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Abstract

Increasing single instruction multiple data (SIMD) capabilities in modern hardware allows for the compilation of data-
parallel query pipelines. This means GPU-alike challenges arise: control flow divergence causes the underutilization of
vector-processing units. In this paper, we present efficient algorithms for the AVX-512 architecture to address this issue.
These algorithms allow for the fine-grained assignment of new tuples to idle SIMD lanes. Furthermore, we present strategies
for their integration with compiled query pipelines so that tuples are never evicted from registers. We evaluate our approach
with three query types: (i) a table scan query based on TPC-H Query 1, that performs up to 34% faster when addressing
underutilization, (ii) a hashjoin query, where we observe up to 25% higher performance, and (iii) an approximate geospatial
join query, which shows performance improvements of up to 30%.

Keywords Control flow divergence - Database systems - Query execution - Query compilation - SIMD - Vectorization -

AVX-512

1 Introduction

Integrating SIMD processing with database systems has been
studied for more than a decade [28]. Several operations, such
as selection [12,23], join [2,3,10,26], partitioning [20], sort-
ing [5], CSV parsing [17], regular expression matching [25],
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and (de-)compression [15,23,27] have been accelerated using
the SIMD capabilities of the x86 architectures. In more recent
iterations of hardware evolution, SIMD instruction sets have
become even more popular in the field of database systems.
Wider registers, higher degrees of data-parallelism, and com-
prehensive support for integer data has increased the interest
in SIMD and led to the development of many novel algo-
rithms.

SIMD is mostly used in interpreting database systems [9]
that use the column-at-a-time or vector-at-a-time execution
model [4]. Compiling database systems [9] like HyPer [8]
barely use it due to their data-centric tuple-at-a-time exe-
cution model [18]. In such systems, therefore, SIMD is
primarily used in scan operators [12] and in string process-
ing [17].

With the increasing vector-processing capabilities for
database workloads in modern hardware, especially with the
advent of the AVX-512 instruction set, query compilers can
now vectorize entire query execution pipelines and benefit
from the high degree of data-parallelism [6]. With AVX-512,
the width of vector registers increased to 512 bit, allowing
for the processing of an entire cache line in a single instruc-
tion. Depending on the bit-width of the attribute values, data
elements from up to 64 tuples can be packed into a single
register.
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Vectorizing entire query pipelines raises new challenges.
One such challenge is keeping all SIMD lanes busy during
query evaluation, as not all in-flight tuples follow the same
control flow. For instance, some might is disqualified dur-
ing predicate evaluation, while others may not find a join
partner later on and get discarded. Whenever a tuple gets dis-
qualified, the corresponding SIMD lane is affected. A scalar
(non-vectorized) pipeline would take a branch and thereby
return the control flow to a tuple producing operator to fetch
the next tuple. In a vectorized pipeline, this is only possible
iff all in-flight tuples have been disqualified. If this is not
the case, the query of the subsequent operator still needs to be
executed. Ignoring SIMD lanes containing disqualified tuples
is the easiest way to deal with this situation, as it does not
introduce branching logic and only requires a small amount
of bookkeeping. A small bitmap is sufficient to keep track
of disqualified elements. The bitmap is used at the pipeline
sink, when the (intermediate) result is materialized, making
sure that disqualified elements are not written to the query
result set. The downside of this approach is, that within the
pipeline, all instructions are performed on all SIMD lanes
regardless of whether the SIMD lane contains an active or
an inactive element. All operations that are performed on
inactive elements can be considered overhead, as they do
not contribute to the result. In other words, not all SIMD
lanes perform useful work and if lanes contain disqualified
elements, the vector-processing units (VPUs) can be con-
sidered underutilized. Therefore, efficient algorithms are
required to counter the underutilization of vector-processing
units. In [16], this issue was addressed by introducing (mem-
ory) materialization points immediately after each vectorized
operator. However, with respect to the more strict definition
of pipeline breakers given in [18], materialization points can
be considered as pipeline breakers because tuples are evicted
from registers to slower (cache) memory. In this work, we
present alternative algorithms and strategies that do not break
pipelines. Further, our approach can be applied at the intra-
operator level as well as at operator boundaries.

The remainder of this paper is organized as follows. In
Sect. 2, we briefly describe the relevant AVX-512 instructions
that we use in our algorithms. The potential performance
degradation caused by underutilization in holistically vec-
torized pipelines is discussed in Sect. 3. In Sect. 4, we
introduce efficient algorithms to counter underutilization,
and in Sect. 5, we present strategies for integrating these
algorithms with compiled query pipelines. The experimen-
tal evaluation of the proposed algorithms using a table scan
query, a hashjoin query, and an approximate geospatial join
query is given in Sect. 6. The experimental results are sum-
marized and discussed in Sect. 7, followed by our conclusions
in Sect. 8.

@ Springer

2 Background

In this section, we briefly describe the key features of the
AVX-512 instruction set that we use in our algorithms in
Sect. 4. In particular, we cover the basics of vector predication
as well as the permute and the compress/expand instructions.
Mask instructions: Almost all AVX-512 instructions sup-
port predication. These instructions allow to perform a vector
operation only on those vector components (or lanes) spec-
ified by a given bitmask, where the ith bit in the bitmask
corresponds to the ith lane. For example, an add instruction
in its simplest form requires two (vector) operands and a
destination register that receives the result. In AVX-512, the
instruction exists in two additional variants:

1. Merge masking: The instruction takes two additional
arguments, a mask and a source register, for example,
dst = mask_add(src,mask, a,b). The addition is per-
formed on the vector components in a and b specified by
the mask. The remaining elements, where the mask bits
are 0, are copied from src to dst at their corresponding
positions.

2. Zero masking: The functionality is basically the same
as that of merge masking, but instead of specifying an
additional source vector, all elements in dst are set to
zero if the corresponding bit in the mask is not set. Zero
masking is, therefore, (logically) equivalent to merge
masking with src set to zero: maskz_add (mask, a,b)
= mask_add (0 ,mask,a,b)). Thus, zero masking is a
special case of merge masking.

Masked instructions can be used to prevent individual vector
components from being altered, e.g., x = mask_add(x,
mask,a,b).

Typically, masks are created using comparison instruc-
tions and stored in special mask registers, which is a
significant improvement over earlier SIMD instruction sets,
in which these masks were stored in 256-bit vector registers.
Permute: The permute instruction shuffles elements within
a vector register according to a given index vector:

[d,a,d,b] =permute([3,0,3,1], [a,b,c,d]).
———

result vector index vector input vector

It is noteworthy, that the permute instruction has already
been available in earlier instruction sets. But due to the
doubled register size, twice as many elements can now be
processed at once. Further, in our application, we achieve
four times higher throughput compared to the earlier AVX?2
instruction set. The reason is, that assigning new elements to
idle SIMD lanes is basically a merge operation of the content
of two vector registers. In combination with merge masking,
this operation can be performed using a single instruction,



Make the most out of your SIMD investments: counter control flow divergence in compiled... 759

whereas with AVX2, two instructions need to be issued, (i) a
permute to move the elements into their desired SIMD lanes
and (ii) a blend to select the desired lanes from two source
registers and merge them into a destination register.
Compress/Expand: Typically, before a permute instruction
can be issued, an algorithm needs to determine the afore-
mentioned index vector, which used to be a tedious task
that often induced significant overheads, such as additional
accesses into predefined lookup tables [7,12,16,22]. The key
instructions introduced with AVX-512 to efficiently solve
these types of problems, are called compress and expand.
Compress stores the active elements (indicated by a bitmask)
contiguously into a target register, and expand stores the con-
tiguous elements of an input at certain positions (specified
by a write mask) in a target register:
i
\

NI |
[a,d, 0, 0] = compress(1001,[a, b, c,d])
T T

[
1 N |
[0, a, 0,b] =expand(0101,[a, b, c,d])
e !

IH

Both instructions come in two flavors: (i) read/write from/to
memory and (ii) directly operate on registers.

Our algorithms in general require both, permute and
compress/expand instructions. There is only one special
case, where a permute suffices, which we describe in the
later Sect. 4.

3 Vectorized pipelines

As mentioned in the introduction, the major difference
between a scalar (i.e., non-vectorized) pipeline, as pioneered
by HyPer [8], and a vectorized pipeline is that in the latter,
multiple tuples are pushed through the pipeline at once. This
impacts the control flow within the query pipeline. In a scalar
pipeline, whenever the control flow reaches any operator, it
is guaranteed that there is exactly one tuple to process (tuple-
at-a-time). By contrast, in a vectorized pipeline, there are
several tuples to process. However, because the control flow
is not necessarily the same for all tuples, some SIMD lanes
may become inactive when a conditional branch is taken.
Such a branch is only taken if at least one element satisfies
the branch condition. This implies that a vector of length
n may contain up to n — 1 inactive elements, as depicted
in Fig. 1. The figure shows a simplified control flow graph
(CFG) for an example query pipeline that consists of a table
scan, a selection, and a join operator. The directed edges rep-
resent the branching logic. For instance, the no match edges
are taken if a tuple is disqualified in the selection or the join
operator. The index traversal (self-)edge is taken when an
index lookup is performed. For instance, a hash table or tree
lookup might require one to follow multiple bucket pointers

Control flow graph: SIMD lane utilization:

--------- 1 c

scan

5] 5
out ' B 0 X X 5

index
traversal
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match

SIMD lanes
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t

Fig. 1 During query processing, individual SIMD lanes may (tem-
porarily) become inactive due to different control flows. The resulting
underutilization of vector-processing units causes performance degra-
dations. We propose efficient algorithms and strategies to fill these gaps

until a join partner for the current tuples is found. The right-
hand side of Fig. 1 visualizes the SIMD lane utilization over
time. Initially, in the scan operator, all SIMD lanes are active
(green color). Inside the select or join operator, elements are
disqualified (marked with a X), but the no match branch is
not taken, because some elements are still active. Lane 4 rep-
resents a different situation, where an SIMD lane becomes
temporarily inactive. In that example, the element in lane
4 finds its join partner in the very first iteration of the index
lookup. However, lanes 1 and 6 need three iterations until the
index lookup terminates. During that time, lane 4 is idle and
afterward, it becomes active again.

In general, all conditional branches within the query
pipeline are potential sources of control flow divergence
and, therefore, a source of the underutilization of VPUs,
whereas, disqualified elements cause underutilization in all
subsequent operators and lookups in index structures cause
intra-operator underutilization. The latter is an inherent
problem when traversing irregular pointer-based data struc-
tures in an SIMD fashion [24]. To avoid underutilization
through divergence, we need to dynamically assign new
tuples to idle SIMD lanes, possibly at multiple “points of
divergence” within the query pipeline. We refer to this pro-
cess as pipeline refill.

4 Refill algorithms

In this section, we present our refill algorithms for AVX-512,
which we later integrate into compiled query pipelines (cf.,
Sect. 5). These algorithms essentially copy new elements to
desired positions in a destination register. In this context,
these desired positions are the lanes that contain inactive
elements. The active lanes are identified by a small bitmask
(or simply mask), where the ith bit corresponds to the ith
SIMD lane. An SIMD lane is active if the corresponding bit
is set, and vice versa. Thus, the bitwise complement of the
given mask refers to the inactive lanes and, therefore, to the
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Fig.2 Refilling empty SIMD lanes from memory using the AVX-512
expand load instruction

write positions of new elements. We distinguish between two
cases as follows: (i) where new elements are copied from a
source memory address and (ii) where elements are already
in vector registers.

In the following, we frequently use various constant val-
ues, which we write in capital letters. For instance, ZERO and
aLL refer to constant values where all bits are zero or one,
respectively. The vector constant SEQUENCE contains an inte-
ger sequence starting at 0 and LANE_CNT refers to the number
of SIMD lanes.

4.1 Memory to register

Refilling from memory typically occurs in the table scan
operator, where contiguous elements are loaded from mem-
ory (assuming a columnar storage layout). AVX-512 offers
the convenient expand load instruction that loads contigu-
ous values from memory directly into the desired SIMD
lanes (cf., Fig. 2). One mask instruction (bitwise not) is
required to determine the write mask and one vector instruc-
tion (expand load) to execute the actual load. Overall, the
simple case of refilling from memory is supported by AVX-
512 directly out of the box.

The table scan operator typically produces an additional
output vector containing the tuple identifiers (TIDs) of the
newly loaded attribute values. The TIDs are derived from the
current read position and are used, for example, to (lazily)
load attribute values of a different column later on or to recon-
struct the tuple order. Figure 3 illustrates, how the content of
the TID vector register is updated, using the read position
and write mask from Fig. 2.

4.2 Register to register

Moving data between vector registers is more involved. In the
most general case, we have a source and a destination regis-
ter that contain both active and inactive elements at random
positions. The goal is to move as many elements as possible
from the source to the destination. This can be achieved using
a single masked permute instruction. But before the permu-
tation instruction can be issued, the permutation indices need
to be computed, based on the positions of active elements in
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Fig.3 TIDs are derived from the current read position and assigned to
a TID vector register
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Fig. 4 Computation of the permutation indices and the permutation
mask based on positions of the active elements in the source register
and the inactive elements in the destination register

the source and the destination vector registers. This is illus-
trated in Fig. 4, where, as in the previous examples, the wrifte
mask refers to the inactive lanes in the destination register.
In total, three vector instructions are required to compute
the permutation indices and an additional permutation mask.
The latter is required in case the number of active elements
in the source is smaller than the number of empty lanes in the
destination vector. In that case, the destination register still
contains some inactive lanes, and the corresponding bitmask
must be updated accordingly.

Once the permutation indices are computed, elements can
be moved between registers accordingly. Notably, the algo-
rithm can be adapted to move elements directly instead of
computing the permutation indices first. However, if ele-
ments need to be moved between more than one source/des-
tination vector pair, the additional cost of computing the
permutation amortizes immediately with the second pair. In
practice, the permutation is typically applied multiple times,
for example, when multiple attributes are pushed through the
pipeline or to keep track of the TIDs.
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Fig.5 If not all elements could be moved from the source to the desti-
nation register, the source mask needs to be updated accordingly

In the general case, there are no guarantees about the num-
ber of (active) elements nor their positions within the vector
register. For example, the elements in the source may not be
entirely consumed or the destination vector may still con-
tain inactive elements. Thus, it is necessary to update source
and destination masks accordingly. Updating the destina-
tion mask is straightforward by using a bitwise or with
the previously computed permutation mask. Updating the
source mask is less obvious as illustrated in Fig. 5. As the
figure shows, updating the source mask is as expensive as
preparing the permutation. However, if it is guaranteed that
all source elements fit into the destination vector, this phase
of the algorithm can be skipped altogether. Listing 1 shows
the full algorithm formulated in C++.

In summary, a typical refill looks as follows:

contiguously, it is considerably cheaper to prepare the per-
mutation (compare Listing 1 and 2). Compared to the first
algorithm, which can permute elements from/to random posi-
tions, the second algorithm does not need any bit masks to
refer to the active lanes. Instead, it is sufficient to pass in the
number of active elements. In Listing 2, we refer to these
numbers as src_cnt and dst_cnt. Based on these, the per-
mutation indices, as well as the permutation mask, can be
computed without any crosslane operations, such as com-
press/expand. A noteworthy property of the second SIMD
algorithm is that the source vector remains in a compressed
state even if not all elements fit into the destination vector.

Listing 1 Generic refill algorithm

[...]

//Prepare the refill.

fill rr r(src_mask, dst_mask);
//Copy elements from src to dst.
r.apply(src_tid, dst_tid);
r.apply(src_attr_a, dst_attr_a);
r.apply(src_attr_b, dst_attr_Db);
r.apply (..., ...);

//Update the destination mask,
r.update_dst_mask (dst_mask) ;
//and optionally the source mask.
r.update_src_mask(src_mask) ;

[...]

struct fill_rr {
__mmask8 permutation_mask;
_ m5121i permutation_idxs;

//Prepare the permutation.
fill_rr(const _ mmask8 src_mask,
const _ mmask8 dst_mask) {

_ m512i src_idxs = _mm512_mask_compress_epibd (
ALL, src_mask, SEQUENCE) ;
_ mmask8 write_mask = _mm512_knot (dst_mask) ;
permutation_idxs = _mm512_mask_expand_epi64 (
ALL, write_mask, src_idxs);
permutation_mask = _mm512_ mask cmpneqg epu64d_mask (

write_mask, permutation_idxs, ALL);

}

//Move elements from ’'src’ to ’‘dst’.
void apply(const _ m512i src, _ m512i& dst) const{
dst = _mm512_mask_permutexvar_epi6d (

dst, permutation_mask, permutation_idxs, src);

}

void update_src_mask(__mmask8& src_mask) const {
__mmask8 compressed_mask =
_pext_u32(~0u, permutation_mask) ;

_ mb12i a =

_mm512_maskz_mov_epibd (compressed_mask, ALL);
__m5121i b =

_mm512_maskz_expand_epibd (src_mask, a);
src_mask =

_mm512_mask_cmpeq epubd_mask (src_mask, b, ZERO);
}

void update_dst_mask (__mmask8& dst_mask) const {
dst_mask =
_mm512_kor (dst_mask, permutation_mask);

}

}i

4.3 Variants

Depending on the position of the elements, cheaper algo-
rithms can be used. Especially when the vectors are in a
compressed state, meaning that the active elements are stored

These two foundational SIMD algorithms cover the
extreme cases where (i) active elements are stored at random
positions and (ii) active elements are stored contiguously.
Based on these cases, the algorithms can easily be adapted so
that only one vector needs to be compressed, which is useful
when vector registers are used as tiny buffers because those
should always be in acompressed state to achieve the best per-
formance. In total, there are four different algorithms. Each
algorithm has two different flavors: (i) where all elements
from the source register are guaranteed to fit into the desti-
nation register or (ii) where not all elements can be moved
and therefore elements remain in the source register. We do
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not show all variants here, but have released the C++ source
code! under the BSD license.

Listing 2 Refill algorithm for compressed vectors

struct fill_cc {

_ _mmask8 permutation_mask;
__m512i permutation_idxs;
uint32_t cnt;

//Prepare the permutation.
fill cc(const uint32_t src_cnt,
const uint32_t dst_cnt) {
const auto src_empty_cnt = LANE_CNT - src_cnt;
const auto dst_empty_cnt = LANE_CNT - dst_cnt;
//Determine the number of elements to be moved.
cnt = std::min(src_cnt, dst_empty_cnt);
bool all_fit = (dst_empty_cnt >= src_cnt);
auto d = all_fit ? dst_cnt : src_empty_cnt;
const _ m5121 d_vec = _mm512_setl_epi64d(4d);
//Note: No compress/expand instructions required
permutation_idxs =
_mm512_sub_epi64 (SEQUENCE, d_vec);
permutation_mask = ((lu << cnt) - 1) << dst_cnt;

}

//Move elements from ’'src’ to ’dst’.

void apply(const __m512i src, __m512i& dst) const{
dst = _mm512_mask_permutexvar_epibd (
dst, permutation_mask, permutation_idxs, src);

}

void update_src_cnt (uint32_t& src_cnt) const {
src_cnt -= cnt;

}

void update_dst_cnt (uint32_t& dst_cnt) const {
dst_cnt += cnt;

}

}i

5 Refill strategies

We discuss the integration of these refill algorithms in data-
centric compiled query pipelines. Such pipelines turn a query
operator pipeline into a for-loop, and the code generated by
the various operators is nested bottom-up in the body of
such a loop [18]. Relational operators in this model generate
code in two methods, namely, consume () and produce (),
which are called in a depth-first traversal of the query tree:
produce () code is generated before generating the code for
the children, and consume () afterward.

The main idea of data-centric execution with SIMD is to
insert checks for each operator that control the number of
tuples in play, i.e., if-statements nesting the rest of the body.
Such an if-statement ensures that its body only gets executed
if the SIMD registers are sufficiently full. Generally speak-
ing, operator code processes input SIMD data computed by
the outer operator and refills the registers it works with and
the ones it outputs.

We identify two base strategies for applying this refilling.

! Source code: https://github.com/harald-lang/simd_divergence.
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5.1 Consume everything

The consume everything strategy allocates additional vector
registers that are used to buffer tuples. In the case of under-
utilization, the operator defers the processing of these tuples.
This means the body will not be executed in this iteration
(if-condition not satisfied) but instead (else) the active tuples
will be moved to these buffer registers. It uses the refill algo-
rithms from the previous section both to move data to the
buffer and to emit buffered tuples into the unused lanes in
a subsequent iteration. Listing 3 shows the code skeleton
as it would be generated by such a buffering operator. The
THRESHOLD parameter specifies when a refill is triggered dur-
ing query execution. Depending on the situation, the costs for
refilling might not amortize if only a few lanes contain inac-
tive elements. But if the remaining pipeline is very expensive,
setting the threshold to the number of SIMD lanes could be
the best option. The important thing to note here is that all
SIMD lanes are empty when the control flow returns to the
previous operator, thus we call it consume everything.

Compared to a scalar pipeline, this strategy only requires
a minor change to the push model: handling a special case
when the pipeline execution is about to terminate, flushing
the buffer(s). The essence is that buffering only takes place
in SIMD registers and it specifically does not cause extra
in-memory materialization.

Figure 6a, b illustrates the effects of applying a refill
strategy to a query pipeline by visualizing the SIMD lane
utilization over time. The structure of the query is similar to
the one shown in Fig. 1 and consists of a scan, a selection, a
join, and a sink to where the output is written. The stage indi-
cator on top of the plot refers to the node in the control flow
graph in Fig. 1. In Fig. 6a, the query is executed without
divergence handling, and the white areas refer to under-
utilization. Figure 6b visualizes the same workload with
in-register buffering, following consume everything seman-
tics. The purple and black vertical lines indicate that tuples
are written to the buffers, or read from the buffer, respectively.
Compared to the divergent implementation, the lane utiliza-
tion has significantly increased, and the overall execution
time has reduced. In this example, we require the utilization
to be at least 75% (six out of eight lanes need to be active).
Underutilization is observed only when the execution is about
to finish, which triggers a pipeline flush, where all (poten-
tially) buffered tuples need to be processed regardless of the
minimum utilization threshold.

5.2 Partial consume

As the name suggests, the second base strategy no longer
expects the consume () code to process the entire input. The
consume code can decide to defer execution by returning the
control flow to the previous operator and leave the active ele-
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Listing 3 Code skeleton of a buffering operator.

(b) Buffered

(¢) Partial

a read. ¢ shows a partial consume throughout the entire pipeline with
the minimum required utilization set to 50%. Lanes colored in purple
are protected (color figure online)

Listing 4 Code skeleton of a partial consume operator.

[...]
auto active_lane_cnt = popcount (mask) ;
if (active_lane_cnt + buffer_cnt < THRESHOLD
&& !flush_pipeline) {
[...1//Buffer the input.
}
else {
const auto bail_out_threshold =
flush_pipeline ? 0
: THRESHOLD;
while (active_lane_cnt + buffer_cnt >
bail_out_threshold) {
if (active_lane_cnt < THRESHOLD) {
[...]1//Refill lanes with buffered elements.

//The actual operator code and
//consume code of subsequent operators.

active_lane_cnt = popcount (mask) ;
}
if (likely(active_lane_cnt != 0)) {
[...]1//Buffer the remaining elements.
}
}
//All lanes empty (consume everything semantics) .
mask = 0;

[...]

[...]

auto active_lane_cnt = popcount (mask) ;

if (active_lane_cnt < THRESHOLD && !flush_pipeline) {
//Take ownership of newly arrived elements.
this_stage_mask = mask ~ later_stage_mask;

}

else {

//The actual operator code and
//consume code of subsequent operators.
[...1]

//The later_stage_mask is set by the
//consumer.

}
//Protect lanes in the preceding operator.
mask = this_stage_mask | later_stage_mask;

[...]

ments in the vector registers. New tuples are assigned only
to inactive lanes by one of the preceding operators, typi-
cally a table scan. Naturally, the active lanes, that contain
deferred tuples, must not be overwritten or modified by other
operators. We refer to these elements (or to their correspond-
ing lanes) as being protected. Another way of looking at a
protected lane is that the lane is owned by a different opera-
tor. When an owning operator completes the processing of a
tuple, it transfers the ownership to the subsequent operator.
Alternatively, if the tuple is disqualified, it gives up owner-
ship to allow a tuple producing operator to assign a new tuple
to the corresponding lane.

Lane protection requires additional bookkeeping on a
per operator basis. Each operator must be able to distin-

guish between tuples that (i) have just arrived, (ii) have been
protected by the operator itself in an earlier iteration and
(iii) tuples that have already advanced to later stages in the
pipeline. To do so, an operator maintains two masks, one
that identifies the lanes that are owned by the current opera-
tor and another one that identifies lanes that are owned by a
later operator. Listing 4 shows the structure of such an oper-
ator, where this_stage_mask and later_stage_mask are
part of the operator’s state and mask is used to communi-
cate which lanes contain active elements (regardless of their
stage).

Figure 6¢ shows how the partial consume strategy affects
the lane utilization with the minimum lane utilization thresh-
old set to 50%. The lanes colored in purple are in a protected
state. Compared to the divergent implementation, the lane uti-
lization has increased. However, if we take protected lanes
into account and consider them as idle, the overall utiliza-
tion decreases. Thus, the example workload, used in Fig. 6,
reveals an important drawback. If the lanes become protected
in later stages of the pipeline, these lanes can cause signifi-
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cant underutilization in the preceding operators. We discuss
this issue, among other things, in the following section.

5.3 Discussion and implications

The two strategies are not mutually exclusive. Within a single
pipeline, both strategies can be applied to individual opera-
tors as long as buffering operators are aware of protected
lanes (mixed strategy). Moreover, the query compiler might
decide to not apply any refill strategy to certain operators.
Especially, when a sequence of operators is quite cheap,
divergence might be acceptable as long as the costs for refill
operations are not amortized. Naturally, this is a physical
query optimization problem that we will leave for future
work. Nevertheless, we briefly discuss the advantages and
disadvantages, as this is the first work in which we present
the basic principles of vector-processing in compiled query
pipelines.

As mentioned above, consume everything requires addi-
tional registers, which increases the register pressure and may
lead to spilling. partial consume allocates additional registers
as well, but these are restricted to (smaller) mask registers.
Therefore, it is unlikely to be affected by (potential) perfor-
mance degradation due to spilling.

The second major difference lies in the cost of refilling
empty lanes. In a pipeline that follows the partial consume
strategy, the very first operator, that is, the pipeline source,
is responsible for refilling empty lanes. If other operators
experience underutilization, they return the control flow to
the previous operator while retaining ownership of the active
lanes. This cascades downward until the source operator is
reached, as shown in Fig. 6c. All operators between the
pipeline source and the operator that returned the control
flow may be subject to underutilization because all lanes in
later stages are protected. The costs of refilling, therefore,
depend on the length of the pipeline and the costs of the pre-
ceding operators. In general, the costs increase in the later
stages. Nevertheless, partial consume can improve query per-
formance if it is applied only to the very first operators.
By contrast, the refilling costs of buffering operators do not
depend on the pipeline length. Instead, the crucial factor gov-
erning these costs is the number of required buffer registers.
The greater the number of buffers, the greater the number
of permute instructions that need to be executed, whereas
the number of required buffers depends on (i) the number of
attributes passed along the pipeline and optionally on (ii) the
number of registers required to save the internal state of the
operator (e.g., a pointer to the current tree node).

6 Evaluation

We evaluate our approach with two major sources of con-
trol flow divergence, (i) predicate evaluation as part of a
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Table 1 Hardware platforms

Intel Intel

Knights landing Skylake-X

(KNL) (SKX)
Model Phi 7210 i9-7900X
Cores (SMT) 64 (x 4) 10 (x 2)
SIMD [bit] 2 x 512 2 x 512
Max. clock rate [GHz] 1.5 4.5
L1 cache 64 KiB 32 KiB
L2 cache 1 MiB 1 MiB
L3 cache - 14 MiB

table scan and (ii) a hash join. Additionally, we experiment
with a more complex operator, an approximate geospatial
join. The experiments were conducted on an Intel Skylake-X
(SKX) and an Intel Knights Landing (KNL) processor (cf.,
Table 1). The experiments were implemented in C++ and
compiled with GCC 5.4.0 at optimization level three (-03)
and the target architecture set to knl. If not stated other-
wise, we ran the experiments in parallel using two threads
per core.” We dispatched the work in batches to the individual
threads using batch sizes between 2'© and 2%° tuples. On the
KNL platform, we placed the data in high-bandwidth mem-
ory (HBM); otherwise, the experiments would have been
dominated by memory stalls. To measure the throughputs,
we let each experiment run for at least three seconds, possi-
bly consuming the input data multiple times.

6.1 Table scan

To evaluate the effects of divergence handling in table
scans, we integrate our refill algorithms into the AVX-512
implementation of TPC-H Query 1 of Gubner et al. [6]. Addi-
tionally, we implemented and integrated the materialization
approach as proposed by Menon et al. in [16].

From a high-level perspective, TPC-H Query 1 (or short
Q1) is a structurally simple query that operates on a sin-
gle fact table (1ineitem) with a single scan predicate.
It involves several fixed-point arithmetic operations in the
aggregation based on the group by clause. In total, five addi-
tional attributes are accessed to compute eight aggregated
values per group. Almost all tuples survive the selection (i.e.,
selectivity ~0.98). Therefore, in its original form, Q1 does
not suffer from control flow divergence. To simulate control
flow divergence and the resulting underutilization of SIMD

2 Please note that throughout our (multi-threaded) experiments, we did
not observe any performance penalties through downclocking. Both
processors KNL and SKX run stable at 1.4 GHz and 4.0 GHz, respec-
tively.
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Fig.7 Performance of TPC-H Q1 with varying selectivities

lanes, we vary the selectivity of the scan predicate on the
shipdate attribute.

We evaluate and compare a scalar’ non-SIMD) implemen-
tation with four AVX-512 implementations:

Divergent: The divergent implementation refers to the
implementation published by the authors of [6], with a
minor modification. In the original version, all tuples are
pushed through the query pipeline and disqualified ele-
ments are ignored in the final aggregation by setting the
lane bitmask accordingly. For our experiments, we intro-
duced a branch behind the predicate evaluation code,
which allows to return the control flow to the scan oper-
ator iff all SIMD lanes contain disqualified elements. In
the case of Q1, the predicate is evaluated on 16 elements
in parallel.

Partial/Buffered: The partial and buffered implementa-
tions make use of our refill algorithms. A major difference
to the divergent implementation is that it can no longer
make use of aligned SIMD loads. Instead, it relies on the
gather instruction to load subsequent attribute values.
The select operator, therefore, produces a tuple identifier
(TID) list that identifies the qualifying tuples. The subse-
quent operators use the TIDs to compute the offset from
where to load the additional attributes. Both implementa-
tions are parameterized with the minimum lane utilization
threshold, which limits the degree of underutilization.
Materialization: The materialization implementation
makes use of small (memory) buffers to consecutively
store the output. Similarly to our approach, the select
operator produces a TID list. The code of the subsequent
operator(s) is executed when the buffer is (almost) full.

3 Scalar refers to an implementation which does not use any SIMD
instructions. We verified, that the compiler did not auto-vectorize the
query pipelines.

—
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40000 A divergent
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£
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o
£
10000 -
0 -
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0.00001 0.0001 0.001 0.01 0.1 1

selectivity (log scale)
(b) KNL

The buffered TID list is then consumed (scanned) simi-
larly to a table scan in the subsequent operator. Notably,
the output contains only TIDs that belong to qualifying
tuples, which is in contrast to our approach, where SIMD
lanes may contain non-qualifying tuples, depending on
the chosen threshold.

Figure 7a shows the performance results for varying selec-
tivities (between 0.00001 and 1.0) on SKX. In the extreme
cases, all implementations perform similarly. Interestingly,
this includes the scalar implementation, which indicates that
the SKX processor performs extremely well with respect to
IPC, branch prediction, and out of order execution. With
intermediate selectivities, divergence handling can make a
significant difference. For instance, with sel = 0.01 the
difference between the divergent and materialization imple-
mentation is 2.6 billion tuples per second (1.5 billion over
scalar). The graph also shows that the materialization domi-
nates over almost the entire range. Our approach (buffered)
can compete, but is slightly slower in most cases. On KNL
(Fig. 7b), we observed similar effects. The most impor-
tant difference is that the divergent SIMD implementation
is significantly slower than the scalar implementation with
selectivities larger than 0.0001. Divergence handling extends
the range in which SIMD optimizations become beneficial.

For this experiment, we varied the utilization threshold for
partial and buffered as well as the buffer size for materializa-
tion and we reported only the best performing variant. In the
following, we investigate the impact of these parameters. Fig-
ure 8a shows the performance of the materialization approach
for varying buffer sizes and a fixed selectivity (sel = 0.01).
Peak performance for Q1 is achieved with a memory buffer
of size 1024 elements or larger.

In Fig. 8b, we vary the SIMD lane utilization threshold
for our approaches. The performance of the buffered imple-
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Fig.8 Performance of TPC-H Q1 performance on SKX when varying algorithm parameters

mentation increases with the threshold. Peak performance is
reached when only qualifying tuples pass the select opera-
tor (threshold = 16). But the performance only gradually
increases for a threshold > 6. The reason for this behav-
ior is that non-qualifying tuples only cause computational
overhead in the remaining pipeline but no memory accesses,
which would be significantly more expensive. On the other
hand, the partial consume strategy favors a threshold that is
approximately half the number of SIMD lanes. If the thresh-
old is too low (left-hand side), many non-qualifying tuples
pass the filter, and if it is set too high (right-hand side), the
control flow is often returned to the scan code to fetch (a few)
more values.

6.2 Hashjoin

Probing a hash table is a search operation in a pointer-based
data structure and therefore a prime source of control flow
divergence. Here, we evaluate the very common foreign-key
join of two relations followed by (scalar) aggregations. The
primary key relation constitutes the build size in such a way
that the join is non-expanding, i.e., for a probe tuple, at most
one join partner exists. The two input relations each have two
8-byte integer attributes: a key and a value. The relations are
joined using the keys. Afterward, three aggregations are com-
puted on the join result: the number of tuples, the sum of the
values from the left input relation, and the sum of the values
from the right input relation. Our hash table implementation
stores the first key-value pair per hash bucket in the hash
table dictionary. In case of collisions, additional key-value
pairs are stored in a linked list per hash bucket.

We evaluate and compare a scalar (non-SIMD) implemen-
tation with four AVX-512 implementations:

Divergent: This SIMD implementation handles eight
tuples in parallel. The lane bitmask is used to keep track
of disqualified tuples, such that they can be ignored at the
end of the pipeline. As in the table scan evaluation, we
add a branch to allow for an early return to the beginning
of the pipeline iff all SIMD lanes contain disqualified
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tuples. We introduce this branch after the first hash table
lookup, i.e., it is triggered when all probe tuples fall into
empty hash buckets.

Partial/Buffered: These implementations make use of our
in-register refill algorithms. In contrast to the table scan
discussed in 6.1, the hash table example uses only few
relation attributes. Therefore, instead of loading the addi-
tional attributes using gather, here all attributes (i.e.,
key and value) are passed through the pipeline. If the
number of active SIMD lanes drops below the minimum
lane utilization threshold, a refill is performed.
Materialization: Menon et al. [16] propose operator
fusion, which introduces buffers between operators to
compact the stream of tuples flowing through a pipeline.
Here, we introduce an intra-operator buffer to further
densify the stream of tuples. At the beginning of the
pipeline, we load key-value pairs from the probe side
input, and compute the hash value and the pointer to the
hash table dictionary. We store these key-value pairs and
pointers in an input buffer. From this buffer, we then
lookup eight pointers in the hash table in parallel, and
determine if (i) we found a match, (ii) we need to follow
a chain (further), or (iii) there is no match. Unfinished
tuples (case (ii)) are written back into the input buffer with
an updated pointer; matching tuples (case (i)) are directly
pushed to the subsequent aggregation operator without
further buffering, which is not in line with [16], where
materialization happens on operator boundaries. We also
implemented a “fully” materialized version where the
matches are first stored in an output buffer before the
aggregation code is executed. However, our experiments
have shown that two memory materializations are more
expensive.

Figures 9 and 10 show the performance results for varying
hash table sizes (between 10 KiB and 45 MiB). The hash table
size is chosen depending on the build input size. We size the
hash table dictionary so that it has the same number of buckets
as there are build tuples. Among all evaluated approaches, as
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Fig. 10 Hashjoin performance when varying build sizes. KNL, 128
threads

well as both platforms, the throughput shrinks with growing
hash table sizes. The overall throughput on Knights Landing
is about twice as high as on Skylake-X, even though the
performance of Skylake-X can be increased by 50% by using
Hyper-Threading. On Skylake-X (Fig. 9a, b), as expected,
a sharp performance decrease happens when the hash table
grows beyond the size of the L2 cache ataround 1 MiB, and at
around 10 MiB when it exceeds the L3 cache. For large hash
tables, that do not fit into the cache, all approaches converge.
This has also been observed in earlier work, for instance, by
Polychroniou et al. [21] and by Kersten et al. [9]. In these
cases, partitioning the hash table might help (cf. the radix
partitioning join proposed by Kim et al. [10]), but this is out
of scope for this paper.

When the hash table is small enough to fit into the L1 or
L2 cache, all SIMD approaches outperform the scalar base-
line: Irrespective of the SIMD divergence handling deployed
by the individual approaches, they all reach a higher through-
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put than the scalar approach. For larger hash tables, SIMD
divergence no longer dominates the performance, and thus
the scalar approach reaches similar throughput levels (using
10 threads) or even higher throughput (using 20 threads) than
some SIMD variants. For the whole evaluated range of hash
table sizes, the partial and buffered approaches that make
use of the introduced refill strategies outperform or are on
par with the divergent SIMD approach. Using 20 threads,
the buffered approach achieves up to 32% higher through-
put than the divergent approach, while the partial approach
outperforms the divergent one by up to 19%.

When the hash table fits into the L1 cache, the buffered
approach defeats the materialization approach by up to 8%.
When the hash tables grow, the materialization approach
dominates all other approaches. Two contradicting influences
determine whether the materialization approach outperforms
our divergence-handling approaches: First, the materializa-
tion approach can hide memory latencies better than the
buffered and partial approaches because more memory is
accessed at the same time (i.e., multiple outstanding loads).
This is shown in Fig. 9a and more severely in Fig. 9b when the
hash table is large, because it then resides in slower mem-
ory. Second, the materialization approach suffers from the
higher number of issued instructions, i.e., load and store
instructions. In particular, when the hash table fits into L1,
the number of instructions can become the limiting factor. On
the Knights Landing platform in particular, the materializa-
tion approach has a significantly lower throughput compared
to the other SIMD variants (Fig. 10). In contrast to the table
scan, which we evaluated in Sect. 6.1, the materialization
buffer is read and written in the same loop multiple times—
during index lookup, which exceeds the limited out-of-order
execution capabilities of KNL.

InFig. 11a, b, we vary the SIMD lane utilization threshold
for the partial and buffered approaches. Hyper-Threading,
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Fig. 11 Hashjoin performance when varying algorithm parameters
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Fig. 12 Hashjoin performance for varying match probabilities (a), hash table load factors (b). SKX, 20 threads

i.e., using 20 threads instead of 10, increases throughput by
about 50%. In general, a higher threshold, i.e., less inactive
SIMD lanes and more refills, results in a higher throughput.
There is little change in throughput when setting the thresh-
old to six, seven or all eight tuples. This is because in most
hash table lookups, only a few of the eight tuples need to be
kept for additional pointer lookups in the collision chains. As
aresult, almost no refills are done differently when choosing
six, seven or eight as the threshold. The buffered approach
is more sensitive to the chosen threshold. For a low thresh-
old, the partial approach reaches a higher throughput, but
that changes at threshold 3 (using 10 threads) or 5 (using 20
threads). As mentioned, only few tuples need to be kept for
additional lookups. Thus, only few tuples need to be buffered
in the buffered approach, while the partial approach suffers
from underutilization when frequently performing refills in
the table scan.

Figure 11c focuses on the materialization approach, vary-
ing the buffer size between eight and 8192 tuples and a
fixed build cardinality (hash table size ~ 128 KiB). For the
chosen configuration, the scalar approach reaches a through-
put of 1747 Mtps. For small buffers, e.g., 8 tuples, the
scalar approach outperforms the materialization approach.
The materialization approach with an 8-tuple buffer is con-
ceptually similar to the buffered approach with a SIMD line
utilization threshold of 1. Both use a buffer the size of one
SIMD vector. In the buffered approach, this buffer lives
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in registers, while the materialization approach stores it in
memory. As a result, the buffered approach outperforms the
materialization approach with a throughput of 1964 Mtps
(i.e., about 2 billion tuples per second). A buffer size between
128 and 1024 results in the best performance of the materi-
alization approach. The throughput shrinks gracefully when
the buffer size is further increased. This is an effect of the
chosen workload, especially the number of attributes beside
the join attribute.

Two additional parameters affect throughput in the
hashjoin evaluation: First, the match probability describes
how likely a tuple from the probe side finds a join partner in
the hash table. We vary this probability between 0.01 and 1. A
low match probability, therefore, results in more disqualified
tuples, which—depending on the approach—in turn leads
to more ignored SIMD lanes, more refills, or a worse VPU
utilization. Figure 12a shows that the buffered approach,
using the proposed refill strategies, outperforms both pre-
existing approaches, scalar and divergent, irrespective of the
match probability. The scalar approach is competitive with
the SIMD approaches for low match probabilities. With few
matches, the scalar approach can often exit the pipeline early,
which leads to the high throughput rates we observed. The
divergent approach, on the other hand, suffers from extreme
underutilization because frequently only few SIMD lanes
stay active due to the low match probability. With a match
probability of 50%, branches are mispredicted in the scalar
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approach, and its throughput subsequently tanks. When the
match probability approaches 100%, almost all probe tuples
find a non-empty hash bucket that then needs to be inspected
further. Furthermore, the final aggregation becomes more
expensive as more tuples make it into the join result. The
scalar approach, therefore, performs best for low match prob-
abilities and worst for a match probability of around 50%,
and cannot fully recover its throughput even for a match prob-
ability of 100%. When looking at the SIMD approaches, we
observe that the throughput difference between the diver-
gent approach and our novel refill approaches increases with
the match probability. A higher match probability comes
along with more active SIMD lanes after the first lookup
in the hash dictionary. Then, more divergence happens
because these tuples will have to traverse collision chains
of different lengths. The divergence-handling buffered and
partial approaches can, therefore, outperform the divergent
approach for high match probabilities.

Second, we define the hash table’s load factor as the num-
ber of buckets in the hash table divided by the number of keys
stored in the hash table. While the load factor has been kept
constant in all previous experiments (= 1.0), in real scenar-
ios, the hash table size is not only determined by the size
of the build side input, but also by the set load factor. With
a low load factor, more collisions in the hash table occur,
resulting in longer chains. With longer chains, the variance
of the number of pointers that need to be followed to per-
form the hash table probe increases. This variance directly
translates to higher SIMD divergence. A low load factor,
therefore, leads to worse VPU utilization in the divergent
approach, which can then be mitigated by applying the pro-
posed in-register refill strategies. Figure 12b shows how the
load factor affects the throughputs reached by the different
approaches. The hash table for load factor 4 is 16 times as big
as the hash table for load factor 0.25. Over all approaches,
the throughput of the bigger hash table is about three times as
high as for the smaller one. For high load factors, the scalar
approach performs well. This is because for high load fac-
tors, fewer and shorter collision chains exist. When zero of
the eight tuples in a vector need to follow a chain, there is
not SIMD divergence. Subsequently, for especially high load
factors like 4, there is little difference between all approaches.

6.3 Approximate geospatial join

In the following, we evaluate and compare our approach
with a modern and more complex operator, an approximate
geospatial point-polygon join. Our approximate geospatial
join [11] uses a quadtree-based hierarchical grid to approxi-
mate polygons. Figure 13 shows such an approximation for
the neighborhoods in New York City (NYC). The grid cells
are encoded as 64-bit integers and are stored in a specialized
radix tree, where the cell size corresponds to the level within

Fig. 13 Quadtree-based cell-approximation of neighborhood polygons
inNYC

the tree structure (larger cells are stored closer to the root
node and vice versa). During join processing, we perform
(prefix) lookups on the radix tree. Each lookup is separated
into two stages: First, we check for a common prefix of the
query point and the indexed cells. The common prefix allows
for the fast filtering of query points. If the query point does
not share the common prefix, there are no join partners. The
actual tree traversal takes place in the second stage. We tra-
verse the tree starting from the root node until we hit a leaf
node (which contains a reference to the matching polygon).

An important property of our approximate geospatial join
operator is that it can be configured to guarantee a certain
precision. In the experiments, we used 60-, 15-, and 4-meter
precision (as in [11]). The higher the precision guarantee, the
smaller are the cells at the polygon boundaries, which in turn
increases the total number of cells and, more importantly, the
height of the radix tree. In general, the probability of control
flow divergence during index lookups increases with the tree
height. Throughout our experiments, the tree height is < 6.

In our experiments, we join the boroughs, neighborhoods,
and census blocks polygons of NYC* with randomly gen-
erated points, uniformly distributed within the minimum
bounding box of the corresponding polygonal dataset. The
datasets vary in terms of the total number of polygons and
complexity (with respect to the number of vertices).

Table 2 summarizes the relevant metrics of the polygon
datasets, and Table 3 summarizes the metrics of the corre-
sponding radix tree, including the probability distribution of
the number of search steps during the tree traversal.

4 The polygons of NYC are available at:

— https://data.cityofnewyork.us/City-Government/Borough-
Boundaries/tqmj-j8zm

— https://data.cityofnewyork.us/City-Government/Neighborhood-
Tabulation- Areas/cpf4-rkhq

— https://data.cityofnewyork.us/City-Government/2010-Census-
Blocks/v2h8-6mxf.
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Table 2 Polygon datasets

Number of polygons Avg. number of vertices
Boroughs 5 662.2
Neighborhoods 289 29.6
Census 39,184 12.5

6.3.1 Query pipeline

The query pipeline of our experiments (point-polygon join)
consists of four stages:

(1) Scan point data (source)

(2) Prefix check

(3) Tree traversal

(4) Output point-polygon pairs (sink)

Stages (2) and (3) are subject to control flow divergence,
with (3) being significantly costlier than (2). For simplic-
ity, the produced output (point-polygon pairs) is not further
processed. We compile the pipeline in three different flavors:

Divergent: Refers to the baseline pipeline without diver-
gence handling, thus the pipeline follows consume every-
thing semantics. The code of subsequent operators is
executed if at least one lane is active.

Table 3 Metrics of radix tree

Partial: The partial consume strategy is applied to stages
(2) and (3), which also affects the scan operator because
it needs to be aware of protected lanes.

Buffered: Follows consume everything semantics with
register buffers in stage (3). We check the lane utilization
after each traversal step. Divergence in stage (2) is not
handled at all.

Materialization: The integration of memory materializa-
tion is similar to the one used with the hash join operator
(cf., Sect. 6.2).

6.3.2 Results

Figure 14 shows the performance results in million tuples per
second on KNL using 128 threads. We observe that refilling
from register buffers improves the overall throughput by up to
20% (= 870 mtps) when joining with the boroughs or neigh-
borhood polygons. The effect of divergence handling falls
below 10% with the census blocks polygons where the index
structure is more than 1 GiB in size. In that case, the memory
subsystem is the limiting factor.

As expected, the partial consume strategy exacerbates the
divergence issue in most cases (cf., Sect. 5.3), resulting in a
53% performance degradation in the worst case.

The materialization approach performs poorly on KNL.
The throughput is similar to the scalar implementation, thus
canceling out all SIMD optimizations. As in previous bench-
marks, we observed a significantly better performance on
SKX. Here, the materialization approach is on par with
the buffered pipeline: in case of small index structures

Polygons Boroughs Neighborhoods Census
Precision [m] 60 15 4 60 15 4 60 15 4
# of cells [M] 0.08 127 20.7 0.1 0.79 13.2 6.08 6.52 34.6
Tree size [MiB] 139 168 168 253 139 139 1162 1205 1205
1 1 1 1 1 1 1 1 1
Tree traversal depth ~ Giciia  GRRER GPRIL R TR eRREE CweRin o e i
boroughs neighborhoods census

throughput [Mtps]

I scalar

divergent

. partial
B vuffered
materialization

4000 -
N I I I i
04
T T T
60 15 5

T T
60 15

precision [m]

Fig. 14 Geospatial join performance for varying workloads and precisions
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Fig. 15 Varying thresholds. KNL, 128 threads

(boroughs) slightly worse, and with large indexes (census)
slightly better. In the latter case, the materialization approach
helps to hide memory latencies through out-of-order execu-
tion.

Unlike the previous experiments, the optimal lane uti-
lization threshold for the buffered approach is less than
the number of SIMD lanes (cf., Fig. 15), which is due to
the higher refilling costs involved in the geojoin operator.
During the radix tree traversal, refilling affects five vec-
tor registers, whereas in the hash join experiment, refilling
affects three registers; and only one in the table scan exper-
iment. The optimal threshold for the partial approach is 1,
indicating that a refill from the pipeline source is not effi-
cient.

In the experiment above, all points pass the prefix check
stage (2) and therefore cause an radix tree traversal. In the
following, we also apply divergence handling on the sec-
ond stage of the pipeline and we changed the workload
so that a certain amount of points are disqualified in that
stage. We compiled the query pipeline with several com-
binations of the different approaches. We refer to it using
the first letter of the approach (Divergent, Buffered, Partial,
and Materialization). For instance, PB refers to the pipeline
that uses partial consume in stage two and in-register buffer-
ing in the third stage, and BB uses buffering in both stages.
Figure 16 shows the results for the neighborhood/4 meter
precision workload with varying selectivities. We observe
an 8% performance decrease when the buffered approach
is applied to stages 2 and 3, and the selectivity remains
at 1.0. In contrast, the materialization approach adds a
significantly larger overhead (35% decrease). If materializa-
tion is applied in both pipeline stages, the performance is
worse compared to the pipeline, where it is applied only
in the tree traversal stage. Overall, the performance dif-
ference for lower selectivities is relatively small with the
partial and buffered approaches: + 5% with buffering applied
in both stages, —7% when partial consume is applied in
stage 2 and buffering in stage 3. Compared to the diver-
gent pipeline, lane refilling increases the throughput of the
neighborhood workload by up to 30% with lower selectivi-
ties.

—8— scalar
7500 - DD
—_ -+-DB
§ —— BB
= —v— PB
< 5000 1 DM
a MM
<
()]
=}
o
—_
£ 2500 A
—8
0 -

0.25 0.50 0.75 1.00
selectivity of stage 2

Fig. 16 2-Way divergence handling

6.4 Overhead

In our final experiment, we evaluate the overhead of diver-
gence handling with a varying number of attributes. To quan-
tify the overhead, we use a very simplistic query that consists
of a simple selection and a scalar aggregation (select sum
(al), sum(a2),..., sum(aN) from...). Divergence is
handled immediately after the selection and before the aggre-
gation. In that scenario, we expect the divergent pipeline to
perform best, as the remainder of the pipeline only consists
of a single addition and thus the benefits of refilling are close
to zero.
In the following, we consider two different selectivities:

sel = 1: For in-register buffering, this situation is the
one with the lowest overhead, as the tuples are passed
through to the subsequent operator and the buffer reg-
isters are not used altogether (cf. Listing 3). Thus, the
overhead is rather small, as it effectively consists of a
popcount to determine the number of active lanes and a
branch instruction. The same applies for partial consume
pipelines.

sel = 0.125 = 1/LANE_CNT: A selectivity of
1/LANE_CNT results in one active lane per iteration
(on average) and thus represents the most write-intensive
case for in-register buffering. That is, the refill algorithm,
which moves active elements to the buffer registers, is
executed in almost every iteration. The partial consume
strategy, on the other hand, suffers from lane underuti-
lization caused by lane protection, and thus, the lower
part of the pipeline is executed more frequently.

Throughout all experiments, the pipelines are 8-way data-
parallel and we set the minimum lane utilization threshold to
6 for buffered and 4 for partial; the size of memory buffers are
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Fig. 17 Overheac‘l of divergence sel=1 sel=0.125
handling for varying number of
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fixed to 1024 elements (=8 KiB). The number of attributes
is varied within the range [1, 32].

Figure 17 summarizes the results for both evaluation plat-
forms. On KNL, all approaches perform similarly with up
to four attributes and the overhead, i.e., the performance dif-
ference to the divergent pipeline is barely measurable. The
materialization approach degrades significantly when the
number of attributes increases (2.5 CPU cycles per tuple per
thread compared to 0.14 cycles for divergent). The through-
put of the buffered approach degrades as well, which is
also attributed to memory materializations. The high register
file pressure forces the compiler to evict values to memory.
Even though the buffer registers are not used in the case of
sel = 1, register allocation is static and happens at query
compilation time when the actual selectivity is not known.
Therefore, a performance degradation can be observed even
if register buffers are not used at query runtime. In contrast,
the partial consume pipelines are on par with the divergent
pipelines.

On the SKX platform, the performance degrades more
steeply with an increasing number of attributes. In case of
sel = 1, the throughput of the materialization approach
decreases linearly with the number of attributes. Compared
to KNL, the number of attributes has a higher impact on the
overall performance on SKX. For instance, in-register buffer-
ing is 4 x faster on KNL with sel = 1 and 3.6 x faster with
sel = 0.125. For sel = 0.125 and a single projected attribute,
we measure an overhead of approximately 0.1 cycles per
tuple for buffered and 0.15 cycles per tuple for partial,
which is significantly higher than with the materialization
approach (0.02 cycles). However, the per attribute over-
head of buffered and partial decreases with more projected
attributes, whereas the materialization approach shows an
increasing overhead with an increasing number of attributes.
The crossover point is reached with 8 projected attributes.
Afterward, our approaches are consistently faster.

@ Springer

In general, the partial consume approach shows no per-
formance impact when the number of projected attributes
increases, which is an expected result, because the bookkeep-
ing overhead about protected lanes is constant, irrespective
from the number of projected attributes. The actual overhead
of the partial consume strategy depends on the pipeline costs,
more precisely on the pipeline fragment before divergence
handling (see Sect. 5.3).

7 Summary and discussion

The partial consume strategy shows performance improve-
ments for relatively simple workloads. With more complex
workloads, like the geospatial join, we observe severe per-
formance degradations. The reason for that is twofold. (i)
Protected lanes inherently cause the underutilization of VPUs
(as described in Sect. 5) and (ii) they result in a subopti-
mal memory access pattern at the pipeline source where the
refill happens. In contrast to the consume everything strat-
egy, wherein every iteration exact LANE_CNT elements are
read from memory, a partial consume scan reads at most
LANE_CNT elements. This circumstance reduces the degree
of data-parallelism (fewer elements are loaded per instruc-
tion) and also leads to unaligned SIMD loads. Even though
the access pattern is still sequential, the alignment issues can
reduce the load throughput by up to 25% (on our evaluation
platforms), which could severely reduce the overall perfor-
mance of scan-heavy workloads.

We found that the materialization approach is very sensi-
tive to the underlying hardware, in particular, on KNL, the
approach performs poorly when the buffer is read and writ-
ten within a tight loop (intra-operator), an effect that could
not be observed on SKX. On the other hand, if materializa-
tion is applied at operator boundaries and thus written and
read only once, it performs similarly or better than in-register
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buffering, as it benefits from out-of-order execution, which
allows the materialization approach to hide memory laten-
cies. Memory access latencies play an important role when
the data that is randomly accessed (like a hash table) does
not fit into the L1/L2 cache. In contrast, when the data fits
into cache or the workload is more compute-heavy, the in-
register buffering approach dominates because the buffers
provide much faster access.

The SIMD lane utilization threshold (refill more often
vs. VPU underutilization) has a big impact on the buffered
approach and less impact on partial. As buffered shows better
performance in general, this parameter is important. Choos-
ing the highest possible threshold shows the best results in
simple workloads, so going back down the pipeline to refill
the vector is always better than having inactive lanes, we
found. So the idea of materialization, where only active (or
qualifying) elements are passed along the pipeline, was right
in these scenarios. The picture changes with more complex
operators like the geojoin, where refilling affects five vector
registers. In this case, refilling doesn’t pay off for a single idle
SIMD lane. On average, the optimal utilization threshold was
5 out of 8 among the geospatial related experiments.

It remains an open question how the optimal threshold can
be predicted at query compilation time, as it depends on hard-
ware, refilling costs, the costs incurred by underutilized lanes,
and the actual input data. A possible approach to address this
issue is to adaptively adjust the threshold parameter at run-
time (per batch or per morsel [14]). Nevertheless, divergence
handling cannot fully be disabled once the pipeline has been
compiled. One can set the threshold to 1, which is equiv-
alent to a divergent execution, but some overhead remains
in the compiled code, namely the population count instruc-
tion and the branching logic. For instance, in our geospatial
experiments on KNL, we observed an overhead of up to 6%
over divergent with the boroughs workload when the uti-
lization threshold is set to one (neighborhoods 3.6%, census
0.6%). Dynamically adjusting the threshold at query runtime
provides some flexibility but due to the fact that divergence
handling cannot be fully disabled, a database system needs
to decide at compilation time whether to enable or disable
divergence handling altogether.

Finally, we want to point out that our proposed refill
algorithms and strategies are generally applicable to any
data processing system that uses AVX-512 SIMD instruc-
tions. A prominent open-source representative is Apache
Arrow [1] (in combination with Gandiva) which shares
many similarities with state-of-the-art relational database
systems (e.g., columnar storage, JIT-compilation, and opera-
tor fusion). Further, our approaches are also applicable if the
underlying database system uses compression in its storage
layer. In particular, when compression is only used on sec-
ondary storage, it does not affect query execution. However,
recent systems [13,19] tend to use lightweight compression

techniques that allow for the processing of data without
explicitly decompressing it. This implies that the degree of
data-parallelism can be increased, as more attributes can be
packed into a single vector register. Currently, our buffered
approach is limited to 16-way data-parallelism on the KNL
and SKX platforms, but it can be easily extended to 64-way
data-parallelism for upcoming processors with the AVX-
512/VBMI2 instruction set.

8 Conclusions

In this work, we presented efficient refill algorithms for vector
registers by using the latest SIMD instruction set, AVX-512.
Further, we identified and presented two basic strategies for
applying refilling to compiled query pipelines for preventing
the underutilization of VPUs. Our experimental evaluation
showed that our strategies can efficiently handle control flow
divergence. In particular, query pipelines that involve travers-
ing irregular pointer-based data structures, like hash tables
or radix trees, can significantly benefit from divergence han-
dling. Especially when the workload is compute-intense or
fits into fast caches, our novel approach shows better perfor-
mance than existing approaches that rely on memory buffers.

Nevertheless, our research also showed that SIMD still
cannot live up to the high expectations set by the promising
features of the latest hardware, i.e., providing n-way data-
parallelism. In practice, SIMD speedups are only a fraction of
the advertised degree of data-parallelism, for many reasons,
including underutilization. Our refill algorithms address this
important reason, yet merely achieve a 2 x speedup over
scalar code.
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