
Skew Strikes Back: New Developments in the Theory
of Join Algorithms˚

Hung Q. Ngo
University at Buffalo, SUNY
hungngo@buffalo.edu

Christopher Ré
Stanford University

chrismre@cs.stanford.edu

Atri Rudra
University at Buffalo, SUNY

atri@buffalo.edu

Evaluating the relational join is one of the central al-
gorithmic and most well-studied problems in database
systems. A staggering number of variants have been
considered including Block-Nested loop join, Hash-Join,
Grace, Sort-merge (see Grafe [17] for a survey, and [4,
7, 24] for discussions of more modern issues). Com-
mercial database engines use finely tuned join heuristics
that take into account a wide variety of factors includ-
ing the selectivity of various predicates, memory, IO,
etc. This study of join queries notwithstanding, the text-
book description of join processing is suboptimal. This
survey describes recent results on join algorithms that
have provable worst-case optimality runtime guarantees.
We survey recent work and provide a simpler and uni-
fied description of these algorithms that we hope is use-
ful for theory-minded readers, algorithm designers, and
systems implementors.

Much of this progress can be understood by thinking
about a simple join evaluation problem that we illustrate
with the so-called triangle query, a query that has be-
come increasingly popular in the last decade with the
advent of social networks, biological motifs, and graph
databases [36, 37]

Suppose that one is given a graph with N
edges, how many distinct triangles can there
be in the graph?

A first bound is to say that there are at most N edges,
and hence at most OpN3q triangles. A bit more thought
suggests that every triangle is indexed by any two of its
sides and hence there at most OpN2q triangles. However,
the correct, tight, and non-trivial asymptotic is OpN3{2q.
˚Database Principles Column. Column editor: Pablo Barcelo,
Department of Computer Science, University of Chile. E-
mail: pbarcelo@dcc.uchile.cl. HQN’s work is partly
supported by NSF grant CCF-1319402 and a gift from Log-
icblox. CR’s work on this project is generously supported
by NSF CAREER Award under No. IIS-1353606, NSF
award under No. CCF-1356918, the ONR under awards No.
N000141210041 and No. N000141310129, Sloan Research
Fellowship, Oracle, and Google. AR’s work is partly sup-
ported by NSF CAREER Award CCF-0844796, NSF grant
CCF-1319402 and a gift from Logicblox.

An example of the questions considered in this survey is
how do we list all the triangles in time OpN3{2q? Such
an algorithm can be shown to have a worst-case op-
timal running time. In contrast, traditional databases
evaluate joins pairwise, and as has been noted by sev-
eral authors, this forces them to run in time ⌦pN2q on
some instance of the triangle query. This survey gives
an overview of recent developments that establish such
non-trivial bounds for all join queries and algorithms
that meet these bounds, which we call worst-case op-
timal join algorithms.

Estimates on the output size of join have been known
since the 1990s, thanks to the work of Friedgut and Kahn
[11] in the context of bounding the number of occur-
rences of a given small hypergraph inside a large hy-
pergraph. More recently and more generally, tight es-
timates for the natural join problem were derived by
Grohe-Marx [20] and Atserias-Grohe-Marx [2] (hence-
forth AGM). In fact, similar bounds can be traced back
to the 1940s in geometry, where it was known as the fa-
mous Loomis-Whitney inequality [26]. The most gen-
eral geometric bound is by Bollobás-Thomason in the
1990s [5]. We proved (with Porat) that AGM and the dis-
crete version of Bollobás-Thomason are equivalent [29],
and so the connection between these areas is deep.

Connections of join size to arcane geometric bounds
may reasonably lead a practitioner to believe that the
cause of suboptimality is a mysterious force wholly un-
known to them—but it is not; it is the old enemy of the
database optimizer: skew. We hope to highlight two
conceptual messages with this survey:

‚ The main ideas of the algorithms presented here
are a theoretically optimal way of avoiding skew –
something database practitioners have been fight-
ing with for decades. We mathematically justify a
simple yet e↵ective technique to cope with skew
called the “power of two choices.”

‚ The second idea is a challenge to the database dogma
of doing “one join at a time,” as is done in tradi-
tional database systems. We show that there are

1SIGMOD Record, December 2013 (Vol. 42, No. 4) 5

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2590989.2590991&domain=pdf&date_stamp=2014-02-28

classes of queries for which any join-project plan
is destined to be slower than the best possible run
time by a polynomial factor in the data size.

Outline of the Survey. We begin with a short (and nec-
essarily incomplete) history of join processing with a
focus on recent history. In Section 1, we describe how
these new join algorithms work for the triangle query. In
Section 2, we describe how to use the new size bounds
for join queries as well as conjunctive queries with sim-
ple functional dependencies. In Section 3, we provide
new simplified proofs of these bounds and join algo-
rithms. Finally, we describe two open questions in Sec-
tion 4. We recall some background knowledge in the
appendix. For lack of space some details are deferred to
the full version of this survey [30].

A Brief History of Join Processing
Conjunctive query evaluation in general and join query
evaluation in particular have a very long history and
deep connections to logic and constraint satisfaction [6,
8, 10, 14, 16, 25, 31, 38]. Most of the join algorithms
with provable performance guarantees work for specific
classes of queries.1 As we describe, there are two major
approaches for join processing: using structural infor-
mation of the query and using cardinality information.
As we explain, the AGM bounds are exciting because
they bring together both types of information.

The Structural Approaches. On the theoretical side, many
algorithms use some structural property of the query
such as acyclicity or bounded “width.” For example,
when the query is acyclic, the classic algorithm of Yan-
nakakis [42] runs in time essentially linear in the input
plus output size. A query is acyclic if and only if it has
a join tree, which can be constructed using the textbook
GYO-reduction [18, 43].

Subsequent works further expand the classes of queries
that can be evaluated in polynomial time. These works
define progressively more general notions of “width” for
a query, which intuitively measures how far a query is
from being acyclic. Roughly, these results state that if
the corresponding notion of “width” is bounded by a
constant, then the query is “tractable,” i.e. there is a
polynomial time algorithm to evaluate it. For example,
Gyssens et al. [21,22] showed that queries with bounded
“degree of acyclicity” are tractable. Then came query
width (qw) from Chekuri and Rajaraman [8], hypertree
width and generalized hypertree width (ghw) from Gott-
lob et al. [15,34]. These are related to the treewidth (tw)
of a query’s hypergraph, rooted in Robertson and Sey-
1Throughout this survey, we will measure the run time of join
algorithms in terms of the input data, assuming the input query
has constant size; this is known as the data complexity mea-
sure, which is standard in database theory [38].

mour on graph minors [33]. Acyclic queries are exactly
those with qw “ 1.

Cardinality-based Approaches . Width only tells half of
the story, as was wonderfully articulated in Scarcello’s
SIGMOD Record paper [34]:

decomposition methods focus “only” on struc-
tural features, while they completely disre-
gard “quantitative” aspects of the query, that
may dramatically a↵ect the query-evaluation
time.

Said another way, the width approach disregards the in-
put relation sizes and summarizes them in a single num-
ber, N. As a result, the run time of these structural ap-
proaches is OpNw`1 log Nq, where N is the input size
and w is the corresponding width measure. On the other
hand, commercial RDBMSs seem to place little empha-
sis on the structural property of the query and tremen-
dous emphasis on the cardinality side of join process-
ing. Commercial databases often process a join query by
breaking a complex multiway join into a series of pair-
wise joins; an approach first described in the seminal
System R, Selinger-style optimizer from the 1970 [35].
However, throwing away this structural information comes
at a cost: any join-project plan is destined to be slower
than the best possible run time by a polynomial factor in
the data size.

Bridging This Gap. A major recent result from AGM
[2, 20] is the key to bridging this gap: AGM derived a
tight bound on the output size of a join query as a func-
tion of individual input relation sizes and a much finer
notion of “width”. The AGM bound leads to the notion
of fractional query number and eventually fractional hy-
pertree width (fhw) which is strictly more general than
all of the above width notions [28]. To summarize, for
the same query, it can be shown that

fhw § ghw § qw § tw ` 1,

and the join-project algorithm from AGM runs in time
OpNfhw`1 log Nq. AGM’s bound is sharp enough to take
into account cardinality information, and they can be
much better when the input relation sizes vary. The
bound takes into account both the input relation statistics
and the structural properties of the query. The question
is whether it is possible and how to turn the bound into
join algorithms, with runtime OpNfwhq and much better
when input relations do not have the same size. (These
size bounds were extended to more general conjunctive
queries by Gottlob et al. [13].)

The first such worst-case optimal join algorithm was
designed by the authors (and Porat) in 2012 [29]. Soon
after, an algorithm (with a simpler description) with the

26 SIGMOD Record, December 2013 (Vol. 42, No. 4)

same optimality guarantee was presented, called “Leapfrog
Triejoin” [39]. Remarkably this algorithm was already
implemented in a commercial database system before
its optimality guarantees were discovered. A key idea
in the algorithms is handling skew in a theoretically op-
timal way, and uses many of the same techniques that
database management systems have used for decades
heuristically [9, 40, 41]

A technical contribution of this survey is to describe
the algorithms from [29] and [39] and their analyses in
one unifying (and simplified) framework. In particular,
we make the observation that these join algorithms are
in fact special cases of a single join algorithm. This re-
sult is new and serves to explain the common link be-
tween these join algorithms. We also illustrate some un-
expected connections with geometry, which we believe
are interesting in their own right and may be the basis
for further theoretical development.

1. MUCH ADO ABOUT THE TRIANGLE
We begin with the triangle query

Q4 “ RpA, Bq Z S pB,Cq Z T pA,Cq.
The above query is the simplest cyclic query and is rich
enough to illustrate most of the ideas in the new join al-
gorithms.2 We first describe the traditional way to eval-
uate this query and how skew impacts this query. We
then develop two closely related algorithmic ideas al-
lowing us to mitigate the impact of skew in these ex-
amples; they are the key ideas behind the recent join
processing algorithms.

1.1 Why traditional join plans are suboptimal
The textbook way to evaluate any join query, includ-

ing Q4, is to determine the best pair-wise join plan [32,
Ch. 15]. Figure 1 illustrates three plans that a conven-
tional RDBMS would use for this query. For exam-
ple, the first plan is to compute the intermediate join
P “ R Z T and then compute P Z S as the final output.

Z

SZ

TR

Z

TZ

SR

Z

RZ

TS

Figure 1: The three pair-wise join plans for Q4.

2This query can be used to list all triangles in a given graph
G “ pV, Eq, if we set R, S and T to consist of all pairs pu, vq
and pv, uq for which uv is an edge. Due to symmetry, each
triangle in G will be listed 6 times in the join.

We next construct a family of instances for which any
of the above three join plans must run in time⌦pN2q be-
cause the intermediate relation P is too large. Let m • 1
be a positive integer. The instance family is illustrated in
Figure 2, where the domains of the attributes A, B and C
are {a0, a1, . . . , am}, {b0, b1, . . . , bm}, and {c0, c1, . . . , cm}
respectively. In Figure 2, the unfilled circles denote the
values a0, b0 and c0 respectively while the black circles
denote the rest of the values.

For this instance each relation has N “ 2m ` 1 tu-
ples and |Q4| “ 3m ` 1; however, any pair-wise join
has size m2 ` m. Thus, for large m, any of the three
join plans will take ⌦pN2q time. In fact, it can be shown
that even if we allow projections in addition to joins, the
⌦pN2q bound still holds. (See Lemma 3.2.) By con-
trast, the two algorithms shown in the next section run
in time OpNq, which is optimal because the output itself
has ⌦pNq tuples!

1.2 Algorithm 1: The Power of Two Choices
Inspecting the bad example above, one can see a root

cause for the large intermediate relation: a0 has “high
degree" or in the terminology to follow it is heavy. In
other words, it is an example of skew. To cope with
skew, we shall take a strategy often employed in database
systems: we deal with nodes of high and low skew us-
ing di↵erent join techniques [9, 41]. The first goal then
is to understand when a value has high skew. To shorten
notations, for each ai define

Q4rais :“ ⇡B,Cp�A“ai pQ4qq.
We will call ai heavy if |�A“ai pR Z T q| • |Q4rais|. In
other words, the value ai is heavy if its contribution to
the size of intermediate relation R Z T is greater than
its contribution to the size of the output. Since

|�A“ai pR Z T q| “ |�A“ai R| ¨ |�A“ai T |,
we can easily compute the left hand side of the above
inequality from an appropriate index of the input rela-
tions. Of course, we do not know |Q4rais| until after
we have computed Q4. However, note that we always
have Q4rais Ñ S . Thus, we will use |S | as a proxy for
|Q4rais|. The two choices come from the following two
ways of computing Q4rais:

(i) Compute �A“ai pRq Z �A“ai pT q and filter the re-
sults by probing against S or

(ii) Consider each tuple in pb, cq P S and check if
pai, bq P R and pai, cq P T .

We pick option (i) when ai is light (low skew) and
pick option (ii) when ai is heavy (high skew).

Example 1. Let us work through the motivating ex-
ample from Figure 2. When we compute Q4ra0s, we

3SIGMOD Record, December 2013 (Vol. 42, No. 4) 7

R “ {a0}ˆ {b0, . . . , bm}Y {a0, . . . , am}ˆ {b0}

S “ {b0}ˆ {c0, . . . , cm}Y {b0, . . . , bm}ˆ {c0}

T “ {a0}ˆ {c0, . . . , cm}Y {a0, . . . , am}ˆ {c0}
C

A

B

Figure 2: Counter-example for join-project only plans for the triangles (left) and an illustration for m “ 4
(right). The pairs connected by the red/green/blue edges form the tuples in the relations R/S /T respectively.
Note that the in this case each relation has N “ 2m ` 1 “ 9 tuples and there are 3m ` 1 “ 13 output tuples in
Q4. Any pair-wise join however has size m2 ` m “ 20.

realize that a0 is heavy and hence, we use option (ii)
above. Since here we just scan tuples in S , computing
Q4ra0s takes Opmq time. On the other hand, when we
want to compute Q4rais for i • 1, we realize that these
ai’s are light and so we take option (i). In these cases
|�A“ai R| “ |�A“ai T | “ 1 and hence the algorithm runs
in time Op1q. As there are m such light ai’s, the algo-
rithm overall takes Opmq each on the heavy and light
vertices and thus Opmq “ OpNq overall which is the
best possible since the output size is ⇥pNq.

Algorithm and Analysis. Algorithm 1 fully specifies how
to compute Q4 using the above idea of two choices.
Given that the relations R, S , and T are already indexed
appropriately, computing L in line 2 can easily be done
in time Opmin{|R|, |T |}q using sort-merge join. (We as-
sume input relations are already sorted and this runtime
does not count this one-time pre-processing cost.) Then,
for each a P L, the body of the for loop from line 4 to
line 11 clearly takes time in the order of

min
�|�A“aR| ¨ |�A“aT |, |S |� ,

thanks to the power of two choices! Thus, the overall
time spent by the algorithm is up to constant factors

X

aPL

min
�|�A“aR| ¨ |�A“aT |, |S |� . (1)

We bound the sum above by using two inequalities.
The first is the simple observation that for any x, y • 0

minpx, yq § pxy. (2)

The second is the famous Cauchy-Schwarz inequality3:

X

aPL

xa ¨ ya §
sX

aPL

x2
a ¨

sX

aPL

y2
a, (3)

where pxaqaPL and pyaqaPL are vectors of real values. Ap-

3The inner product of two vectors is at most the product of
their length.

plying (2) to (1), we obtain
X

aPL

q
|�A“aR| ¨ |�A“aT | ¨ |S | (4)

“
q

|S | ¨
X

aPL

q
|�A“aR| ¨

q
|�A“aT | (5)

§
q

|S | ¨
sX

aPL

|�A“aR| ¨
sX

aPL

|�A“aT |

§
q

|S | ¨
s X

aP⇡ApRq
|�A“aR| ¨

s X

aP⇡ApTq
|�A“aT |

“
q

|S | ¨
q

|R| ¨
q

|T |.
If |R| “ |S | “ |T | “ N, then the above is OpN3{2q
as claimed in the introduction. We will generalize the
above algorithm beyond triangles to general join queries
in Section 3. Before that, we present a second algo-
rithm that has exactly the same worst-case run-time and
a similar analysis to illustrate the recursive structure of
the generic worst-case join algorithm described in Sec-
tion 3.

1.3 Algorithm 2: Delaying the Computation
Now we present a second way to compute Q4rais that

di↵erentiates between heavy and light values ai P A in
a di↵erent way. We don’t try to estimate the heaviness
of ai right o↵ the bat. Algorithm 2 “looks deeper” into
what pairs pb, cq can go along with ai in the output by
computing c for each candidate b.

Algorithm 2 works as follows. By computing the in-
tersection ⇡Bp�A“ai pRqq X ⇡BpS q, we only look at the
candidates b that can possibly participate with ai in the
output pai, b, cq. Then, the candidate set for c is ⇡Cp�B“bpS qqX
⇡Cp�A“ai pT qq.When ai is really skewed toward the heavy
side, the candidates b and then c help gradually reduce
the skew toward building up the final solution Q4.

Example 2. Let us now see how delaying computation
works on the bad example. As we have observed in us-
ing the power of two choices, computing the intersection

48 SIGMOD Record, December 2013 (Vol. 42, No. 4)

Algorithm 1 Computing Q4 with power of two choices.
Input: RpA, Bq, S pB,Cq,T pA,Cq in sorted order

1: Q4 – H
2: L – ⇡ApRq X ⇡ApT q
3: For each a P L do
4: If |�A“aR| ¨ |�A“aT | • |S | then
5: For each pb, cq P S do
6: If pa, bq P R and pa, cq P T then
7: Add pa, b, cq to Q4
8: else
9: For each b P ⇡Bp�A“aRq ^ c P ⇡Cp�A“aT q

do
10: If pb, cq P S then
11: Add pa, b, cq to Q4
12: Return Q

of two sorted sets takes time at most the minimum of the
two sizes. Sort-merge join has this runtime guarantee,
because its inputs are already sorted. Note that the sort-
merge join algorithm also makes use of the power of
two choices idea implicitly to deal with skew. If one
set represents high skew, having very large size, and the
other set has very small size, then their intersection us-
ing sort-merge join only takes time proportional to the
smaller size.

For a0, we consider all b P {b0, b1, . . . , bm}. When
b “ b0, we have

⇡Cp�B“b0 S q “ ⇡Cp�A“a0 T q “ {c0, . . . , cm},
so we output the m ` 1 triangles in total time Opmq. For
the pairs pa0, biq when i • 1, we have |�B“bi S | “ 1 and
hence we spend Op1q time on each such pair, for a total
of Opmq overall.

Now consider ai for i • 1. In this case, b “ b0 is the
only candidate. Further, for pai, b0q, we have |�A“ai T | “
1, so we can handle each such ai in Op1q time leading to
an overall run time of Opmq. Thus on this bad example
Algorithm 2 runs in OpNq time.

We present the full analysis of Algorithm 2 in [30]: its
worst-case runtime is exactly the same as that of Algo-
rithm 1. What is remarkable is that both of these algo-
rithms follow exactly the same recursive structure and
they are special cases of a generic worst-case optimal
join algorithm.

2. A USER’S GUIDE TO THE AGM BOUND
We now describe one way to generalize the bound of

the output size of a join (mirroring the OpN3{2q bound
we saw for the triangle query) and illustrate its use with
a few examples.

2.1 AGM Bound

Algorithm 2 Computing Q4 by delaying computation.
Input: RpA, Bq, S pB,Cq,T pA,Cq in sorted order

1: Q – H
2: LA – ⇡ApRq X ⇡ApT q
3: For each a P LA do
4: La

B – ⇡Bp�A“apRqq X ⇡BpS q
5: For each b P La

B do
6: La,b

C – ⇡Cp�B“bpS qq X ⇡Cp�A“apT qq
7: For each c P La,b

C do
8: Add pa, b, cq to Q
9: Return Q

To state the AGM bound, we need some notation. The
natural join problem can be defined as follows. We are
given a collection of m relations. Each relation is over
a collection of attributes. We useV to denote the set of
attributes; let n “ |V|. The join query Q is modeled as
a hypergraph H “ pV,Eq, where for each hyperedge
F P E there is a relation RF on attribute set F. Figure 3
shows several example join queries, their associated hy-
pergraphs, and illustrates the bounds below.

Atserias-Grohe-Marx [2] and Grohe-Marx [20] proved
the following remarkable inequality, which shall be re-
ferred to as the AGM’s inequality henceforth. Let x “
pxFqFPE be any point in the following polyhedron:

8>><>>:x |
X

F:vPF

xF • 1,@v P V, x • 0

9>>=>>; .

Such a point x is called a fractional edge cover of the
hypergraph H . Then, AGM’s inequality states that the
join size can be bounded by

|Q| “ | ZFPE RF | §
Y

FPE
|RF |xF . (6)

2.2 Example Bounds
We now illustrate the AGM bound on some specific

join queries. We begin with the triangle query Q4. In
this case the corresponding hypergraph H is as in the
left part of Figure 3. We consider two covers (which are
also marked in Figure 3). The first one is xR “ xT “
xS “ 1

2 . This is a valid cover since the required in-
equalities are satisfied for every vertex. For example,
for vertex C, the two edges incident on it are S and T
and we have xS ` xT “ 1 • 1 as required. In this case
the bound (6) states that

|Q4| §
q

|R| ¨ |S | ¨ |T |. (7)

Another valid cover is xR “ xT “ 1 and xS “ 0 (this
cover is also marked in Figure 3). This is a valid cover,
e.g. since for C we have xS ` xT “ 1 • 1 and for vertex

5SIGMOD Record, December 2013 (Vol. 42, No. 4) 9

R´4

A1
A2

A3 A4

A

B C

TR

S

xT “ 1
2

xR “ 1
2

xS “ 0
xS “ 1

2
xS ` xT “ 1
xS ` xT “ 1

xT “ 1
xR “ 1

R1,2

R2,4

R3,4

R2,3
R1,3

R1,4

xR1,4 “ xR2,3 “ 1

R´1

R´3

R´2

A1
A2

A3 A4

xR´1 “ xR´2 “ 1xRi, j “ 1
3 @pi, jq

xR´i “ 1
3 @i

K4
LW4Q4

Figure 3: A handful of queries and their covers.

A, we have xR ` xT “ 2 • 1 as required. For this cover,
bound (6) gives

|Q4| § |R| ¨ |T |. (8)

These two bounds can be better in di↵erent scenarios.
E.g. when |R| “ |S | “ |T | “ N, then (7) gives an upper
bound of N3{2 (which is the tight answer) while (8) gives
a bound of N2, which is worse. However, if |R| “ |T | “
1 and |S | “ N, then (7) gives a bound of

p
N, which

has a lot of slack; while (8) gives a bound of 1, which is
tight.

For another class of examples, consider the “clique"
query. In this case there are n • 3 attributes and m “

⇣
n
2

⌘

relations: one Ri, j for every i † j P rns: we will call
this query Kn. Note that K3 is Q4. The middle part of
Figure 3 draws the K4 query. We highlight one cover:
xRi, j “ 1

n´1 for every i † j P rns. This is a valid cover
since every attribute is contained in n ´ 1 relations. Fur-

ther, in this case (6) gives a bound of n´1
qQ

i† j |Ri, j|,
which simplifies to Nn{2 for the case when every rela-
tion has size N.

Finally, we consider the Loomis-Whitney LWn queries.
In this case there are n attributes and there are m “ n
relations. In particular, for every i P rns there is a re-
lation R´i “ Rrnsz{i}. Note that LW3 is Q4. See the
right of Figure 3 for the LW4 query. We highlight one
cover: xRi, j “ 1

n´1 for every i † j P rns. This is a valid
cover since every attribute is contained in n´1 relations.
Further, in this case (6) gives a bound of n´1

pQ
i |R´i|,

which simplifies to N1` 1
n´1 for the case when every re-

lation has size N. Note that this bound approaches N as
n becomes larger.

2.3 The Tightest AGM Bound
As we just saw, the optimal edge cover for the AGM

bound depends on the relation sizes. To minimize the
right hand side of (6), we can solve the following linear

program:

min
X

FPE
plog2 |RF |q ¨ xF

s.t.
X

F:vPF

xF • 1, v P V

x • 0

Implicitly, the objective function above depends on the
database instance D on which the query is applied. Let
⇢˚pQ,Dq denote the optimal objective value to the above
linear program. We refer to ⇢˚pQ,Dq as the fractional
edge cover number of the query Q with respect to the
database instanceD, following Grohe [19]. The AGM’s
inequality can be summarized simply by |Q| § 2⇢

˚pQ,Dq.

2.4 Applying AGM bound on conjunctive queries
with simple functional dependencies

Thus far we have been describing bounds and algo-
rithms for natural join queries. A super-class of natural
join queries is called conjunctive queries. A conjunctive
query is a query of the form

C “ R0pX̄0q – R1pX̄1q ^ ¨ ¨ ¨ ^ RmpX̄mq
where {R1, . . . ,Rm} is a multi-set of relation symbols, i.e.
some relation might occur more than once in the query,
X̄0, . . . , X̄m are tuples of variables, and each variable oc-
curring in the query’s head RpX̄0q must also occur in the
body. It is important to note that the same variable might
occur more than once in the same tuple X̄i.

We will use varspCq to denote the set of all variables
occurring in C. Note that X̄0 Ñ varspCq and it is entirely
possible for X̄0 to be empty (Boolean conjunctive query).
For example, the following are conjunctive queries:

R0pWXYZq – S pWXYq ^ S pWWWq ^ T pYZq
R0pZq – S pWXYq ^ S pWWWq ^ T pYZq.

The former query is a full conjunctive query because the
head atom contains all the query’s variables.

Following Gottlob, Lee, Valiant, and Valiant (hence-
forth GLVV) [12,13], we also know that the AGM bound
can be extended to general conjunctive queries even with

610 SIGMOD Record, December 2013 (Vol. 42, No. 4)

simple functional dependencies.4 In this survey, our pre-
sentation closely follows Grohe’s presentation of GLVV [19].

To illustrate what can go “wrong” when we are mov-
ing from natural join queries to conjunctive queries, let
us consider a few example conjunctive queries, intro-
ducing one issue at a time. In all examples below, rela-
tions are assumed to have the same size N.

Example 3 (Projection). Consider

C1 “ R0pWq – RpWXq ^ S pWYq ^ T pWZq.
In the (natural) join query, RpWXq ^ S pWYq ^ T pWZq
AGM bound gives N3; but because R0pWq Ñ ⇡WpRq Z
⇡WpS q Z ⇡WpT q, AGM bound can be adapted to the
instance restricted only to the output variables yielding
an upper bound of N on the output size.

Example 4 (Repeated variables). Consider the query

C2 “ R0pWYq – RpWWq ^ S pWYq ^ T pYYq.
This is a full conjunctive query as all variables appear in
the head atom R0. In this case, we can replace RpWWq
and T pYYq by keeping only tuples pt1, t2q P R for which
t1 “ t2 and tuples pt1, t2q P T for which t1 “ t2; es-
sentially, we turn the query into a natural join query
of the form R1pWq ^ S pWYq ^ T 1pYq. For this query,
xR1 “ xT 1 “ 0 and xS “ 1 is a fractional cover and thus
by AGM bound N is an upperbound on the output size.

Example 5 (Introducing the chase). Consider the query

C3 “ R0pWXYq – RpWXq ^ RpWWq ^ S pXYq.
Without additional information, the best bound we can
get for this query is OpN2q: we can easily turn it into
a natural join query of the form RpWXq ^ R1pWq ^
S pXYq, where R1 is obtained from R by keeping all tu-
ples pt1, t2q P R for which t1 “ t2. Then, pxR, xR1 , xS q
is a fractional edge cover for this query if and only if
xR ` xR1 • 1 (to cover W), xR ` xS • 1 (to cover X),
xS • 1 (to cover Y); So, xS “ xR1 “ 1 and xR “ 0 is
a fractional cover, yielding the OpN2q bound. Further-
more, it is easy to construct input instances for which
the output size is ⌦pN2q:

R “ {pi, iq | i P rN{2s}
[
{pi, 0q | i P rN{2s}

S “ {p0, jq | j P rNs}.
Every tuple pi, 0, jq for i P rN{2s, j P rNs is in the out-
put.

Next, suppose we have an additional piece of infor-
mation that the first attribute in relation R is its key,
4GLVV also have fascinating bounds for the general functional
dependency and composite keys cases, and characterization of
treewidth-preserving queries; both of those topics are beyond
the scope of this survey, in part because they require di↵erent
machinery from what we have developed thus far.

i.e. if pt1, t2q and pt1, t1
2q are in R, then t2 “ t1

2. Then
we can significantly reduce the output size bound be-
cause we can infer the following about the output tu-
ples: pw, x, yq is an output tuple i↵ pw, xq and pw,wq are
in R, and px, yq are in S . The functional dependency
tells us that x “ w. Hence, the query is equivalent to
C1

3 “ R0pWYq – RpWWq ^ S pWYq. The AGM bound
for this (natural) join query is N. The transformation
from C3 to C1

3 we just described is, of course, the famous
chase operation [1,3,27], which is much more powerful
than what is conveyed by this example.

Example 6 (Taking advantage of FDs). Consider the
following query

C4 “ R0pXY1, . . . ,Yk,Zq –
k̂

i“1

RipXYiq ^
k̂

i“1

S ipYiZq.

First, without any functional dependency, AGM bound
gives Nk for this query, because the fractional cover con-
straints are

kX

i“1

xRi • 1 (cover X)

xRi ` xS i • 1 (cover Yi) i P rks
kX

i“1

xS i • 1 (cover Z).

The AGM bound is N
P

ipxRi `xS i q • Nk.
Second, suppose we know k `1 functional dependen-

cies: each of the first attributes of relations R1, . . . ,Rk
is a key for the corresponding relation, and the first at-
tribute of S 1 is its key. Then, we have the following sets
of functional dependencies: X Ñ Yi, i P rks, and Y1 Ñ
Z. Now, construct a fictitious relation R1pX,Y1, . . . ,Yk,Zq
as follows: px, y1, . . . , yk, zq P R1 i↵ px, yiq P Ri for all
i P rks and py1, zq P S 1. Then, obviously |R1| § N.
More importantly, the output does not change if we add
R1 to the body query C4 to obtain a new conjunctive
query C1

4. However, this time we can set xR1 “ 1 and
all other variables in the fractional cover to be 0 and ob-
tain an upper bound of N.

We present a more formal treatment of the steps needed
to convert a conjunctive query with simple functional
dependencies to a join query in [30].

3. WORST-CASE-OPTIMAL ALGORITHMS
We first show how to analyze the upper bound that

proves AGM and from which we develop a generalized
join algorithm that captures both algorithms from Ngo-
Porat-Ré-Rudra [29] (henceforth NPRR) and Leapfrog
Triejoin [39]. Then, we describe the limitation of any
join-project plan.

7SIGMOD Record, December 2013 (Vol. 42, No. 4) 11

Henceforth, we need the following notation. LetH “
pV,Eq be any hypergraph and I Ñ V be an arbitrary
subset of vertices ofH . Then, we define

EI :“ �
F P E | F X I ,H

.

Example 7. For the query Q4 from Section 1, we have
H4 “ pV4,E4q, where

V4 “ {A, B,C},
E4 “

n
{A, B}, {B,C}, {A,C}

o
.

Let I1 “ {A} and I2 “ {A, B}, then EI1 “ {{A, B}, {A,C}},
and EI2 “ E4.

3.1 A proof of the AGM bound
We prove the AGM inequality in two steps: a query

decomposition lemma, and then a succinct inductive proof,
which we then use to develop a generic worst-case opti-
mal join algorithm.

3.1.1 The query decomposition lemma

Ngo-Porat-Ré-Rudra [29] gave an inductive proof of
AGM bound (6) using Hölder inequality. (AGM proved
the bound using an entropy based argument: see [30]
for more details.) The proof has an inductive structure
leading naturally to recursive join algorithms. NPRR’s
strategy is a generalization of the strategy in [5] to prove
the Bollobás-Thomason inequality, shown in [29] to be
equivalent to AGM’s bound.

Implicit in NPRR is the following key lemma, which
will be crucial in proving bounds on general join queries
(as well as proving upper bounds on the runtime of the
new join algorithms).

Lemma 3.1 (Query decomposition lemma). Let Q “
ZFPE RF be a natural join query represented by a hy-
pergraph H “ pV,Eq, and x be any fractional edge
cover forH . LetV “ I Z J be an arbitrary partition of
V such that 1 § |I| † |V|; and,

L “ZFPEI ⇡IpRFq.
Then,

X

tI PL

Y

FPEJ

|RF X tI |xF §
Y

FPE
|RF |xF . (9)

Before we prove the lemma above, we outline how
we have already used the lemma above specialized to
Q4 in Section 1 to bound the runtime of Algorithm 1.
We use the lemma with x “ p1{2, 1{2, 1{2q, which is a
valid fractional edge cover forH4.

For Algorithm 1 we use Lemma 3.1 with I “ {A}, J “
{B,C}. Note that L in Lemma 3.1 is the same as

⇡ApRq Z ⇡ApT q “ ⇡ApRq X ⇡ApT q,
i.e. this L is exactly the same as the L in Algorithm 1.
We now consider the left hand side (LHS) in (9). Note

that we have EJ “
n
{A, B}, {B,C}, {A,C}

o
. Thus, the

LHS is the same as
X

aPL

q
|R X paq| ¨

q
|T X paq| ¨

q
|S X paq|

“
X

aPL

q
|�A“aR| ¨

q
|�A“aT | ¨

q
|S |.

Note that the last expression is exactly the same as (4),
which is at most

p|R| ¨ |S | ¨ |T | by Lemma 3.1. This
was shown in Section 1.

Proof of Lemma 3.1. The plan is to “unroll” the sum of
products on the left hand side using Hölder inequality as
follows. Let j P I be an arbitrary attribute. Define

I1 “ I ´ { j}
J1 “ J Y { j}
L1 “ ZFPEI1 ⇡I1 pRFq.

We will show that
X

tI PL

Y

FPEJ

|RF X tI |xF §
X

tI1 PL1

Y

FPEJ1
|RF X tI1 |xF . (10)

Then, by repeated applications of (10) we will bring I1
down to empty and the right hand side is that of (9).

To prove (10) we write tI “ ptI1 , t jq for some tI1 P L1
and decompose a sum over L to a double sum over L1
and t j, where the second sum is only over t j for which
ptI1 , t jq P L.

X

tI PL

Y

FPEJ

|RF X tI |xF

“
X

tI1 PL1

X

t j

Y

FPEJ

|RF X ptI1 , t jq|xF

“
X

tI1 PL1

X

t j

0BBBBBB@
Y

FPEJ

|RF X ptI1 , t jq|xF

1CCCCCCA ¨
0BBBBBBB@

Y

FPEJ1 ´EJ

1xF

1CCCCCCCA

“
X

tI1 PL1

X

t j

Y

FPEJ1
|RF X ptI1 , t jq|xF

“
X

tI1 PL1

Y

FPEJ1 ´E{ j}
|RF X tI1 |xF

X

t j

Y

FPE{ j}
|RF X ptI1 , t jq|xF

§
X

tI1 PL1

Y

FPEJ1 ´E{ j}
|RF X tI1 |xF

Y

FPE{ j}

0BBBBBBB@
X

t j

|RF X ptI1 , t jq|
1CCCCCCCA

xF

§
X

tI1 PL1

Y

FPEJ1 ´E{ j}
|RF X tI1 |xF

Y

FPE{ j}
|RF X tI1 |xF

“
X

tI1 PL1

Y

FPEJ1
|RF X tI1 |xF .

In the above, the third equality follows from fact that
F Ñ I1 Y { j} for any F P EJ1 ´ EJ . The first inequality
is an application of Hölder inequality, which holds be-
cause

P
FPE{ j} xF • 1. The second inequality holds since

the sum is only over t j for which ptI1 , t jq P L. ⇤

812 SIGMOD Record, December 2013 (Vol. 42, No. 4)

It is quite remarkable that from the query decomposi-
tion lemma, we can prove AGM inequality (6), and de-
scribe and analyze two join algorithms succinctly.

3.1.2 An inductive proof of AGM inequality

Base case. In the base case |V| “ 1, we are comput-
ing the join of |E| unary relations. Let x “ pxFqFPE be a
fractional edge cover for this instance. Then,

| ZFPE RF | § min
FPE |RF | §

✓
min
FPE |RF |

◆P
FPE xF

“
Y

FPE

✓
min
FPE |RF |

◆xF §
Y

FPE
|RF |xF .

Inductive step. Now, assume n “ |V| • 2. Let
V “ IZJ be any partition ofV such that 1 § |I| † |V|.
Define L “ ZFPEI ⇡IpRFq as in Lemma 3.1. For each
tuple tI P L we define a new join query

QrtIs :“ZFPEJ ⇡JpRF X tIq.
Then, obviously we can write the original query Q as

Q “
[

tI PL

�{tI}ˆ QrtIs� . (11)

The vector pxFqFPEJ is a fractional edge cover for the
hypergraph of QrtIs. Hence, the inductive hypothesis
gives us

|QrtIs| §
Y

FPEJ

|⇡JpRF X tIq|xF “
Y

FPEJ

|RF X tI |xF .

(12)
From (11), (12), and (9) we obtain AGM inequality:

|Q| “
X

tI PL

|QrtIs| §
Y

FPE
|RF |xF .

3.2 Worst-case optimal join algorithms
From the proof of Lemma 3.1 and the query decom-

position (11), it is straightforward to design a class of
recursive join algorithms which is optimal in the worst
case: see Algorithm 3. On the surface it seems that Al-
gorithm 3 does not deal with skew explicitly. However,
the algorithm deals with skew implicitly and this is vis-
ible in the analysis of the algorithm.

A mild assumption which is not very crucial is to
pre-index all the relations so that the inputs to the sub-
queries QrtIs can readily be available when the time
comes to compute it. Both NPRR and Leapfrog Triejoin
algorithms do this by fixing a global attribute order and
build a B-tree-like index structure for each input rela-
tion consistent with this global attribute order. A hash-
based indexing structure can also be used to remove a
log-factor from the final run time. We will not delve
on this point here, except to emphasize the fact that we
do not include the linear time pre-processing step in the
final runtime expression.

Algorithm 3 Generic-Join(ZFPE RF)
Input: Query Q, hypergraphH “ pV,Eq
Input: Input relations already indexed

1: Q – H
2: If |V| “ 1 then
3: return

T
FPE RF

4: Pick I arbitrarily such that 1 § |I| † |V|
5: L – Generic-JoinpZFPEI ⇡IpRFqq
6: For every tI P L do
7: QrtIs – Generic-JoinpZFPEJ ⇡JpRF X tIqq
8: Q – Q Y {tI}ˆ QrtIs
9: Return Q

Given the indices, when |V| “ 1 computing
T

FPE RF
can easily be done in time

Õpm min |RF |q “ Õpm
Y

FPE
|RF |xF q.

To attain this run time, an m-way sort merge can be
performed. The power of m choices is implicitly ap-
plied: some relations RF might be skewed having ex-
tremely large size, but the intersection can still be com-
puted in time proportional to the smallest relation size.
(Again, here we assume that the input is already pre-
sorted.) Then, given this base-case runtime guarantee,
we can show by induction that the overall runtime of Al-
gorithm 3 is Õpmn

Q
FPE |RF |xF q, where Õ hides a poten-

tial log-factor of the input size. This is because, by in-
duction the time it takes to compute L is Õpm|I| QFPEI

|RF |xF q,
and the time it takes to compute QrtIs is

Õ

0BBBBBB@mpn ´ |I|q
Y

FPEJ

|RF X tI |xF

1CCCCCCA

Hence, from Lemma 3.1, the total run time is Õ of

m|I|
Y

FPEI

|RF |xF ` mpn ´ |I|q
X

tI PL

Y

FPEJ

|RF X tI |xF

§ m|I|
Y

FPEI

|RF |xF ` mpn ´ |I|q
Y

FPE
|RF |xF

§ mn
Y

FPE
|RF |xF .

The NPRR algorithm is an instantiation of Algorithm 3
where it picks J P E, I “ V ´ J, and solves the sub-
queries QrtIs in a di↵erent way, making explicit use of
the power of two choices idea. Since J P E, we write

QrtIs “ RJ Z
�
ZFPEJ´{J} ⇡JpRF X tIq� .

Now, if xJ • 1 then we solve for QrtIs by checking for
every tuple in RJ whether it can be part of QrtIs. The

9SIGMOD Record, December 2013 (Vol. 42, No. 4) 13

run time is Õ of

pn ´ |I|q|RJ| § pn ´ |I|q
Y

FPEJ

|RF X tI |xF .

When xJ † 1, we will make use of an extremely sim-
ple observation: for any real numbers p, q • 0 and
z P r0, 1s, min{p, q} § pzq1´z (note that (2) is the spe-
cial case of z “ 1{2). In particular, define

p “ |RJ|
q “

Y

FPEJ´{J}
|⇡JpRF X tIq| xF

1´xJ

Then,

min {p, q} § |RJ|xJ
Y

FPEJ´{J}
|⇡JpRF X tIq|xF

“
Y

FPEJ

|RF X tI |xF .

From there, when xJ † 1 and p § q, we go through
each tuple in RJ and check as in the case xJ • 1. And
when p ° q, we solve the subquery ZFPEJ´{J} ⇡JpRF X
tIq first using

⇣
xF

1´xJ

⌘
FPEJ´{J} as its fractional edge cover;

and then checking for each tuple in the result whether
it is in RJ . In either case, the run time is Õpmin{p, q}q,
which along with the observation above completes the
proof.

Next we outline how Algorithm 1 is Algorithm 3 with
the above modification for NPRR for the triangle query
Q4. In particular, we will use x “ p1{2, 1{2, 1{2q and
I “ {A}. Note that this choice of I implies that J “
{B,C}, which means in Step 5 Algorithm 3 computes

L “ ⇡ApRq Z ⇡ApT q “ ⇡ApRq X ⇡ApT q,
which is exactly the same L as in Algorithm 1. Thus,
in the remaining part of Algorithm 3 one would cycle
through all a P L (as one does in Algorithm 1). In par-
ticular, by the discussion above, since xS “ 1{2 † 1, we
will try the best of two choices. In particular, we have

ZFPEJ´{J} ⇡JpRF X paqq “ ⇡Bp�A“aRq ˆ ⇡Cp�A“aT q,
p “ |S |,
q “ |�A“aR| ¨ |�A“aT |.

Hence, the NPRR algorithm described exactly matches
Algorithm 1.

The Leapfrog Triejoin algorithm [39] is an instantia-
tion of Algorithm 3 whereV “ rns and I “ {1, . . . , n ´
1} (or equivalently I “ {1}!). Next, we outline how Al-
gorithm 2 is Algorithm 3 with I “ {A, B} when special-
ized to Q4. Consider the run of Algorithm 3 onH4, and
the first time Step 4 is executed. The call to Generic-Join
in Step 5 returns L “ {pa, bq|a P LA, b P La

B}, where
LA and La

B are as defined in Algorithm 2. The rest of
Algorithm 3 is to do the following for every pa, bq P

L. Qrpa, bqs is computed by the recursive call to Algo-
rithm 3 to obtain {pa, bq}ˆ La,b

C , where

La,b
C “ ⇡Cp�B“bpS qq Z ⇡Cp�A“apT qq,

exactly as was done in Algorithm 2. Finally, we get
back to L in Step 5 being as claimed above. Note that
the recursive call of Algorithm 3 is on the query QôŸ “
R Z ⇡BpS q Z ⇡ApT q. The claim follows by picking
I “ {A} in Step 4 when Algorithm 3 is run on QôŸ (and
tracing through rest of Algorithm 3).

3.3 On the limitation of any join-project plan
AGM proved that there are classes of queries for which

join-only plans are significantly worse than their join-
project plan. In particular, they showed that for every
M,N P N, there is a query Q of size at least M and a
database D of size at least N such that 2⇢

˚pQ,Dq § N2

and every join-only plan runs in time at least N
1
5 log2 |Q|.

NPRR continued with the story and noted that for
the class of LWn queries from Section 2.2 every join-
project plan runs in time polynomially worse than the
AGM bound. The proof of the following lemma can be
found in [30].

Lemma 3.2. Let n • 2 be an arbitrary integer. For
any LW-query Q with corresponding hypergraph H “
prns,

⇣ rns
n´1

⌘
q, and any positive integer N • 2, there ex-

ist n relations Ri, i P rns such that |Ri| “ N,@i P rns,
the attribute set for Ri is rns ´ {i}, and that any join-
project plan for Q on these relations has run-time at
least ⌦pN2{n2q.

Note that both the traditional join-tree-based algorithms
and AGM’s algorithm are join-project plans. Conse-
quently, they run in time asymptotically worse than the
best AGM bound for this instance, which is

| Zn
i“1 Ri| §

nY

i“1

|Ri|1{pn´1q “ N1`1{pn´1q.

On the other hand, both algorithms described in Sec-
tion 3.2 take OpN1`1{pn´1qq-time because their run times
match the AGM bound. In fact, the NPRR algorithm in
Section 3.2 can be shown to run in linear data-complexity
time Opn2Nq for this query [29].

4. OPEN QUESTIONS
We conclude this survey with two open questions:

one for systems researchers and one for theoreticians:

1. A natural question to ask is whether the algorith-
mic ideas that were presented in this survey can
gain runtime e�ciency in databases systems. This
is an intriguing open question: on one hand we
have shown asymptotic improvements in join al-
gorithms, but on the other there are several decades

1014 SIGMOD Record, December 2013 (Vol. 42, No. 4)

of engineering refinements and research contribu-
tions in the traditional dogma.

2. Worst-case results may only give us information
about pathological instances. Thus, there is a nat-
ural push toward more refined measures of com-
plexity. For example, current complexity measures
are too weak to explain why indexes are used or
give insight into the average case. For example,
could one design an adaptive join algorithm whose
run time is somehow dictated by the “di�culty" of
the input instance (instead of the input size as in
the currently known results)?

5. REFERENCES

[1] Aho, A. V., Beeri, C., and Ullman, J. D. The
theory of joins in relational databases. ACM
Trans. Database Syst. 4, 3 (1979), 297–314.

[2] Atserias, A., Grohe, M., andMarx, D. Size
bounds and query plans for relational joins. SIAM
J. Comput. 42, 4 (2013), 1737–1767.

[3] Beeri, C., and Vardi, M. Y. A proof procedure for
data dependencies. J. ACM 31, 4 (1984), 718–741.

[4] Blanas, S., Li, Y., and Patel, J. M. Design and
evaluation of main memory hash join algorithms
for multi-core CPUs. In SIGMOD (2011), ACM,
pp. 37–48.

[5] Bollobás, B., and Thomason, A. Projections of
bodies and hereditary properties of hypergraphs.
Bull. London Math. Soc. 27, 5 (1995), 417–424.

[6] Chandra, A. K., andMerlin, P. M. Optimal
implementation of conjunctive queries in
relational data bases. In STOC (1977), J. E.
Hopcroft, E. P. Friedman, and M. A. Harrison,
Eds., ACM, pp. 77–90.

[7] Chaudhuri, S. An overview of query optimization
in relational systems. In PODS (1998), ACM,
pp. 34–43.

[8] Chekuri, C., and Rajaraman, A. Conjunctive
query containment revisited. Theor. Comput. Sci.
239, 2 (2000), 211–229.

[9] DeWitt, D. J., Naughton, J. F., Schneider, D. A.,
and Seshadri, S. Practical skew handling in
parallel joins. In Proceedings of the 18th
International Conference on Very Large Data
Bases (San Francisco, CA, USA, 1992), VLDB
’92, Morgan Kaufmann Publishers Inc.,
pp. 27–40.

[10] Fagin, R. Degrees of acyclicity for hypergraphs
and relational database schemes. J. ACM 30, 3
(1983), 514–550.

[11] Friedgut, E., and Kahn, J. On the number of
copies of one hypergraph in another. Israel J.
Math. 105 (1998), 251–256.

[12] Gottlob, G., Lee, S. T., and Valiant, G. Size and
treewidth bounds for conjunctive queries. In
PODS (2009), J. Paredaens and J. Su, Eds., ACM,
pp. 45–54.

[13] Gottlob, G., Lee, S. T., Valiant, G., and Valiant,
P. Size and treewidth bounds for conjunctive
queries. J. ACM 59, 3 (2012), 16.

[14] Gottlob, G., Leone, N., and Scarcello, F.
Hypertree decompositions and tractable queries. J.
Comput. Syst. Sci. 64, 3 (2002), 579–627.

[15] Gottlob, G., Leone, N., and Scarcello, F.
Robbers, marshals, and guards: game theoretic
and logical characterizations of hypertree width.
J. Comput. Syst. Sci. 66, 4 (2003), 775–808.

[16] Gottlob, G., Miklós, Z., and Schwentick, T.
Generalized hypertree decompositions:
NP-hardness and tractable variants. J. ACM 56, 6
(2009).

[17] Graefe, G. Query evaluation techniques for large
databases. ACM Computing Surveys 25, 2 (June
1993), 73–170.

[18] Graham, M. H. On the universal relation, 1980.
Tech. Report.

[19] Grohe, M. Bounds and algorithms for joins via
fractional edge covers. In In Search of Elegance in
the Theory and Practice of Computation (2013),
V. Tannen, L. Wong, L. Libkin, W. Fan, W.-C.
Tan, and M. P. Fourman, Eds., vol. 8000 of
Lecture Notes in Computer Science, Springer,
pp. 321–338.

[20] Grohe, M., andMarx, D. Constraint solving via
fractional edge covers. In SODA (2006), ACM
Press, pp. 289–298.

[21] Gyssens, M., Jeavons, P., and Cohen, D. A.
Decomposing constraint satisfaction problems
using database techniques. Artif. Intell. 66, 1
(1994), 57–89.

[22] Gyssens, M., and Paredaens, J. A decomposition
methodology for cyclic databases. In Advances in
Data Base Theory (1982), pp. 85–122.

[23] Hardy, G. H., Littlewood, J. E., and Pólya, G.
Inequalities. Cambridge University Press,
Cambridge, 1988. Reprint of the 1952 edition.

[24] Kim, C., Kaldewey, T., Lee, V. W., Sedlar, E.,
Nguyen, A. D., Satish, N., Chhugani, J., Di Blas,
A., and Dubey, P. Sort vs. hash revisited: fast join
implementation on modern multi-core CPUs.
Proc. VLDB Endow. 2, 2 (Aug. 2009), 1378–1389.

[25] Kolaitis, P. G., and Vardi, M. Y.
Conjunctive-query containment and constraint
satisfaction. J. Comput. Syst. Sci. 61, 2 (2000),
302–332.

[26] Loomis, L. H., andWhitney, H. An inequality
related to the isoperimetric inequality. Bull. Amer.

11SIGMOD Record, December 2013 (Vol. 42, No. 4) 15

Math. Soc 55 (1949), 961–962.
[27] Maier, D., Mendelzon, A. O., and Sagiv, Y.

Testing implications of data dependencies. ACM
Trans. Database Syst. 4, 4 (Dec. 1979), 455–469.

[28] Marx, D. Approximating fractional hypertree
width. ACM Trans. Algorithms 6, 2 (Apr. 2010),
29:1–29:17.

[29] Ngo, H. Q., Porat, E., Ré, C., and Rudra, A.
Worst-case optimal join algorithms: [extended
abstract]. In PODS (2012), pp. 37–48.

[30] Ngo, H. Q., Re, C., and Rudra, A. Skew Strikes
Back: New Developments in the Theory of Join
Algorithms. ArXiv e-prints (Oct. 2013).

[31] Papadimitriou, C. H., and Yannakakis, M. On the
complexity of database queries. In PODS (1997),
A. O. Mendelzon and Z. M. Özsoyoglu, Eds.,
ACM Press, pp. 12–19.

[32] Ramakrishnan, R., and Gehrke, J. Database
Management Systems, 3 ed. McGraw-Hill, Inc.,
New York, NY, USA, 2003.

[33] Robertson, N., and Seymour, P. D. Graph minors.
II. Algorithmic aspects of tree-width. J.
Algorithms 7, 3 (1986), 309–322.

[34] Scarcello, F. Query answering exploiting
structural properties. SIGMOD Record 34, 3
(2005), 91–99.

[35] Selinger, P. G., Astrahan, M. M., Chamberlin,
D. D., Lorie, R. A., and Price, T. G. Access path
selection in a relational database management
system. In Proceedings of the 1979 ACM
SIGMOD international conference on
Management of data (New York, NY, USA,
1979), SIGMOD ’79, ACM, pp. 23–34.

[36] Suri, S., and Vassilvitskii, S. Counting triangles
and the curse of the last reducer. In WWW (2011),
pp. 607–614.

[37] Tsourakakis, C. E. Fast counting of triangles in
large real networks without counting: Algorithms
and laws. In ICDM (2008), IEEE Computer
Society, pp. 608–617.

[38] Vardi, M. Y. The complexity of relational query
languages (extended abstract). In STOC (1982),
H. R. Lewis, B. B. Simons, W. A. Burkhard, and
L. H. Landweber, Eds., ACM, pp. 137–146.

[39] Veldhuizen, T. L. Leapfrog Triejoin: a worst-case
optimal join algorithm. In ICDT (2014). To
appear.

[40] Walton, C. B., Dale, A. G., and Jenevein, R. M. A
taxonomy and performance model of data skew
e↵ects in parallel joins. In Proceedings of the 17th
International Conference on Very Large Data
Bases (San Francisco, CA, USA, 1991), VLDB
’91, Morgan Kaufmann Publishers Inc.,
pp. 537–548.

[41] Xu, Y., Kostamaa, P., Zhou, X., and Chen, L.
Handling data skew in parallel joins in
shared-nothing systems. In Proceedings of the
2008 ACM SIGMOD international conference on
Management of data (New York, NY, USA,
2008), SIGMOD ’08, ACM, pp. 1043–1052.

[42] Yannakakis, M. Algorithms for acyclic database
schemes. In VLDB (1981), IEEE Computer
Society, pp. 82–94.

[43] Yu, C., and Ozsoyoglu, M. On determining
tree-query membership of a distributed query.
Informatica 22, 3 (1984), 261–282.

APPENDIX
The following form of Hölder’s inequality (also histor-
ically attributed to Jensen) can be found in any stan-
dard text on inequalities. The reader is referred to the
classic book “Inequalities” by Hardy, Littlewood, and
Pólya [23] (Theorem 22 on page 29).

Lemma .1 (Hölder inequality). Let m, n be positive in-
tegers. Let y1, . . . , yn be non-negative real numbers such
that y1 ` ¨ ¨ ¨ ` yn • 1. Let ai j • 0 be non-negative real
numbers, for i P rms and j P rns. With the convention
00 “ 0, we have:

mX

i“1

nY

j“1

ayj

i j §
nY

j“1

0BBBBB@
mX

i“1

ai j

1CCCCCA
y j

. (13)

1216 SIGMOD Record, December 2013 (Vol. 42, No. 4)

