
Amazon Redshift Re-invented
Nikos Armenatzoglou, Sanuj Basu, Naga Bhanoori, Mengchu Cai, Naresh Chainani, Kiran Chinta

Venkatraman Govindaraju, Todd J. Green, Monish Gupta, Sebastian Hillig, Eric Hotinger
Yan Leshinksy, Jintian Liang, Michael McCreedy, Fabian Nagel, Ippokratis Pandis, Panos Parchas

Rahul Pathak, Orestis Polychroniou, Foyzur Rahman, Gaurav Saxena, Gokul Soundararajan
Sriram Subramanian, Doug Terry

Amazon Web Services
USA

redshift-paper@amazon.com

ABSTRACT
In 2013, AmazonWeb Services revolutionized the data warehousing
industry by launching Amazon Redshift, the first fully-managed,
petabyte-scale, enterprise-grade cloud data warehouse. Amazon
Redshift made it simple and cost-effective to efficiently analyze
large volumes of data using existing business intelligence tools. This
cloud service was a significant leap from the traditional on-premise
data warehousing solutions, which were expensive, not elastic, and
required significant expertise to tune and operate. Customers em-
braced Amazon Redshift and it became the fastest growing service
in AWS. Today, tens of thousands of customers use Redshift in
AWS’s global infrastructure to process exabytes of data daily.

In the last few years, the use cases for Amazon Redshift have
evolved and in response, the service has delivered and continues
to deliver a series of innovations that delight customers. Through
architectural enhancements, Amazon Redshift has maintained its
industry-leading performance. Redshift improved storage and com-
pute scalability with innovations such as tiered storage, multi-
cluster auto-scaling, cross-cluster data sharing and the AQUA query
acceleration layer. Autonomics have made Amazon Redshift easier
to use. Amazon Redshift Serverless is the culmination of auto-
nomics effort, which allows customers to run and scale analytics
without the need to set up and manage data warehouse infras-
tructure. Finally, Amazon Redshift extends beyond traditional data
warehousing workloads, by integrating with the broad AWS ecosys-
tem with features such as querying the data lake with Spectrum,
semistructured data ingestion and querying with PartiQL, stream-
ing ingestion from Kinesis and MSK, Redshift ML, federated queries
to Aurora and RDS operational databases, and federated material-
ized views.

CCS CONCEPTS
• Information systems → Database design and models; Data-
base management system engines.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9249-5/22/06.
https://doi.org/10.1145/3514221.3526045

KEYWORDS
Cloud Data Warehouse, Data Lake, Redshift, Serverless, OLAP,
Analytics, Elasticity, Autonomics, Integration

ACM Reference Format:
Nikos Armenatzoglou, Sanuj Basu, Naga Bhanoori, Mengchu Cai, Naresh
Chainani, Kiran Chinta, Venkatraman Govindaraju, Todd J. Green, Monish
Gupta, Sebastian Hillig, Eric Hotinger, Yan Leshinksy, Jintian Liang, Michael
McCreedy, FabianNagel, Ippokratis Pandis, Panos Parchas, Rahul Pathak, Orestis
Polychroniou, Foyzur Rahman, Gaurav Saxena, Gokul Soundararajan, Sri-
ram Subramanian, Doug Terry . 2022. Amazon Redshift Re-invented. In
Proceedings of the 2022 International Conference on Management of Data
(SIGMOD ’22), June 12–17, 2022, Philadelphia, PA, USA. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3514221.3526045

1 INTRODUCTION
Amazon Web Services launched Amazon Redshift [13] in 2013. To-
day, tens of thousands of customers use Redshift in AWS’s global
infrastructure of 26 launched regions and 84 availability zones (AZs)
to process exabytes of data daily. The success of Redshift inspired
innovation in the analytics segment [3, 4, 9, 21], which in turn has
benefited customers. The service has evolved at a rapid pace in
response to the evolution of the customers’ use cases. Redshift’s
development has focused on meeting the following four main cus-
tomer needs.

First, customers demand high-performance execution of increas-
ingly complex analytical queries. Redshift provides industry-leading
data warehousing performance through innovative query execu-
tion that blends database operators in each query fragment via
code generation. State-of-the-art techniques like prefetching and
vectorized execution, further improve its efficiency. This allows
Redshift to scale linearly when processing from a few terabytes of
data to petabytes.

Second, as our customers grow, they need to process more data
and scale the number of users that derive insights from data. Red-
shift disaggregated its storage and compute layers to scale in re-
sponse to changing workloads. Redshift scales up by elastically
changing the size of each cluster and scales out for increased
throughput via multi-cluster autoscaling that automatically adds
and removes compute clusters to handle spikes in customer work-
loads. Users can consume the same datasets from multiple indepen-
dent clusters.

Third, customers want Redshift to be easier to use. For that,
Redshift incorporated machine learning based autonomics that fine-
tune each cluster based on the unique needs of customer workloads.

Industrial Track Paper SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2205

https://doi.org/10.1145/3514221.3526045
https://doi.org/10.1145/3514221.3526045

Figure 1: Amazon Redshift Architecture

Redshift automated workload management, physical tuning, and
the refresh of materialized views (MVs), along with preprocessing
that rewrites queries to use MVs.

Fourth, customers expect Redshift to integrate seamlessly with
the AWS ecosystem and other AWS purpose built services. Red-
shift provides federated queries to transactional databases (e.g.,
DynamoDB [10] and Aurora [22]), Amazon S3 object storage, and
the ML services of Amazon Sagemaker. Through Glue Elastic Views,
customers can create Materialized Views in Redshift that are in-
crementally refreshed on updates of base tables in DynamoDB or
Amazon OpenSearch. Redshift also provides ingestion and querying
of semistructured data with the SUPER type and PartiQL [2].

The rest of the paper is structured as follows. Section 2 gives an
overview of the system architecture, data organization and query
processing flow. It also touches on AQUA, Redshift’s hardware-
based query acceleration layer and Redshift’s advanced query rewrit-
ing capabilities. Section 3 describes Redshift Managed Storage
(RMS), Redshift’s high-performance transactional storage layer and
Section 4 presents Redshift’s compute layer. Details on Redshift’s
smart autonomics are provided in Section 5. Lastly, Section 6 dis-
cusses how AWS and Redshift make it easy for their customers
to use the best set of services for each use case and seamlessly
integrate with Redshift’s best-of-class analytics capabilities.

2 PERFORMANCE THAT MATTERS
2.1 Overview
Amazon Redshift is a column-oriented massively parallel process-
ing data warehouse designed for the cloud [13]. Figure 1 depicts
Redshift’s architecture. A Redshift cluster consists of a single coor-
dinator (leader) node, and multiple worker (compute) nodes. Data
is stored on Redshift Managed Storage, backed by Amazon S3, and
cached in compute nodes on locally-attached SSDs in a compressed

column-oriented format. Tables are either replicated on every com-
pute node or partitioned into multiple buckets that are distributed
among all compute nodes. The partitioning can be automatically
derived by Redshift based on the workload patterns and data char-
acteristics, or, users can explicitly specify the partitioning style as
round-robin or hash, based on the table’s distribution key.

Amazon Redshift provides a wide range of performance and
ease-of-use features to enable customers to focus on business prob-
lems. Concurrency Scaling allows users to dynamically scale-out
in situations where they need more processing power to provide
consistently fast performance for hundreds of concurrent queries.
Data Sharing allows customers to securely and easily share data
for read purposes across independent isolated Amazon Redshift
clusters. AQUA is a query acceleration layer that leverages FPGAs
to improve performance. Compilation-As-A-Service is a caching
microservice for optimized generated code for the various query
fragments executed in the Redshift fleet.

In addition to accessing Redshift using a JDBC/ODBC connec-
tion, customers can also use the Data API to access Redshift from
any web service-based application. The Data API simplifies access
to Redshift by eliminating the need for configuring drivers and
managing database connections. Instead, customers can run SQL
commands by simply calling a secure API endpoint provided by
the Data API. Today, Data API has been serving millions of queries
each day.

Figure 2 illustrates the flow of a query through Redshift. The
query is received by the leader node 1 and subsequently parsed,
rewritten, and optimized 2 . Redshift’s cost-based optimizer in-
cludes the cluster’s topology and the cost of data movement be-
tween compute nodes in its cost model to select an optimal plan.
Planning leverages the underlying distribution keys of participating
tables to avoid unnecessary data movement. For instance, if the

Industrial Track Paper SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2206

Figure 2: Query flow

join key in an equi-join matches the underlying distribution keys
of both participating tables, then the chosen plan avoids any data
movement by processing the join locally for each data partition 3 .

After planning, a workload management (WLM) component
controls admission to Redshift’s execution phase. Once admitted,
the optimized plan is divided into individual execution units that
either end with a blocking pipeline-breaking operation or return
the final result to the user. These units are executed in sequence,
each consuming intermediate results of previously executed units.
For each unit, Redshift generates highly optimized C++ code that
interleaves multiple query operators in a pipeline using one or more
(nested) loops, compiles it and ships the binary to compute nodes
4 . The columnar data are scanned from locally attached SSDs
or hydrated from Redshift Managed Storage 5 . If the execution
unit requires exchanging data with other compute nodes over the
network, then the execution unit consists of multiple generated
binaries that exchange data in a pipelined fashion over the network.

Each generated binary is scheduled on each compute node to
be executed by a fixed number of query processes. Each query
process executes the same code on a different subset of data. Red-
shift’s execution engine employs numerous optimizations to im-
prove query performance. To reduce the number of blocks that
need to be scanned, Redshift evaluates query predicates over zone
maps i.e., small hash tables that contain the min/max values per
block and leverages late materialization. The data that needs to
be scanned after zone-map filtering is chopped into shared work-
units, similar to [16, 20], to allow for balanced parallel execution.
Scans leverage vectorization and Single Instruction, Multiple Data
(SIMD) processing for fast decompression of Redshift’s light-weight
compression formats and for applying predicates efficiently. Bloom
filters, created when building hash tables, are applied in the scan to
further reduce the data volume that has to be processed by down-
stream query operators. Prefetching is leveraged to utilize hash
tables more efficiently.

Redshift’s execution model is optimized for the underlying Ama-
zon EC2 Nitro hardware, resulting in industry leading price/perfor-
mance. Figure 3(a) demonstrates Redshift’s competitive edge when
it comes to price-performance. It compares Amazon Redshift and
three other cloud data warehouses and shows that Amazon Redshift
delivers up to 3× better price-performance ratio out-of-the-box on
untuned 3TB TPC-DS benchmark1. After all cloud data warehouses

1We use the Cloud DW benchmark [1] based on current TPC-DS and TPC-H bench-
marks without any query or data modifications and compliant with TPC rules and
requirements.

 0

 1

 2

 3

 4

OOB Tuned

R
e
la

ti
v
e
 P

ri
c
e
 P

e
rf

o
rm

a
n
c
e

Workload

Redshift

A

B

C

(a) Price-Performance comparison

 0

 1

 2

 3

30TB 100TB 300TB 1PB

T
im

e
 (

h
o
u
rs

)

Scale

3 CN
10 CN

30 CN
100 CN

(b) Scaling TPC-DS from 30TB to 1PB

Figure 3: Price-Performance and Scalability

are tuned, Amazon Redshift has 1.5× better price performance than
the second-best cloud data warehouse offering.

Customer data grows rapidly rendering scalability a top prior-
ity. Figure 3(b) depicts the total execution time of tuned TPC-DS
benchmark while scaling dataset size and hardware simultaneously.
Redshift’s performance remains nearly flat for a given ratio of data
to hardware, as data volume ranges from 30TB to 1PB. This linear
scaling to the petabyte-scale makes it easier, predictable and cost-
efficient for customers to on-board new datasets and workloads.

The following sub-sections discuss selected aspects from Red-
shift’s rewriting/optimization and execution model.

2.2 Introduction to Redshift Code Generation
Redshift is an analytical database focusing on fast execution of
complex queries on large amounts of data. Redshift generates C++
code specific to the query plan and the schema being executed. The
generated code is then compiled and the binary is shipped to the
compute nodes for execution [12, 15, 17]. Each compiled file, called
a segment, consists of a pipeline of operators, called steps. Each
segment (and each step within it) is part of the physical query plan.
Only the last step of a segment can break the pipeline.

1 / / Loop o v e r t h e t u p l e s o f R .
2 while (s c an_s t ep −>has_nex t ()) {
3 / / Get n e x t v a l u e f o r R . key .
4 auto f i e l d 1 = f e t c h e r 1 . g e t _nex t () ;
5 / / Get n e x t v a l u e f o r R . v a l .
6 auto f i e l d 2 = f e t c h e r 2 . g e t _nex t () ;
7 / / Apply p r e d i c a t e R . v a l < 5 0 .
8 i f (f i e l d 2 < con s t an t 1) {
9 / / Hash R . key and p r o b e t h e hash t a b l e .
10 s i z e _ t h1 = hash (f i e l d 1) & (h a s h t a b l e 1 _ s i z e − 1) ;
11 for (auto ∗ p1 = h a s h t a b l e 1 [h1] ; p1 != n u l l p t r ; p1 = p1−>next) {
12 / / E v a l u a t e t h e j o i n c o n d i t i o n R . key = S . key .
13 i f (f i e l d 1 == p1−> f i e l d 1) sum1 += f i e l d 2 ;
14 }
15 }
16 }

Figure 4: Example of generated code

Figure 4 shows a high-level example of the generated C++ code
on a single node cluster for a simple scan → join → aggregate
query: ‘SELECT sum(R.val) FROM R, S WHERE R.key = S.key
AND R.val < 50’. This segment contains the pipeline that scans
base table R (lines 3-6), applies the filter (line 8), probes the hash
table of S (line 10), and computes the aggregate sum() (line 13).
Omitted for simplicity from Figure 4 are segments to build the
hash table from table S and a final segment to combine the partial
sums across compute nodes and return the result to the user. The

Industrial Track Paper SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2207

generated code follows the principle of keeping the working set
as close to the CPU as possible to maximize performance. As such,
each tuple that is processed by multiple operators in a pipeline
is typically kept in CPU registers until the tuple is sent over the
network, materialized in main memory or flushed to disk.

The main property of this style of code generation is that it
avoids any type of interpreted code since all operators for a specific
query are generated in the code on the fly. This is in contrast to the
standard Volcano execution model [11], where each operator is im-
plemented as an iterator and function pointers or virtual functions
pick the right operator at each execution step. The code genera-
tion model offers much higher throughput per tuple at the cost
of latency, derived from having to generate and compile the code
specific to each query. Section 2.6 explains how Redshift mitigates
the compilation costs.

2.3 Vectorized Scans
In Figure 4 lines 4 and 6, function 𝑔𝑒𝑡_𝑛𝑒𝑥𝑡 () returns the next
value for the corresponding field of the base table 𝑅 defined by a
unique fetcher. Such functions are inlined instead of virtual but are
inherently pull-based rather than push-based since the underlying
structure of the base table is too complicated to represent in the
generated code directly. This model is relatively expensive as it
retains a lot of state for each column scanned, easily exhausting
the CPU registers if the query accesses more than a few columns.
Moreover, the filter predicate evaluation (line 8) involves branching
that may incur branch misprediction costs if the selectivity of a
certain predicate is close to 50%, stalling the pipeline. Finally, each
fetcher may inline a large amount of decompression code, which
can significantly slow down compilation for wide tables that access
a large number of columns.

To address these issues, Redshift added a SIMD-vectorized scan
layer to the generated code that accesses the data blocks and evalu-
ates predicates as function calls. In contrast to the rest of the steps
that compile the code on the fly, the vectorized scan functions are
precompiled and cover all data types and their supported encoding
and compression schemes. The output of this layer stores the col-
umn values of the tuples that qualify from the predicates to local
arrays on the stack accessed by downstream steps. In addition to the
faster scan code due to SIMD, this reduces the register pressure and
the amount of inline code that must be compiled, leading to orders
of magnitude faster compilation for certain queries on wide tables.
The design combines column-at-a-time execution for a chunk of
tuples during the scan step and tuple-at-a-time execution down-
stream for joins and aggregation steps. The size of the chunk that is
processed column-at-a-time is dynamically determined during code
generation based on the total width of the columns being accessed
and the size of the thread-private (L2) CPU cache.

2.4 Reducing Memory Stalls with Prefetching
Redshift’s pipelined execution avoids the materialization of inter-
mediate results for the outer stream of joins and aggregates by
keeping the intermediate column values in CPU registers. However,
when building or probing hash tables as part of a hash join, or
probing and updating hash tables as part of aggregations, Redshift
incurs the full overhead of a cache miss if the hash table is too

large to fit in the CPU cache. Memory stalls are prominent in this
push-based model and may offset the eliminated cost of material-
ization for the outer stream in joins. The alternative would be to
partition the input until the hash table of the partition fits in the
CPU cache, thus avoiding any cache misses. That model, however,
is infeasible for the execution engine since it may not be able to
load large base tables in memory and thus cannot access payload
columns using record identifiers. Instead, Redshift transfers all the
needed columns downstream across the steps in the pipeline and
incurs the latency of a cache miss when the hash table is larger
than the CPU cache.

Since cache misses are an inherent property of our execution en-
gine design, stalls are mitigated using prefetching. Our prefetching
mechanism is integrated in the generated code and interleaves each
probe in the hash table or Bloom filter with a prefetch instruction.
Redshift keeps a circular buffer in the fastest (L1) CPU cache and,
for each tuple that arrives, prefetches and pushes it in the buffer.
Then, an earlier tuple is popped and pushed downstream to the
rest of the steps. Once the buffer is filled up, rather than buffering
multiple tuples, individual tuples are processed by pushing and
popping one at a time from the buffer.

This model trades somematerialization cost to the cache-resident
prefetching buffer for the benefit of prefetching the hash table
accesses and reducing the memory stalls. We have found this trade-
off to always be beneficial if the hash table is larger than the CPU
cache. If the hash table is known or expected to be small enough
to fit in the CPU cache, this additional code is never generated.
The same happens if the tuple is too wide and storing it in the
buffer would be more expensive than paying for the cache miss
stall. On the other hand, the prefetching code may be generated
multiple times in the same nested loop if there are multiple joins
and group-by aggregation in the same pipeline, while ensuring that
the total size of all prefetching buffers is small enough to remain in
the fastest (L1) CPU cache.

2.5 Inline Expression Functions
While the examples above cover basic cases of joins and aggrega-
tions with simple data types, an industrial-grade database needs
to support complex data types and expression functions. The gen-
erated code includes pre-compiled headers with inline functions
for all basic operations, like hashing and string comparisons. Scalar
functions that appear in a query translate to inline or regular func-
tion calls in the generated code, depending on the complexity of the
query. Most of these functions are scalar, as they process a single
tuple, but may also be SIMD-vectorized internally.

In Redshift, most string functions are vectorized with SIMD
code tailored to that particular function. One such example are the
LIKE predicates that use the pcmpestri instruction in Intel CPUs,
which allows sub-string matching of up to 16-byte patterns in a
single instruction. Similarly, functions such as UPPER(), LOWER(),
and case-insensitive string comparisons, use SIMD code to accel-
erate the ASCII path and only fall back to (optimized) scalar code
when needed to handle more complex Unicode characters. Such
optimizations are ubiquitous in expression functions to maximize
throughput. The code generation layer inlines function calls that
are on the critical path when advantageous.

Industrial Track Paper SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2208

2.6 Compilation Service
When a query is sent to Redshift, the query processing engine com-
piles optimized object files that are used for query execution. When
the same or similar queries are executed, the compiled segments
are reused from the cluster code compilation cache, which results
in faster run times because there is no compilation overhead. While
Redshift minimizes the overhead of query compilation, the very
first set of query segments still incurs additional latency. In some
cases, even a small additional latency can impact a mission critical
workload with tight service-level-agreements (SLAs), particularly
when a large number of segments need to be compiled increasing
contention for cluster resources.

The compilation service uses compute and memory resources
beyond the Redshift cluster to accelerate query compilation through
a scalable and secure architecture. The compilation service caches
the compiled objects off-cluster in an external code cache to serve
multiple compute clusters that may need the same query segment.
During query processing, Redshift generates query segments and
leverages the parallelism of the external compilation service for
any segments that are not present in a cluster’s local cache or the
external code cache. With the release of compilation service cache
hits across the Amazon Redshift fleet have increased from 99.60%
to 99.95%. In particular, in 87% of the times that an object file was
not present in a cluster’s local code cache, Redshift found it in the
external code cache.

2.7 CPU-Friendly Encoding
Performance is closely tied to CPU and disk usage. Naturally, Red-
shift uses compression to store columns on disk. Redshift supports
generic byte-oriented compression algorithms such as LZO and
ZSTD, as well as optimized type-specific algorithms. One such com-
pression scheme is the recent AZ64 algorithm,which covers numeric
and date/time data types. AZ64 achieves compression that is com-
parable to ZSTD (which compresses better than LZO but is slightly
slower) but with faster decompression rate. For example, a full 3TB
TPC-H run improves by 42% when we use AZ64 instead of LZO for
all data types that AZ64 supports.

2.8 Adaptive Execution
Redshift’s execution engine takes runtime decisions to boost perfor-
mance by changing the generated code or runtime properties on the
fly based on execution statistics. For instance, the implementation
of Bloom filters (BFs) in Redshift demonstrates the importance of
dynamic optimizations [6]. When complex queries join large tables,
massive amounts of data might be transferred over the network for
the join processing on the compute nodes and/or might be spilled
to disk due to limited memory. This can cause network and/or
I/O bottlenecks that can impact query performance. Redshift uses
BFs to improve the performance of such joins. BFs efficiently filter
rows at the source that do not match the join relation, reducing the
amount of data transferred over the network or spilled to disk.

At runtime, join operations decide the amount of memory that
will be used to build a BF based on the exact amount of data that
has been processed. For example, if a join spills data to disk, then
the join operator can decide to build a larger BF to achieve lower
false-positive rates. This decision increases BFs pruning power and

may reduce spilling in the probing phase. Similarly, the engine
monitors the effectiveness of each BF at runtime and disables it
when the rejection ratio is low since the filter burdens performance.
The execution engine can re-enable a BF periodically since temporal
pattern of data may render a previously ineffective BF to become
effective.

2.9 AQUA for Amazon Redshift
Advanced Query Accelerator (AQUA) is a multi-tenant service that
acts as an off-cluster caching layer for Redshift Managed Storage
and a push-down accelerator for complex scans and aggregations.
AQUA caches hot data for clusters on local SSDs, avoiding the la-
tency of pulling data from a regional service like Amazon S3 and
reducing the need to hydrate the cache storage in Redshift com-
pute nodes. To avoid introducing a network bottleneck, the service
provides a functional interface, not a storage interface. Redshift
identifies applicable scan and aggregation operations and pushes
them to AQUA, which processes them against the cached data and
returns the results. Essentially, AQUA is computational storage at a
data-center scale. By being multi-tenant, AQUA makes efficient use
of expensive resources, like SSDs, and provides a caching service
that is unaffected by cluster transformations such as resize and
pause-and-resume.

To make AQUA as fast as possible, we designed custom servers
that make use of AWS’s Nitro ASICs for hardware-accelerated com-
pression and encryption, and leverage FPGAs for high-throughput
execution of filtering and aggregation operations. The FPGAs are
not programmed on a per-query basis, but rather used to imple-
ment a custom multi-core VLIW processor that contains database
types and operations as pipelined primitives. A compiler within
each node of the service maps operations to either the local CPUs
or the accelerators. Doing this provides significant acceleration for
complex operations that can be efficiently performed on the FPGA.

2.10 Query Rewriting Framework
Redshift features a novel DSL-based Query Rewriting Framework
(QRF), which serves multiple purposes: First, it enables rapid intro-
duction of novel rewritings and optimizations so that Redshift can
quickly respond to customer needs. In particular, QRF has been used
to introduce rewriting rules that optimize the order of execution
between unions, joins and aggregations. Furthermore, it is used
during query decorrelation, which is essential in Redshift, whose
execution model benefits from large scale joins rather than brute
force repeated execution of subqueries.

Second, QRF is used for creating scripts for incremental mate-
rialized view maintenance (see Section 5.4) and enabling answer-
ing queries using materialized views. The key intuition behind
QRF is that rewritings are easily expressed as pairs of a pattern
matcher, which matches and extracts parts of the query representa-
tion (AST or algebra), and a generator that creates the new query
representation using the parts extracted by the pattern matcher.
The conceptual simplicity of QRF has enabled even interns to de-
velop complex decorrelation rewritings within days. Furthermore,
it enabled Redshift to introduce rewritings pertaining to nested and
semistructured data processing (see Section 6.4) and sped up the
expansion of the materialized views scope.

Industrial Track Paper SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2209

3 SCALING STORAGE
The storage layer of Amazon Redshift spans from memory, to local
storage, to cloud object storage (Amazon S3) and encompasses all
the data lifecycle operations (i.e., commit, caching, prefetching,
snapshot/restore, replication, and disaster-recovery). Storage has
gone through a methodical and carefully deployed transformation
to ensure durability, availability, scalability, and performance:

Durability and Availability. The storage layer builds on Amazon
S3 and persists all data to Amazon S3 with every commit. Building
on Amazon S3 allows Redshift to decouple data from the compute
cluster that operates on the data. It also makes the data durable and
building an architecture on top of it enhances availability.

Scalability. Using Amazon S3 as the base gives virtually unlim-
ited scale. Redshift Managed Storage (RMS) takes advantage of
optimizations such as data block temperature, data block age, and
workload patterns to optimize performance and manage data place-
ment across tiers of storage automatically.

Performance. Storage layer extends into memory and algorithmic
optimizations. It dynamically prefetches and sizes the in-memory
cache, and optimizes the commit protocol to be incremental.

3.1 Redshift Managed Storage
The Redshift managed storage layer (RMS) is designed for a dura-
bility of 99.999999999% and 99.99% availability over a given year,
across multiple availability zones (AZs). RMS manages both user
data as well as transaction metadata. RMS builds on top of the AWS
Nitro System, which features high bandwidth networking and per-
formance indistinguishable from bare metal. Compute nodes use
large, high performance SSDs as local caches. Redshift leverages
workload patterns and techniques such as automatic fine-grained
data eviction and intelligent data prefetching, to deliver the perfor-
mance of local SSD while scaling storage automatically to Amazon
S3.

Figure 5 shows the key components of RMS extending from in-
memory caches to committed data on Amazon S3. Snapshots of
data on Amazon S3 act as logical restore points for the customer.
Redshift supports both the restore of a complete cluster, as well
as of specific tables, from any available restore point. Amazon
S3 is also the data conduit and source of truth for data sharing
and machine learning. RMS accelerates data accesses from S3 by
using a prefetching scheme that pulls data blocks into memory and
caches them to local SSDs. RMS tunes cache replacement to keep
the relevant blocks locally available by tracking accesses to every
block. This information is also used to help customers decide if
scaling up their cluster would be beneficial. RMS makes in-place
cluster resizing a pure metadata operation since compute nodes are
practically stateless and always have access to the data blocks in
RMS. RMS is metadata bound and easy to scale since data can be
ingested directly into Amazon S3. The tiered nature of RMS where
SSDs act as cache makes swapping out of hardware convenient.
RMS-supported Redshift RA3 instances provide up to 16PBs of
capacity today. The in-memory disk-cache size can be dynamically
changed for balancing performance and memory needs of queries.

A table’s data is partitioned into data slices and stored as logical
chains of blocks. Each data block is described by its block header
(e.g., identity, table ownership and slice information) and indexed

Figure 5: Redshift Managed Storage

via an in-memory construct, called superblock. The superblock is
an indexing structure similar to many filesystems. Queries reach
the relevant data blocks by using zone maps to scan the superblock.
The superblock also contains query tracking information for data
blocks owned by live queries.

Transactions are synchronously committed to Amazon S3 by
RMS. This enables multiple clusters to access live and transaction-
ally consistent data. Writing through to Amazon S3 across different
AZs is achieved by batching data writes and hiding latencies under
synchronization barriers. State is owned and managed by one clus-
ter, while concurrent readers and writers provide compute scaling
on the top of RMS. The concurrent clusters spun up on demand rely
on snapshot isolation and prioritized on-demand fetching of data to
cater to the query requests. Data deleted from the main cluster gets
garbage collected from Amazon S3 once all reader references are
cleared. RMS uses a combination of time-to-live and on-demand
deletes to make sure data does not leak on transaction rollback.

Since data is always backed in Amazon S3, the loss of local SSDs
can be tolerated ensuring data durability. Redshift provides disaster
recovery with RPO=0, where a cluster can be relocated to a same
or different AZ in the event of cluster loss or data center failure.

3.2 Decoupling Metadata from Data
Decoupling metadata from data enables Elastic Resize and Cross-
Instance Restore. Both features shuffle metadata from one cluster
configuration to another and thus separating metadata from data
can lead to an efficient implementation. Elastic Resize allows cus-
tomers to reconfigure their cluster in minutes by adding nodes to
get better performance and more storage for demanding workloads
or by removing nodes to save cost. Cross-Instance Restore allows
users to restore snapshots taken from a cluster of one instance type
to a cluster of different instance type or different number of nodes.

Redshift implements the features mentioned above as follows.
First, it ensures that a copy of data is in Amazon S3. This allows the
recovery from truly rare events such as multiple hardware failures.
Before any reconfiguration, Redshift takes account of the data in
the cluster and generates a plan of how to reconfigure with mini-
mal data movement that also results in a balanced cluster. Redshift
records counts and checksums on the data before reconfiguration
and validates correctness after completion. In case of restore, Red-
shift records counts of number of tables, blocks, rows, bytes used,

Industrial Track Paper SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2210

and data distribution, along with a snapshot. It validates the counts
and checksums after restore before accepting new queries.

Cross-Instance Restore and resize leverage the Elastic Resize
technology to provide migration in minutes. Both Elastic Resize and
Cross-Instance Restore are heavily used features, where customers
use them for reconfiguration over 15,000 times a month. The failure
rates are less than 0.0001%.

3.3 Expand Beyond Local Capacity
Redshift enhances scalability by using Amazon S3 to expand storage
capacity of a cluster and utilizing the local memory and SSD as
caches. Many changes have been made to enable this transition:
upgrading superblock to support larger capacities, modifying local
layout to support more metadata, modifying how snapshots are
taken, transforming how to rehydrate and evict data, etc. Due to
space constraints, the section focuses on two components: tiered-
storage cache and dynamic buffer cache.

The tiered-storage cache keeps track of the number of accesses
of data blocks so that each cluster maintains its working set locally.
It builds a two-level clock-based cache replacement policy to track
data blocks stored in local disk for each compute node. Cache
policy places a cold data block 𝐵 (i.e., accessed for the first time
by customer query) in the low-level clock cache and increases 𝐵’s
reference count on every access. When 𝐵 becomes hot (i.e., accessed
multiple times), cache policy promotes it to the high-level clock
cache. During eviction, the reference count of each block pointed
by clock pointer is decremented. When the reference count of 𝐵 is
zero, 𝐵 is either demoted from high-level clock to low-level clock
or evicted from the cache.

RMS uses the tiered-storage cache to drive rehydration (i.e.,
what data to cache on local SSDs) after a cluster reconfiguration
(e.g., Elastic Resize, cluster restore, hardware failures). In all these
scenarios, the compute nodes rehydrate their local disks with the
data blocks that have highest possibility to be accessed by customer
queries. With this optimization, customer’s queries achieve more
than 80% local disk hit rate at 20% rehydration completion.

Finally, to boost performance, Redshift utilizes a dynamic disk-
cache on top of tiered-storage cache to maintain the hottest blocks
in memory. In addition, the disk-cache keeps other blocks created
by queries such as new data blocks and query-specific temporary
blocks. Disk-cache automatically scales up when memory is avail-
able and proactively scales down as the system is near memory
exhaustion. These changes lead up to a 30% performance improve-
ment in benchmarks as well as customer workloads.

3.4 Incremental Commits
To use Amazon S3 as primary storage requires incremental com-
mits to reduce data footprint and cost. RMS only captures the ex-
act data changes since last commit and updates the commit log
accordingly. Persistent data structures are also updated incremen-
tally. Redshift’s log-based commit protocol, which replaced the
earlier redirect-on-write protocol, decouples the in-memory struc-
ture from the persisted structure, where the persisted superblock
simply records a log of changes. The log-based commit improves
commit performance by 40% by converting a series of random I/Os
into a few sequential log appends. Since RMS provides durable and

highly available data access across multiple AZs and regions, the
metadata can be shared and replayed on globally distributed com-
pute. This log-structured metadata reduces the cost of features like
concurrency scaling and data sharing; both of these features access
transactionally consistent data by applying the log onto their local
superblock.

3.5 Concurrency Control
Redshift implements Multi-version Concurrency Control (MVCC)
where readers neither block nor are blocked and writers may only
be blocked by other concurrent writers. Each transaction sees a
consistent snapshot of the database established by all committed
transactions prior to its start. Redshift enforces serializable isolation,
thus avoiding data anomalies such as lost updates and read-write
skews [5, 19]. With that, Redshift provides industry-leading per-
formance without trading off data correctness, and our customers
do not need to analyze whether a workload should run on lower
transactional isolation levels.

Our legacy implementation used a graph-based mechanism to
track dependencies between transactions to avoid cycles and en-
force serializability. This required tracking individual state of each
transaction well after they were committed, until all other con-
current transactions committed as well. We recently adopted a
new design based on a Serial Safety Net (SSN) as a certifier on
top of Snapshot Isolation [23]. This heuristic-based design allows
us to guarantee strict serializability in a more memory-efficient
manner, using only summary information from prior committed
transactions. As analyzed in [23], the SSN algorithm is an improve-
ment over comparable algorithms such as Serializable Snapshot
Isolation (SSI) [19]. Optimizations and enhancements were added
to the base SSN algorithm, primarily to be backwards compatible
with our legacy certifier. Such enhancements include aborting cer-
tain transactions at the time the operation is executed, rather than
performing the calculations at commit time as the original SSN
design does. There is a significant reduction in resource utilization
compared to the legacy design. In particular, memory footprint of
this component was reduced by as much as 8GB, depending on
workload.

4 SCALING COMPUTE
Every week Redshift processes billions of queries that serve a di-
verse set of workloads that have varying performance requirements.
ETL workloads have strict latency SLAs that downstream reporting
depends on. Interactive dashboards on the other hand have high
concurrency requirements and are extremely sensitive to response
times. Recently, Redshift onboarded a customer workload where
the 90th percentile response time requirement was <1s. Redshift
workload patterns have evolved and our customers choose one
or more of the following compute scaling options to get the best
price/performance to serve their needs.

4.1 Cluster Size Scaling
Elastic Resize allows customers to quickly add or remove compute
nodes from their cluster depending on their current compute needs.
It is a light-weight metadata operation that does not require re-
shuffling the underlying data distribution. Instead, Elastic Resize

Industrial Track Paper SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2211

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250

T
h

ro
u

g
h

p
u

t
(T

h
o

u
sa

n
d

 Q
p

H
)

Concurrent Users

Nov 2019
Aug 2019
Apr 2019
Jan 2019

Figure 6: Concurrency improvements

re-organizes the data partition assignment to ensure that after the
resize, all compute nodes are balanced with respect to the number
of data partitions. After the resize, the data partitions that have
been moved are re-hydrated from S3 in the background; prioritizing
on-demand requests and hot data. Because of the data partition re-
assignment, the number of data partitions per node after an Elastic
Resize differs from those of a Redshift cluster that has not been
resized. In order to provide consistent query performance after
Elastic Resize, Redshift decouples compute parallelism from data
partitions. When there is more compute parallelism than data par-
titions, multiple compute processes are able to share work from an
individual data partition. When there are more data partitions than
compute parallelism, individual compute processes are able to work
on multiple data partitions. Redshift achieves this by generating
shareable work units [16, 20] when scanning Redshift tables and
employing a compute-node centric view of query operators, where
all query processes of a compute node collaborate on processing
all data partitions on that node.

4.2 Concurrency Scaling
Concurrency Scaling allows Redshift to dynamically scale-out when
users need more concurrency than what a single Redshift cluster
can offer. As the number of concurrent queries increases, Concur-
rency Scaling transparently handles the increase in the workload.
With Concurrency Scaling customers maintain a single cluster
endpoint to which they submit their queries. When the assigned
compute resources are fully utilized and new queries start queuing,
Redshift automatically attaches additional Concurrency Scaling
compute clusters and routes the queued queries to them. Concur-
rency Scaling clusters re-hydrate data from RMS. Figure 6 shows
the concurrency improvements Redshift achieved over a period of
one year, in terms of query throughput versus number of concur-
rent clients. The workload used is 3TB TPC-DS. Redshift achieves
linear query throughput for hundreds of concurrent clients.

4.3 Compute Isolation
Redshift allows customers to securely and easily share live data
across different Redshift compute clusters and AWS accounts. This
enables different compute clusters to operate on a single source of
data and eliminates the complexity of pipelines that maintain copies
of data. Data can be shared at many levels, such as schemas, tables,
views, and user-defined functions. In order to access a producer’s

data, a producer cluster must first create a data share and then grant
access to a consumer. Redshift manages the resulting metadata and
IAM policies which facilitate authentication and authorization of
shares between producers and consumers. There is no restriction
on the number of consumer clusters a data share can have.

When a consumer cluster queries a shared object, one or more
metadata requests are issued. A metadata request is only possi-
ble after a consumer cluster has been authorized to access a data
share. Each metadata request flows through a directory service and
proxy layer which form a networking mesh between producers
and consumers of data shares. The proxy performs authentication
and authorization of requests at low latencies and routes consumer
metadata requests to the appropriate producer, which can serve
the requests even if it is paused. After a consumer cluster receives
the metadata, it reads the required data blocks from RMS and exe-
cutes the query. The data blocks are cached locally on the consumer
cluster. If a subsequent query accesses the same data blocks, those
reads are served locally as long as the blocks have not been evicted
from the consumer cluster.

5 AUTOMATED TUNING AND OPERATIONS
One of Redshift’s key premises since its launch was the case for sim-
plicity [13]. From the early days, Redshift simplified many aspects
of traditional data warehousing, including cluster maintenance,
patching, monitoring, resize, backups and encryption.

However, there were still some routine maintenance tasks and
performance knobs whose fine-tuning required the expertise of a
database administrator. For instance, customers had to schedule
maintenance tasks (e.g., vacuum) and decide on performance pa-
rameters such as distribution keys. To alleviate this pain, Redshift
invested heavily in maintenance automation and machine learning
based autonomics.

Today, Redshift runs common maintenance tasks like vacuum,
analyze or the refresh of materialized views in the background with-
out any performance impact to customer workloads. Automatic
workload management dynamically chooses query concurrency
and memory assignment based on workload characteristics. Fur-
thermore, Redshift monitors and analyzes customer workloads and
identifies opportunities for performance improvement, e.g., by au-
tomatically applying distribution and sort key recommendations.
In addition, Redshift employs state of the art forecasting techniques
to make additional nodes available as soon as possible for node
failures, cluster resumption and concurrency scaling, thus, further
improving query latency and reducing down time. Finally, Amazon
Redshift offers a serverless option that relies on algorithms and
makes it easy to run and scale analytics in seconds without the
need to set up and manage data warehouse infrastructure.

5.1 Automatic Table Optimizations
Table properties like distribution and sort keys allow Redshift cus-
tomers to optimize the performance of their workloads. Distribu-
tion keys facilitate efficient collocated joins and aggregates; they
increase parallelism and minimize data reshuffling over the net-
work when data distribution required by the query matches the
physical distribution of the underlying tables. Sort keys facilitate op-
timizations like zone maps and improve the efficiency of sort-based

Industrial Track Paper SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2212

 60
 65
 70
 75
 80
 85
 90
 95

 100

 0 10 20 30 40 50 60 70

T
im

e
(m

in
)

Timeline (hours)

Execution Time
Distkey Event
Sortkey Event

(a) ATO performance improvements

 0

 5

 10

 15

 20

 25

 30

 35

 400 450 500 550 600

C
o
u
n
t

Timeline

Concurrency Queued queries Queued + Running queries

(b) AutoWLM on real customer workload

Figure 7: Automated Tuning Examples

operations like merge join. Choosing appropriate distribution and
sort keys is not always easy and often requires detailed workload
knowledge. Also, evolving workloads may require reconfiguration
of the physical layout.

Redshift has now fully automated the selection and the applica-
tion process of distribution and sort keys through Automatic Table
Optimization (ATO). ATO analyzes the cluster workload to generate
distribution and sort key recommendations and provides tools for
their seamless application on user tables. ATO periodically collects
query execution metadata like the optimized query plans, cardinal-
ities and predicate selectivities to generate recommendations. In
addition, it estimates the expected benefit of each recommendation
and only surfaces highly beneficial recommendations.

The distribution key advisor focuses on minimizing the overall
network cost for a given workload. Distribution keys cannot be
chosen in isolation but require a holistic look at all tables that
participate in the workload. Thus, ATO builds a weighted join
graph from all joins in the workload, and then selects distribution
keys that minimize the total network distribution cost [18].

Similarly, the sort key advisor focuses on reducing the the data
volume that needs to be retrieved from disk. Given the query work-
load, ATO analyzes the selectivity of all range restricted scan oper-
ations and recommends sort keys that improve the effectiveness of
zone map filtering, i.e., pruning of data blocks.

To apply the recommendations, Redshift offers two options to
the customers. First, through the console the users can inspect and
manually apply recommendations through simple DDLs. Second,
automatic background workers periodically apply beneficial rec-
ommendations without affecting the performance of a customers’
workload; the workers run when the cluster is not busy and apply
recommendations incrementally, backing off whenever the load on
the cluster increases.

Figure 7(a) illustrates the effectiveness of ATO on a 5-node
RA3.16xlarge instance derived from an out-of-box TPC-H 30TB
dataset without distribution or sort keys in any of the tables. The
TPC-H benchmark workload runs on this instance every 30 minutes
and we measure the end-to-end runtime. Over time, more and more
optimizations are automatically applied reducing the total work-
load runtime. After all recommendations have been applied, the
workload runtime is reduced by 23% (excluding the first execution
that is higher due to compilation).

5.2 Automatic Workload Management
Admitting queries for execution has a wide range of implications
for concurrently executing queries. Admitting too few, causes high
latency for queued queries and poor resource utilization (e.g., CPU,
I/O or memory) for executing ones. Admitting too many, reduces
the number of queued queries but has a negative effect on resource
utilization as resources become over-saturated. For instance, too lit-
tle memory per query results in more queries spilling to disk, which
has a negative effect on query latency. Redshift is used for a wide
range of rapidly changing workloads with different resource needs.
To improve response times and throughput, Redshift employs ma-
chine learning techniques that predict query resource requirements
and queuing theory models that adjust the number of concurrently
executing queries.

Redshift’s Automatic Workload Manager (AutoWLM) is respon-
sible for admission control, scheduling and resource allocation.
When a query arrives, AutoWLM converts its execution plan and
optimizer-derived statistics into a feature vector, which is evaluated
against machine learning models to estimate metrics like execution
time, memory consumption and compilation time. Based on these
characteristics, the query finds its place in the execution queue. Red-
shift uses execution time prediction to schedule short queries ahead
of long ones. A query may proceed to execution if its estimated
memory footprint can be allocated from the query memory pool.
As more queries are admitted for execution, AutoWLM monitors
the utilization of cluster’s resources using a feedback mechanism
based on queuing theory. When utilization is too high, AutoWLM
throttles the concurrency level to prevent increase in query latency
due to over-saturated query resources.

Figure 7(b) illustrates AutoWLM in action on a real customer
workload. AutoWLM is able to adjust the concurrency level in tan-
demwith the number of query arrivals leading tominimum queuing
and execution time. At time 545, AutoWLM detects that workload
at current concurrency level is leading to IO/CPU saturation and
therefore, it reduces concurrency level. This leads to increase in
queuing because newly arrived queries are not allowed to execute.
To avoid such queueing, customers can either opt for concurrency
scaling (Section 4.2) or define query priorities to allow prioritization
of more crucial queries.

During admission control, AutoWLM employs a weighted round-
robin scheme for scheduling higher priority queries more often
than low priority ones. In addition, higher priority queries get a
bigger share of hardware resources. Redshift divides CPU and I/O
in exponentially decreasing chunks for decreasing priority level
when queries with different priorities are running concurrently.
This accelerates higher priority queries exponentially as compared

Industrial Track Paper SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2213

to lower priority ones. If a higher priority query arrives after a
lower priority query started executing, AutoWLM preempts (i.e.,
aborts and restarts) the lower priority query to make space. In case
of several low priority queries, AutoWLM preempts the query that
is furthest from completion, using the query’s estimated execution
time. To prevent starvation of lower priority queries, a query’s
probability of being preempted is reduced with each preemption.
Even so, if too many queries are preempted, throughput suffers.
To remedy this, AutoWLM prevents preemption if wasted work
ratio (i.e., time lost due to preemption over total time) breaches a
threshold. As a result of query priorities, when cluster resources
are exhausted, mostly lower priority queries would queue to let
higher priority workloads meet their SLAs.

5.3 Query Predictor Framework
AutoWLM relies onmachine learningmodels to predict the memory
consumption and the execution time of a query. These models
are maintained by Redshift’s Query Predictor Framework. The
framework runs within each Redshift cluster. It collects training
data, trains an XGBOOST model and permits inference whenever
required. This allows Redshift to learn from the workload and self-
tune accordingly to improve performance. Having a predictor on the
cluster itself helps to quickly react to changing workloads, which
would not be possible if the model was trained off-cluster and only
used on the cluster for inference. Code compilation sub-system
also makes use of the query predictor framework to pick between
optimized and debug compilation and improve the overall query
response time.

5.4 Materialized Views
In a data warehouse environment, applications often need to per-
form complex queries on large tables. Processing these queries
can be expensive in terms of system resources as well as the time
it takes to compute the results. Materialized views (MVs) are es-
pecially useful for speeding up queries that are predictable and
repeated. Redshift automates the efficient maintenance and use of
MVs in three ways. First, it incrementally maintains filter, projec-
tion, grouping and join in materialized views to reflect changes on
base tables. Since Redshift thrives on batch operations, MVs are
maintained in a deferred fashion, so that the transactional workload
is not slowed down.

Second, Redshift can automate the timing of the maintenance. In
particular, Redshift detects which MVs are outdated and maintains
a priority queue to choose which MVs to maintain in the back-
ground. The prioritization of refreshes is based on combining (1)
the utility of a materialized view in the query workload and (2) the
cost of refreshing the materialized view. The goal is to maximize
the overall performance benefit of materialized views. For 95% of
MVs, Redshift brings the views up-to-date within 15 minutes of a
base table change.

Third, Redshift users can directly query an MV but they can also
rely on Redshift’s sophisticated MV-based autorewriting to rewrite
queries over base tables to use the best eligible materialized views to
optimally answer the query. MV-based autorewriting is cost based
and proceeds only if the rewritten query is estimated to be faster
than the original query. For aggregated MVs, autorewritten queries

are up to 2x faster for 50% of the clusters and up to 5x faster for 25%
of clusters. Both MV incremental maintenance and autorewriting
are internally using Redshift’s novel DSL-based query rewriting
framework, which enables the Redshift team to keep expanding the
SQL scope of incremental view maintenance and autorewriting.

5.5 Smart Warmpools, Gray Failure Detection
and Auto-Remediation

At the scale at which Redshift operates, hardware failures are the
norm and operational health is of the utmost importance. Over
the years, the Redshift team has developed elaborate monitoring,
telemetry and auto-remediation mechanisms.

Redshift uses a smart warmpool architecture, which enables
prompt replacements of faulty nodes, rapid resumption of paused
clusters, automatic concurrency scaling, failover, and many other
critical operations. Warmpools are a group of EC2 instances that
have been pre-installed with software and networking configura-
tions. Redshift maintains a distinct warmpool in each AWS availabil-
ity zone for each region. In order to guarantee optimal inter-node
communication, clusters are configured with compute nodes from
the same availability zones.

Keeping all of the aforementioned operations low latency re-
quires a high hit rate when a node is acquired from the warmpool.
To guarantee high hit rate, Redshift built a machine learning model
to forecast how many EC2 instances are required for a given warm-
pool at any time. This system dynamically adjusts warmpools in
each region and availability zone to save on infrastructure cost
without sacrificing latency.

While fail-stop failures are relatively easy to detect, the gray
failures are way more challenging [14]. For gray failures, Redshift
has developed outlier detection algorithms that identify with confi-
dence sub-performing components (e.g., slow disks, NICs, etc.) and
automatically trigger the corresponding remediation actions.

5.6 Serverless Compute Experience
Extending on the work on autonomics, we introduced Redshift
Serverless. Serverless relies on algorithms for automated provision-
ing, sizing and scaling of Redshift compute resources. Whereas,
traditional Redshift offers a number of tuning knobs for customers
to optimize their data warehouse environment (e.g., instance type,
number of nodes in the compute cluster, workload management
queues, scaling policies), Serverless offers a near-zero touch inter-
face. Customers pay only for the seconds they have queries running.
At the same time, Serverless maintains the rich analytics capabili-
ties, like the integration with a broad set of AWS services, which
we discuss in the next section.

6 USING THE BEST TOOL FOR THE JOB
AWS offers multiple purpose-built services, i.e., services that excel
in their objective. These purpose-built services include the scalable
object storage service Amazon S3, transactional database services
(e.g., DynamoDB and Aurora), and the ML services of Amazon
Sagemaker. AWS and Redshift make it easy for their users to use
the best service for each job and seamlessly integrate with Redshift.
This section describes the major integration points of Redshift.

Industrial Track Paper SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2214

6.1 Data in Open File Formats in Amazon S3
In addition to the data in RMS, Redshift also has the ability to
access data in open file formats in Amazon S3 via a feature called
Spectrum [8]. Redshift Spectrum facilitates exabyte scale analytics
of data lakes and is extremely cost effective with pay-as-you-go
billing based on amount of data scanned. Spectrumprovidesmassive
scale-out processing, performing scans and aggregations of data in
Parquet, Text, ORC and AVRO formats. Amazon maintains a fleet
of multi-tenant Spectrum nodes and leverages 1:10 fan-out ratio
from Redshift compute slice to Spectrum instance. These nodes are
acquired during query execution and released subsequently.

In order to leverage Spectrum, Redshift customers register their
external tables in either Hive Metastore, AWS Glue or AWS Lake
Formation catalog. During query planning, Spectrum tables are
localized into temporary tables to internally represent the external
table. Subsequently, queries are rewritten and isolated to Spectrum
sub-queries in order to pushdown filters and aggregation. Either
through S3 listing or from manifests belonging to partitions, the
leader node generates scan ranges. Along with the serialized plan,
scan ranges are sent over to compute nodes. An asynchronous
Thrift request is made to the Spectrum instance with a presigned S3
URL to retrieve S3 objects. To speed-up repetitive Spectrum queries,
Redshift externalized a result cache and also added support for
materialized views over external tables with complete refresh.

6.2 Redshift ML with Amazon Sagemaker
Redshift ML makes it easy for data analysts to train machine learn-
ing models and perform prediction (inference) using SQL. For ex-
ample, a user can train a churn detection model with customer
retention data present in Redshift and then predict using that model
so that the marketing team can offer incentives to customers at risk
of churning. Internally, Redshift ML uses Amazon SageMaker, a
fully managed machine learning service. After a model has been
trained, Redshift makes available a SQL function that performs
inference and can be used directly in SQL queries.

Rather than reinventing the wheel, Redshift ML complements
the Sagemaker offering by leveraging the strengths of the two
services. Redshift ML brings the model to the data rather than vice
versa. This simplifies the machine learning pipelines while enabling
at-scale, cost-efficient, in-database prediction.

Figure 8 illustrates the pipeline to create anMLmodel in Redshift.
When a customer initializes the process, Redshift ML uses sampling
to unload the proper amount of data from the Redshift cluster to
an S3 folder. Subsequently, in the Redshift AUTO training mode, a
Sagemaker Autopilot job is initiated under-the-hood. It discovers
the best combination of preprocessor, model and hyperparameters.
In order to perform ML inference locally using this model, Redshift
invokes the Amazon Sagemaker Neo service to compile the model.
Neo transforms the classic machine learning models from the Scikit-
Learn library into inference code.

Neo abstracts the multiple steps (preprocessor, inference algo-
rithm and post-processor) into a pipeline for executing the full
sequence. Redshift localizes the compiled artifacts and registers an
inference function corresponding to the created model. Upon invo-
cation of the inference function, Redshift generates C++ code that
loads and invokes the localized models. All this activity (discovery

Figure 8: Redshift ML: Create model

of best preprocessors, algorithm and hyperaparameter tuning and
localization of inference) happens automatically. Thus, the user
obtains the benefits of the purpose-built ML tools, while staying
in Redshift. Redshift ML can also operate in an AUTO OFF mode,
where the user takes control of preprocessing and algorithm/model
choice. To begin with, Redshift ML has introduced XGBoost and
Multi-layer perceptron in the AUTO OFF path.

Staying true to utilizing the best tool for the job, Redshift can
also delegate inference to Sagemaker. This ability is needed for
Vertical AI (e.g., sentiment analysis) and opens the gate towards
the use of specialized GPU hardware when need be.

6.3 OLTP Sources with Federated Query and
Glue Elastic Views

AWS offers purpose-built OLTP-oriented database services, such as
DynamoDB [10], Aurora Postgres, and Aurora MySQL [22]. AWS
users have been getting top OLTP performance through these ser-
vices but often need to analyze the collected data with Redshift.
Redshift facilitates both the in-place querying of data found in the
OLTP services, using Redshift’s Federated Query, as well as the
seamless copying and synchronization of data to Redshift, using
Glue Elastic Views.

A popular approach for users to ingest and/or query live data
from their OLTP database services is through Redshift Federated
Query, where Redshift makes direct connections to the customer’s
Postgres or MySQL instances and fetches live data. Federated Query
enables real-time reporting and analysis and simplified ETL pro-
cessing, without the need to extract data from the OLTP service to
Amazon S3 and load it afterwards.

The ability to access both Redshift tables and Postgres or MySQL
tables in a single query is effective. It allows users to have a fresh
"union all" view of their data, including Spatial data [7], as part
of their business intelligence (BI) and reporting applications. In
addition, Redshift Federated Query includes a query optimization
component to determine the most efficient way to execute a feder-
ated query, sending subqueries with filters and aggregations into
the OLTP source database to speed up query performance and re-
duce data transfer over the network. Note that these subqueries
often need to be augmented/transformed to ensure they are se-
mantically correct, as different DBMS systems may have slightly
different query operator semantics. The query optimizer also con-
siders table and column statistics available on the OLTP store for
query planning purposes.

The integration of Glue Elastic Views (GEV) with Redshift facili-
tates and accelerates the ingestion of data from OLTP sources into
Redshift. GEV enables the definition of views over AWS sources
(starting with DynamoDB, with additional sources to be added

Industrial Track Paper SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2215

later). The views are defined in PartiQL, a language backwards-
compatible with SQL, which can operate on both schemaful and
schemaless sources. GEV offers a journal of changes to the view,
i.e., a stream of insert and delete changes. Consequently, the user
can define Redshift materialized views that reflect the data of the
GEV views; that is, Redshift materialized views that upon refresh,
consume the stream of inserts and deletes received from the journal.

The GEV view resolves the type mismatches and data organiza-
tion mismatches between the source and the Redshift target. GEV
also resolves the impedance mismatch between the different inges-
tion strengths of the sources and the Redshift target by buffering
small, high-frequency transactions into larger batches suitable for
ingestion into Redshift.

6.4 Redshift’s SUPER Schemaless Processing
Redshift offers yet another efficient, flexible and easy-to-use inges-
tion path with the launch of the SUPER semistructured type. The
SUPER type can contain schemaless, nested data. Technically, a
value of SUPER type generally consists of Redshift string and num-
ber scalars, arrays and structs (also known as tuples and objects).
No schema is imposed on the value. For example, it may be an array
whose first element is a string, while its second element is a double.

A first use case for SUPER is the low latency and flexible inser-
tion of JSON data. A Redshift INSERT supports the rapid parsing of
JSON and storing it as a SUPER value. These insert transactions can
operate up to five times faster than performing the same insertions
into tables that have shredded the attributes of SUPER into con-
ventional columns. For example, suppose that the incoming JSON
is of the form {“a”:.., “b”:.., ...}. The user can accelerate the insert
performance by storing the incoming JSON into a table TJ with a
single SUPER column S, instead of storing it into a conventional
table TR with columns ‘a’, ‘b’ and so on. When there are hundreds
of attributes in the JSON, the performance advantage of SUPER
data type becomes substantial, since write amplification is avoided.

Also, the SUPER data type does not require a regular schema
and thus it takes no effort to bring in schemaless data for ELT
processing: The user need not introspect and clean up the incoming
JSON before storing it. For instance, suppose an incoming JSON
contains an attribute “c” that has string values and numeric values.
If “c” was declared as either varchar or decimal, data ingestion
would fail. In contrast, using the SUPER data type, all JSON data is
stored during ingestion without loss of information. Later, the user
can utilize the PartiQL extension of SQL to analyze the information.

After the user has stored the semistructured data into a SUPER
data value, they can query it without imposing a schema. Redshift’s
dynamic typing provides the capability to discover deeply nested
data without the need to impose a schema before querying. Dy-
namic typing enables filtering, join and aggregation even if their
arguments do not have a uniform, single type.

Finally, after schemaless and semistructured data land into SU-
PER, the user can create PartiQL materialized views to introspect
the data and shred them into materialized views. Redshift PartiQL
does not fail when functions are fed arguments of the wrong type; it
merely nullifies the result of the particular function invocation. This
aligns with its role as the language for cleaning up the semistruc-
tured data. The materialized views with the shredded data lend

performance and usability advantages to the classic analytics cases.
When performing analytics on the shredded data, the columnar
organization of Amazon Redshift materialized views provides bet-
ter performance. Furthermore, users and business intelligence (BI)
tools that require a conventional schema for ingested data can use
views (either materialized or virtual) as the conventional schema
presentation of the data.

6.5 Redshift with Lambda
Redshift supports the creation of user-defined functions (UDFs)
that are backed by AWS Lambda code. This allows customers to
integrate with external components outside of Redshift and en-
ables use cases like i) data enrichment from external data stores
or external APIs, ii) data masking and tokenization with external
providers, iii) migrating legacy UDFs written in C, C++ or Java.
Redshift Lambda UDFs are designed to perform efficiently and se-
curely. Each data slice in the Redshift cluster batches the relevant
tuples and invokes Lambda function in parallel. The data transfer
happens over a separate isolated network, inaccessible by clients.

7 CONCLUSION
In summary, Amazon Redshift has consistently grown its industry-
leading performance and scalability with multiple innovations, such
as Managed Storage, Concurrency Scaling, Data Sharing and AQUA.
At the same time, Amazon Redshift has grown on ease-of-use:
Automated workload management, automated table optimization
and automated query rewriting using materialized views enable
superior out-of-the-box query performance. Furthermore, Redshift
can now interface with additional data (semistructured, spatial) and
multiple purpose-built AWS services.

With a differentiating execution core, ability to scale to tens of
PBs of data and thousands of concurrent users, ML-based automa-
tions that make it easy to use, and tight integration with the wide
AWS ecosystem, Amazon Redshift is a best-of-class solution for
cloud data warehousing; the innovation on the product continues
at accelerated pace.

ACKNOWLEDGEMENTS
A product is deeply shaped by its customers and the people that
work on it. We thank the tens of thousands of Redshift customers
whose continuous feedback and high standards guided our innova-
tions to solving problems that matter. We have been fortunate to
have a great customer base with a relentless demand for an ever
improving product.

We have been lucky to have an amazing teamworking with us on
this journey. We thank Charlie Bell, Andy Caldwell, Vuk Ercegovac,
Martin Grund, Raju Gulabani, Anurag Gupta, James Hamilton, Ryan
Johnson, Menelaos Karavelas, Eugene Kawamoto, Sriram Krishna-
murthy, Bruce McGaughy, Yannis Papakonstantinou, Athanasios
Papathanasiou, Michalis Petropoulos, Vijayan Prabhakaran, Entong
Shen, Vidhya Srinivasan, Stefano Stefani, KamCheung Ting, John
Tobler and the entire Redshift team for the impactful moments we
had together during the course of this evolution. Nate Binkert and
Britt Johnson, your words of wisdom continue to guide us.

Industrial Track Paper SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2216

REFERENCES
[1] Cloud data warehouse benchmark. https://github.com/awslabs/amazon-redshift-

utils/tree/master/src/CloudDataWarehouseBenchmark/Cloud-DWB-Derived-
from-TPCDS. Accessed: 2021-11-22.

[2] Partiql query language. https://partiql.org/. Accessed: 2021-11-22.
[3] J. Aguilar-Saborit, R. Ramakrishnan, K. Srinivasan, K. Bocksrocker, I. Alagian-

nis, M. Sankara, M. Shafiei, J. Blakeley, G. Dasarathy, S. Dash, L. Davidovic,
M. Damjanic, S. Djunic, N. Djurkic, C. Feddersen, C. Galindo-Legaria, A. Halver-
son, M. Kovacevic, N. Kicovic, G. Lukic, D. Maksimovic, A. Manic, N. Markovic,
B. Mihic, U. Milic, M. Milojevic, T. Nayak, M. Potocnik, M. Radic, B. Radivojevic,
S. Rangarajan, M. Ruzic, M. Simic, M. Sosic, I. Stanko, M. Stikic, S. Stanojkov,
V. Stefanovic, M. Sukovic, A. Tomic, D. Tomic, S. Toscano, D. Trifunovic, V. Vasic,
T. Verona, A. Vujic, N. Vujic, M. Vukovic, and M. Zivanovic. POLARIS: The
distributed SQL engine in Azure Synapse. PVLDB, 13(12), 2020.

[4] M. Armbrust, T. Das, L. Sun, B. Yavuz, S. Zhu, M. Murthy, J. Torres, H. van Hov-
ell, A. Ionescu, A. Luszczak, M. Switakowski, M. Szafrański, X. Li, T. Ueshin,
M. Mokhtar, P. Boncz, A. Ghodsi, S. Paranjpye, P. Senster, R. Xin, and M. Za-
haria. Delta Lake: High-performance ACID table storage over cloud object stores.
PVLDB, 13(12), 2020.

[5] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil. A critique
of ANSI SQL isolation levels. In SIGMOD, 1995.

[6] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Com-
munications of the ACM, 13(7), 1970.

[7] N. Boric, H. Gildhoff, M. Karavelas, I. Pandis, and I. Tsalouchidou. Unified spatial
analytics from heterogeneous sources with Amazon Redshift. In SIGMOD, 2020.

[8] M. Cai, M. Grund, A. Gupta, F. Nagel, I. Pandis, Y. Papakonstantinou, and
M. Petropoulos. Integrated querying of SQL database data and S3 data in Amazon
Redshift. IEEE Data Eng. Bull., 41(2), 2018.

[9] B. Dageville, T. Cruanes, M. Zukowski, V. Antonov, A. Avanes, J. Bock, J. Clay-
baugh, D. Engovatov, M. Hentschel, J. Huang, A. W. Lee, A. Motivala, A. Q. Munir,
S. Pelley, P. Povinec, G. Rahn, S. Triantafyllis, and P. Unterbrunner. The Snowflake
Elastic Data Warehouse. In SIGMOD, 2016.

[10] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: Amazon’s highly

available key-value store. In SOSP, 2007.
[11] G. Graefe. Volcano - an extensible and parallel query evaluation system. IEEE

Trans. Knowl. Data Eng., 6(1), 1994.
[12] R. Greer. Daytona and the fourth-generation language cymbal. In SIGMOD, 1999.
[13] A. Gupta, D. Agarwal, D. Tan, J. Kulesza, R. Pathak, S. Stefani, and V. Srinivasan.

Amazon Redshift and the case for simpler data warehouses. In SIGMOD, 2015.
[14] P. Huang, C. Guo, L. Zhou, J. R. Lorch, Y. Dang, M. Chintalapati, and R. Yao. Gray

failure: The Achilles’ Heel of cloud-scale systems. In HotOS, 2017.
[15] K. Krikellas, S. Viglas, and M. Cintra. Generating code for holistic query evalua-

tion. In ICDE, 2010.
[16] V. Leis, P. A. Boncz, A. Kemper, and T. Neumann. Morsel-driven parallelism: a

NUMA-aware query evaluation framework for the many-core age. In SIGMOD,
2014.

[17] S. Palkar, J. J. Thomas, D. Narayanan, P. Thaker, R. Palamuttam, P. Negi,
A. Shanbhag, M. Schwarzkopf, H. Pirk, S. P. Amarasinghe, S. Madden, and M. Za-
haria. Evaluating end-to-end optimization for data analytics applications in Weld.
PVLDB, 11(9), 2018.

[18] P. Parchas, Y. Naamad, P. V. Bouwel, C. Faloutsos, and M. Petropoulos. Fast and
effective distribution-key recommendation for Amazon Redshift. PVLDB, 13(11),
2020.

[19] D. R. K. Ports and K. Grittner. Serializable snapshot isolation in PostgreSQL.
PVLDB, 5(12), 2012.

[20] V. Raman, G. K. Attaluri, R. Barber, N. Chainani, D. Kalmuk, V. KulandaiSamy,
J. Leenstra, S. Lightstone, S. Liu, G. M. Lohman, T. Malkemus, R. Müller, I. Pan-
dis, B. Schiefer, D. Sharpe, R. Sidle, A. J. Storm, and L. Zhang. DB2 with BLU
acceleration: So much more than just a column store. PVLDB, 6(11), 2013.

[21] K. Sato. An inside look at Google BigQuery. Technical report, Google. https:
//cloud.google.com/files/BigQueryTechnicalWP.pdf.

[22] A. Verbitski, A. Gupta, D. Saha, M. Brahmadesam, K. Gupta, R. Mittal, S. Kr-
ishnamurthy, S. Maurice, T. Kharatishvili, and X. Bao. Amazon Aurora: Design
considerations for high throughput cloud-native relational databases. In SIGMOD,
2017.

[23] T. Wang, R. Johnson, A. Fekete, and I. Pandis. Efficiently making (almost) any
concurrency control mechanism serializable. The VLDB Journal, 26(4), 2017.

Industrial Track Paper SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2217

https://github.com/awslabs/amazon-redshift-utils/tree/master/src/CloudDataWarehouseBenchmark/Cloud-DWB-Derived-from-TPCDS
https://github.com/awslabs/amazon-redshift-utils/tree/master/src/CloudDataWarehouseBenchmark/Cloud-DWB-Derived-from-TPCDS
https://github.com/awslabs/amazon-redshift-utils/tree/master/src/CloudDataWarehouseBenchmark/Cloud-DWB-Derived-from-TPCDS
https://partiql.org/
https://cloud.google.com/files/BigQueryTechnicalWP.pdf
https://cloud.google.com/files/BigQueryTechnicalWP.pdf

	Abstract
	1 Introduction
	2 Performance that matters
	2.1 Overview
	2.2 Introduction to Redshift Code Generation
	2.3 Vectorized Scans
	2.4 Reducing Memory Stalls with Prefetching
	2.5 Inline Expression Functions
	2.6 Compilation Service
	2.7 CPU-Friendly Encoding
	2.8 Adaptive Execution
	2.9 AQUA for Amazon Redshift
	2.10 Query Rewriting Framework

	3 Scaling Storage
	3.1 Redshift Managed Storage
	3.2 Decoupling Metadata from Data
	3.3 Expand Beyond Local Capacity
	3.4 Incremental Commits
	3.5 Concurrency Control

	4 Scaling Compute
	4.1 Cluster Size Scaling
	4.2 Concurrency Scaling
	4.3 Compute Isolation

	5 Automated Tuning and Operations
	5.1 Automatic Table Optimizations
	5.2 Automatic Workload Management
	5.3 Query Predictor Framework
	5.4 Materialized Views
	5.5 Smart Warmpools, Gray Failure Detection and Auto-Remediation
	5.6 Serverless Compute Experience

	6 Using the best tool for the job
	6.1 Data in Open File Formats in Amazon S3
	6.2 Redshift ML with Amazon Sagemaker
	6.3 OLTP Sources with Federated Query and Glue Elastic Views
	6.4 Redshift's SUPER Schemaless Processing
	6.5 Redshift with Lambda

	7 Conclusion
	References

