
this works in practice.

6. EVALUATION
In this section, we evaluate an off-line prototype of the compres-

sion manager, which is implemented in the following way: The
characteristics about the lifetime, the number of calls to extract
and locate, and size estimations of every dictionary instance are
determined while running a representative workload on an instru-
mented version of the SAP HANA database. This information is
then be combined to produce a configuration of the system for a
given ∆c, i. e., a mapping of columns to dictionary formats, using
the tradeoff_strategytilt of Section 5. When the system is
restarted the next time, the according formats are used upon con-
struction of each dictionary. We believe that the same approach can
be used for an online decision.

6.1 Test Setup
We base our experiments on a slightly modified version of the

TPC-H benchmark [15]. In particular we modify the schema in the
following way: We change the type of all key columns, i. e., all
columns whose names end with KEY such as C_CUSTKEY, from
INT to VARCHAR(10). This reflects our observations from Sec-
tion 1, suggesting that real-world business applications use strings
for a large fraction of columns including key columns. Since the
data of the TPC-H benchmark is synthetic, the achieved compres-
sion rates need a careful interpretation, but it allows us to show
the most important point of our work, the adaptive selection of the
dictionary formats. We use scale factor 1 in the experiments pre-
sented here, but punctual comparisons with other scale factors did
not reveal significant differences.

For the experiments in this section, we use the same hardware as
in Section 3.4.

6.2 Experimental Results
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Figure 10: Space / time trade-off of different dictionary format
selection strategies on queries of the TPC-H benchmark.

We now study the effect of the dictionary configuration on the
runtime of the TPC-H queries and the size of the dictionaries. Fig-
ure 10 shows our results. Every point on the plot represents a
space / time trade-off of one configuration: The space dimension is
the total memory consumption of the TPC-H tables, including col-
umn vector and dictionary. The time dimension is the sum of the
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medians of 100 executions of each of the 22 queries. Both dimen-
sions are normalized against fc inline. Each such point is produced
by configuring and restarting the system as described above, then
running the workload and measuring time and space consumption.

The results of configurations with a fixed format for all dictionar-
ies correspond to the results of the microbenchmarks in Section 3.4:
We have “fast but big” formats like array fixed and array, balanced
formats like fc block and fc inline, and “small but slow” formats
like fc block rp 12/16. They seem to form a pareto-optimal curve,
which dominates some “big and slow” formats but does not reach
the “fast and small” region of the plot. column bc is outside of the
plot. There is a difference in the end-to-end runtime of roughly
25% between the fastest and the slowest format and difference in
the total memory consumption of factor 3.5, confirming the impor-
tance of the dictionary format.

The same plot also shows workload-driven configurations pro-
duced by our compression manager for a logarithmic range be-
tween 10−3 and 10 as values of ∆c. The workload we use to trace
the lifetime and the calls to extract and locate consists of 100 repe-
titions of all TPC-H queries, which minimizes the influence of the
construction time.

The plot shows that all workload-driven configurations are closer
to the “fast and small” region than any single format. For every
fixed-format configuration, there is a workload-driven configura-
tion that is smaller while maintaining the same speed and another
one that is faster while maintaining the same size. For example the
most balanced format in this plot, fc block, is outperformed by a
roughly 10% faster configuration of the same size and its perfor-
mance can be achieved with a configuration using only two thirds
of its space. This shows the benefit of adapting the compression
format to the workload. Last but not least, the plot also shows
that the space / time trade-off of a configuration produced by the
compression manager can be controlled by varying ∆c, making it
suitable as “trade-off knob”.

We now analyze what dictionary formats the compression man-
ager selected depending on ∆c in order to understand how the dif-
ferent trade-offs were achieved. Figure 11 shows how ∆c affects
the distribution of the dictionary formats: Starting from very small
values of ∆c, i. e., the most heavily compressing configurations,
the pointer-free format array fixed is used for a large fraction of
the dictionaries. The reason is that this is actually the smallest for-
mat for the numerous columns with very low cardinalities such as
C_MKTSEGMENT thanks to its small constant overhead. For small
values of ∆c, we can also observe the largest diversification of
formats. This suggests that the compression manager successfully
identified specialized dictionary formats thanks to the compression
models. As ∆c increases, the usage of heavily compressing formats
such as fc block rp 12/16 and (on specific data) column bc declines
more and more in favor of more balanced formats such as fc block
df. Towards the end of the largest values of ∆c, even these formats
are more and more replaced by the fastest one, array fixed, which
finally accounts for all columns. All in all, the selections of the
compression manager presented in Figure 11 provide an intuitive
explanation for the performance presented in Figure 10.

7. SUMMARY
In this paper we studied the question of how to adaptively com-

press the string dictionaries of in-memory column-store database
systems. Our analysis of real-world business applications showed
that strings are more commonly used than previously thought. In
alignment with the requirement of single tuple access of in-memory
column-stores, we studied a broad variety of compressed dictionary
formats. We found that for a single dictionary, there is always a
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Figure 11: Dictionary formats selected by the compression
manager for the TPC-H columns depending on the value of ∆c.

trade-off between access time, construction time, and space con-
sumption.

In order to improve the space / time trade-off of the overall sys-
tem, we built a compression manager automatically selecting the
most appropriate dictionary format for every column, based on char-
acteristics of the data, usage pattern of the column, and overall
system state. The compression manager uses elaborate compres-
sion models allowing to predict the size of a dictionary format for
a given data set using only a small sample of the data. Further-
more we showed how to decouple local information needed for the
format selection from the global information in order to keep the
decision cheap.

We confirmed the approach of our compression manager with
experiments on a slightly modified TPC-H benchmark. We showed
that the adaptive compression can improve overall performance by
10% using the same space than the most balanced single dictionary
format or reduce the over space consumption to 60% while main-
taining the performance of the single format.
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