Lecture #01

Carnegie Mellon University

ADVANCED DATABASE SYSTEMS

History of
Databases

Andy Pavlo // 15-721 // Spring 2023

https://15721.courses.cs.cmu.edu/spring2023
http://db.cs.cmu.edu/
https://www.cs.cmu.edu/~pavlo/

amMaZon

$CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://aws.amazon.com/products/databases/

TODAY’S AGENDA

Course Logistics Overview
History of Databases

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

WHY YOU SHOULD TAKE THIS COURSE 1

DBMS developers are in demand and there are
many challenging unsolved problems in data
management and processing.

[f you are good enough to write code for a DBMS,
then you can write code on almost anything else.

And people will pay you lots of money to do it...

£=CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

salesforce

4L
X snowflake

k- d

i salesforce

_sad HyPer

-Lmkedﬂﬂ
.&aiﬂ-

db
X snowflake

$CMU-DB

15-721 (Spring 2023)

“
salesforce

—

S S el
{‘?“é N Materialize

)l < databricks

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

COURSE OBJECTIVES

Learn about modern practices in database internals
and systems programming for analytical workloads.

Students will become proficient in:
— Writing correct + performant code
— Proper documentation + testing

— Code reviews

— Working on a large code base

We will cover state-of-the-art topics.
This is not a course on classical DBMSs.

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

COURSE TOPICS

Storage Models, Compression
Indexing

Vectorized Execution + Compilation
Parallel Join Algorithms

Networking Protocols

Query Optimization

Modern System Analysis

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

BACKGROUND

[assume that you have already taken an intro course
on databases (e.g., 15-445/645).

W e will discuss modern variations of classical
algorithms that are designed for today’s hardware.

Things that we will not cover:
SQL, Serializability Theory, Relational Algebra,
Basic Algorithms + Data Structures.

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://15445.courses.cs.cmu.edu/

COURSE LOGISTICS

Course Policies + Schedule:
— Refer to course web page.

Academic Honesty:

— Refer to CMU policy page.

— If youre not sure, ask me.

— I'm serious. Don't plagiarize or I will wreck you.

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://15721.courses.cs.cmu.edu/spring2023
https://www.cmu.edu/policies/student-and-student-life/academic-integrity.html

OFFICE HOURS

Before class in my office:
— Mon/Wed: 1:00 - 2:00
— Gates-Hillman Center 9019

Things that we can talk about:
— Issues on implementing projects
— Paper clarifications/discussion
— How to get a database dev job.
— How to handle the police

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

Head TA: Wan Shen Lim

— 31 Year PhD Student (CSD)

— Former Paralegal

— Certified Chicken Farmer

— Capybara Enthusiast

— #1 Ranked Database Ph.D. Student
at Carnegie Mellon University.

£CMU-DB
15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://wanshenl.me/official/

COURSE RUBRIC

Reading Assignments
Projects

Final Exam

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

READING ASSIGNMENTS

One mandatory reading per class (g). You can
skip three readings during the semester.

You must submit a synopsis before class:

— Overview of the main idea (three sentences).

— Main finding/takeaway of paper (one sentence).

— System used and how it was modified (one sentence).
— Workloads evaluated (one sentence).

Submission Form:
https://cmudb.io/15721-s23-submit

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://cmudb.io/15721-s23-submit

$2CMU-DB

15-721 (Spring 2023)

®. PLAGIARISM WARNING &

Each review must be your own writing.

You may not copy text from the papers or other
sources that you find on the web.

Plagiarism will not be tolerated.
See CMU's Policy on Academic Integrity for
additional information.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://www.cmu.edu/policies/student-and-student-life/academic-integrity.html

PROJECT #1

Build a SQL/MED extension (foreign data wrapper)
for PostgreSQL for processing columnar data.

This will expose you to developing for PostgreSQL
and building a vectorized execution engine.

We will provide more details in a week.

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://wiki.postgresql.org/wiki/SQL/MED

$2CMU-DB

15-721 (Spring 2023)

PROJECT #2

We are writing an encyclopedia of DBMSs. Each
student will pick one DBMS and write an entry

about it.

— Must provide citations and attributions.
— Avoid unscientific (i..e, marketing) language and claims.

You may not copy text/images from papers or
other sources that you find on the web.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dbdb.io/

PROJECT #3

Each group (3 people) will choose a project that is:

— Relevant to the materials discussed in class.

— Requires a significant programming effort from all team
members.

— Unique (i.e., two groups cannot pick same idea).

— Approved by me.

You don't have to pick a topic until Spring Break.

We will provide sample project topics.
— There are some topics that [would like to turn into a
(short) paper.

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

£=CMU-DB

15-721 (Spring 2023)

®. PLAGIARISM WARNING @.

These projects must be all of your own code and
writing.

You may not copy source code from other groups
or the web.

Plagiarism will not be tolerated.
See CMU's Policy on Academic Integrity for
additional information.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://www.cmu.edu/policies/student-and-student-life/academic-integrity.html

FINAL EXAM

Written long-form take-home examination on the
readings and topics discussed in class.

Will be given out in class on April 26,

As of January 2023, ChatGPT is not able to answer
these questions.

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

GRADE BREAKDOWN

Reading Reviews (15%)
Project #1 (20%)

Project #2 (10%)

Project #3 (45%)

Final Exam (15%)

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

COURSE MAILING LIST

On-line Discussion through Piazza:
https://piazza.com/cmu/spring2023/15721

[f you have a technical question about the projects,

please use Piazza.
— Don’t email me or TAs directly.

All non-project questions should be sent to me.

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://piazza.com/cmu/spring2023/15721

$CMU-DB

15-721 (Spring 2023)

Andy's

WHAT GOES AROUND COMES AROUND
READINGS IN DB SYSTEMS, 4TH EDITION, 2006.

HISTORY OF
DATABASES

WHAT GOES AROUND COMES AROUND... AND AROUND
UNDER SUBMISSION 2023

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://15721.courses.cs.cmu.edu/spring2023/papers/01-history/whatgoesaround-stonebraker.pdf
http://15721.courses.cs.cmu.edu/spring2023/papers/01-history/whatgoesaround-stonebraker.pdf

HISTORY REPEATS ITSELF

Old database issues are still relevant today.
— Many of the ideas in today’s database systems are not new.

Somebody invents a "SQL Replacement" every
decade. It then fails and/or SQL absorbs the key
ideas into the standard.

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

1960s - IDS

Integrated Data Store
Developed internally at GE in the early 1960s.

GE sold their computing division to
Honeywell in 1969.

One of the first DBMSs:

— Network data model.

— Tuple-at-a-time queries. Honewe“

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

1960s - CODASYL

COBOL people got together and proposed
a standard for how programs will access
a database. Lead by Charles Bachman.

— Network data model. -
\‘ ¢ o

— Tuple-at-a-time queries. ~a
Bachman

Bachman also worked at Culliane Database Systems
in the 1970s to help build IDMS.

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://en.wikipedia.org/wiki/Charles_Bachman
https://en.wikipedia.org/wiki/Cullinet

NETWORK DATA MODEL

Schema
SUPPLIER PART
(sno, sname, scity, sstate) (pno, pname, psize)
SUPPLIES SUPPLIED _BY

SUPPLY
(qty, price)

£2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

NETWORK DATA MODEL

Instance

SUPPLIER PART
sho sname scity sstate pno |pname psize
1001 |Dirty Rick New York [NY 999 |Batteries |Large
1002 |Squirrels Boston MA
SUPPLIES SURPLIED_BY
parent child pargnt child

SUPPLY

qty |price

10 $100

14 $99

$CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

1960S - IBM IMS

Information Management System

Early database system developed to keep track of

purchase orders for Apollo moon mission.
— Hierarchical data model.

— Programmer-defined physical storage format.
— Tuple-at-a-time queries.

$CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

HIERARCHICAL DATA MODEL

Schema Instance
sno shame scity sstate |parts
SUPPLIER 1001 |Dirty Rick New York [NY

(sno, sname, scity, sstate) Squirrels Boston MA

pname

Batteries

PART

(pno, pname, psize, qty, price)

pname

999 Batteries Large 14 $99

$CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

1970s - RELATIONAL MODEL

Ted Codd was a mathematician working
at IBM Research. He saw developers
spending their time rewriting IMS and
Codasyl programs every time the
database's schema or layout changed.

Database abstraction to avoid this maintenance:
— Store database in simple data structures.

— Access data through high-level language.

— Physical storage left up to implementation.

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

££CMU-DB

15-721 (Spring 2023)

C ONS
DUNDANCY AND CONSISTENCY OF RELATI

DERIVABILITY, RE N LARGE DATA BANKS

STORED T
E. F. (()d‘d .
esearch Division
san Jose, California

i1l
f the future will
anks 0O tored form. It will

ated data b
to be redundant.

3 in §
jous degrees in st
r red relations

i sed. :
re defined and dls‘f\ui;nds of information

The large, integr

ABSTRACT: lations of va

at demand.
ible for control of the d
- ans of detecting any Jogies

t of stored relations B i
i jown unauthorize:

a bank contents.

employed to
ich happen to
‘:’;liits, ‘:hose Tespons 2
about it and have St:l;:: e
inconsistencies in i e
ehkcks might be helpful i ek
Chzz‘;ﬂ% fraudulent) changes 1
po

R) 599(# 12343) August 19, 1969

"ogical”

itted for
NOTICE - This report has been submi
1BUTION

LISITED DISTRlsewhere and has bee

a courtesy to

teati ide
ublication € its contents. As 3 the date of outsi
E‘sse'"i"an%n O iy Gistributed until after
should not be W ——
publication. <on Research Center, Post Office B0

§ M Thomas). Wat
s may be requested :u-mxsg: T
P ktown Heights, New Yor

for ea
xch Report 2
n issued as a Reseaxch CBC publisher,

One type may be

dancy
ar type of redun:
;{a ;I)gnk should know

Consistency

it

28,

}ATI&

matician
w devel
riting |
7 time t]
rout cha

void t
ata stru
level la
implen

Information Retrieval

P. BAXENDALE, Editor

A Relational Model of Data for
Large Shared Data Banks

E. F. Cobp
IBM Research Laboratory, San Jose, California

Future users of large data banks must be protected from
having to know how the data is organized in the machine (the
internal representation). A prompting service which supplies
such information is not o satisfactory solution, Activities of users
at terminals and most application programs should remain
unaffected when the internal representation of data is changed
and even when some aspects of the external

The relational view (or model) of data described in
Section 1 appears to be superior in several respects to the
graph or network model [3, 4] presently in vogue for non-
inferential systems. It provides a means of describing data
with its natural structure only—that is, without superim-
posing any additi for machine i
purposes. Accordingly, it provides a basis for a high level
data language which will yield maximal independence be-
tween programs on the one hand and machine representa-
tion and organization of data on the other.

A further advantage of the relational view is that it
forms a sound basis for treating derivability, redundancy,
and consistency of relations—these are discussed in Section
2. The network model, on the other hand, has spawned a
number of confusions, not the least of which is mistaking

are changed. Changes in data representation will often be
needed as a result of changes in query, update, and report
traffic and natural growth in the types of stored information.
Existing noninferential, formatted data systems provide users
with tree-structured files or slightly more general network
models of the data. In Section 1, inadequacies of these models
are discussed. A model based on n-ary relations, a normal
form for data base relations, and the concept of o universal
data sublanguage are infroduced. In Section 2, certain opera-
tions on relations (other than logical inference) are discussed
and applied to the problems of redundancy and consistency
in the user's model,
KEY WORDS AND PHRASES: data bank, doto base, doto structure, data
erganization, hierarchies of dato, networks of data, relations, derivability,
redundancy, comistency, composition, foin, retrieval language, predicate
calulus, security, data integrity
CR CATEGORIES: 370, 3.73, 3.75, 4.20, 4.22, 429

L. Relational Model and Normal Form

L1 INTRODUCTION

This paper is concerned with the application of ele-
mentary relation theory to systems which provide shared
access to large banks of formatted data, Except for a paper
by Childs (1], the principal application of relations to data
systems has been to deductive question-answering systems,
Levein and Maron (2] provide numerous references to work
in this area,

In contrast, the problems treated here are those of data
inde the independ f applicati

the derivation of for the derivation of rela-
tions (see remarks in Section 2 on the “connection trap”).
Finally, the relational view permits a clearer evaluation
of the scope and logical limitations of present formatted
data systems, and also the relative merits (from a logical
standpoint) of ing ions of data within a
single system. Examples of this clearer perspective are
cited in various parts of this Ppaper. Implementations of
systems to support the relational model are not discussed.
1.2. DAt DEPENDENCIES 1N PresEnT Systems
The provision of data description tables in recently de-
veloped information systems represents a major advance
toward the goal of data independence [5, 6, 7]. Such tables
facilitate changing certain ¢ i ics of the data repre-
sentation stored in a data bank., However, the variety of
data representation characteristics which can be changed
without logi impairing some application programs is
still quite limited. Further, the model of data with which
users interact is still cluttered with representational prop-
erties, particularly in regard to the representation of col-
lections of data (as opposed to individual items). Three of
the principal kinds of data dependencies which still need
to be removed are: ordering dependence, indexing depend-
ence, and access path dependence. In some systems these
dependencies are not clearly separable from one another,
12.1. Ordering Dependence. Elements of data in a
data bank may be stored in a variety of ways, some involy-
ing no concern for ordering, some permitting each element
to participate in one ordering only, others permitting each
element to participate in several orderings. Let us consider
those existing systems which either require or permit data
elements to be stored in at least one total ordering which is
closely iated with the hard dets d ordering

o gr
and terminal activities from growth in data types and
changes in data representation—and certain kinds of data
nconsistency which are expected to become troublesome
even in nondeductive systems.

Volume 13 / Number 6 / June, 1970

of add: - For example, the records of a file concerning
parts might be stored in ascending order by part serial
number. Such systems normally permit application pro-
grams to assume that the order of Ppresentation of records
from such a file is identical to (or is a subordering of) the

Communications of the ACM 377

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://dl.acm.org/citation.cfm?id=1558336
http://dl.acm.org/citation.cfm?id=362685

RELATIONAL DATA MODEL

Schema

SUPPLIER PART
(sno, sname, scity, sstate) (pno, pname, psize)

SUPPLY
(sno, pno, qty, price)

£2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

RELATIONAL DATA MODEL

Instance

SUPPLIER PART
sho shame scity sstate pno pname psize
1001 |Dirty Rick New York [NY 999 Batteries |Large
1002 |Squirrels Boston MA

SUPPLY

sho [pno qty price

1001 |999 10 $100

1002 |999 $99

$CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

1970s - RELATIONAL MODEL

Early implementations of relational DBMS:

— Peterlee Relational Test Vehicle — IBM Research (UK)
— System R - IBM Research (San Jose)

— INGRES - U.C. Berkeley

— Oracle - Larry Ellison

— Mimer - Uppsala University

£=CMU-DB Stonebraker Ellison

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

1980s - RELATIONAL MODEL

The relational model wins.

— IBM first releases SQL/DS in 1981.
— [BM then turns out DB2 in 1983.

— "SEQUEL" becomes the standard (SQL)

after supposedly Stonebraker refused to
talk to the ANSI standards committee.

Many new "enterprise" DBMSs
but Oracle wins marketplace.

Stonebraker creates Postgres as an
"object-relational" DBMS.

$CMU-DB

15-721 (Spring 2023)

Informix
INGR=S

ORACLE
/1|TANDEM

TERADATA

InterBase

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

1980s - RELATIONAL MODEL

The relational model wins.

=

— IBM first releases SQL/DS ir
— [IBM then turns out DB2 in 1
— "SEQUEL" becomes the stan
after supposedly Stonebrake
talk to the ANSI standards c

But Ingres did not show up at the committee meetings because
founder Mike Stonebraker detested the idea of having technology
standards. Stonebraker was vocal about it. He thought they inhibited
innovation and artificially restricted what got to the marketplace.
Maybe so, but his hard-line position probably did not help his com-
pany. Don Deutsch, who served as chairman of the database commit-
tee, summed things up this way: "I tell you, QUEL was a much nicer
language than SQL. No rational person would have chosen SQL
instead of QUEL. . . . Ingres was stupid."

° "
Many new "enterprise" D

e e 1 1 o CLAT
LI e = e SN

but Oracle wins marketplace.

Stonebraker creates Postgres as an

"object-relational" DBMS.

$CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://archive.org/details/differencebetwee00wils_0

£=CMU-DB
111111 (Spring 2023)

1980s - OBJECT-ORIENTED DATABASES

Avoid "relational-object impedance mismatch" by
tightly coupling objects and database.

Few of these original DBMSs from the 1980s still
exist today but many of the technologies exist in
other forms (JSON, XML)

VERSANT ObjeCtStore@ '.MarkLogic"

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

0BJECT-ORIENTED MODEL

Application Code Relational Schema
class Student {
int id; STUDENT
String name; (id, name, email)
String email;)
String phonel[];
}
id name email
1001 M.O0.P. ante@up.com STUDENT—PHONE
(sid, phone)
sid phone
1001 444-444-4444
S CMU-DB 1001 555-555-5555

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

0BJECT-ORIENTED MODEL

Application Code

class Student { Student

String name; id': 1001,

String email; ‘name”: "M.0.P.",

String phone[]- "ema11": ante@up.com",

! phone": [
} “444-444-4444"7
“555-555-5555"
]
)

£=CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

1990s - BORING DAYS

No major advancements in database systems or

application workloads.

— Microsoft forks Sybase and creates SQL Server.
— MySQL is written as a replacement for mSQL.
— Postgres gets SQL support.

— SQLite started in early 2000.

Some DBMSs introduced pre-computed data cubes
for faster analytics.

PostgreSQL

i Berver ML

SQLite

$CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://en.wikipedia.org/wiki/Data_cube

£=CMU-DB

15-721 (Spring 2023)

2000s - INTERNET BOOM

All the big players were heavyweight and expensive.
Open-source databases were missing important
features.

Many companies wrote their own custom

middleware to scale out database across single-node
DBMS instances.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

2000s - DATA WAREHOUSES

Rise of the special purpose OLAP DBMS:s.
— Distributed / Shared-Nothing

— Relational / SQL

— Usually closed-source.

Significant performance benefits from using
columnar data storage model.

@NETEZZA PARACCEL monetdb)

@ Greenplum DATAllegro V'||=RT|C/\

£=CMU-DB
111111 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

$CMU-DB

15-721 (Spring 2023)

2000s - MAPREDUCE SYSTEMS

Distributed programming and execution model for

analyzing large data sets.

— First proposed by Google (MapReduce).

— Yahoo! created an open-source version (Hadoop).
— Data model decided by user-written functions.

People (eventually) realized this was a bad idea and
grafted SQL on top of MR. That was a bad idea too.

N R-DB

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

2000s - NoSQL SYSTEMS

Focus on high-availability & high-scalability:

— Schemaless (i.e., "Schema Last")

— Non-relational data models (document, key/value,
column-family)

— No ACID transactions

— Custom APIs instead of SQL
— Usually open-source

HERSE « amazon .mongoDB

DynamoDB .
é redis @’ RethinkDB hﬂ
Q Couchbase NosaQL CouchDB

ECCUI-I_IULD

$2CMU-DB cassandre ﬁrlak RA) £ENDB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

2010s - NewSQL SYSTEMS

Provide same performance for OLTP workloads as

NoSQL DBMSs without giving up ACID:
— Relational / SQL
— Distributed

Almost all the first group of systems failed.

Second wave of "distributed SQL" systems are
(potentially) doing better.

= GenieDB AL Sh arels [:]'Store _ICIUStTiX 0 TiDB
@ n Scal8ArC) —= == FOUNDATIONDB 6‘ COCkroaChDB
Transjarrice YOUT DB —
e PodeFutures w Comdb2
Spanner AAMEMsQL N =N

S2CMU-DB NUO ScaleBase

111111 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

2010s - CLOUD SYSTEMS

First database-as-a-service (DBaaS) offerings were
"containerized" versions of existing DBMSs.

There are new DBMSs that are designed from
scratch explicitly for running in a cloud
environment.

xeround Google
Svgsnowflake I ez e CloudDasbase - SQNNEN
Amazon + o

an
Y faung e T AS7 @

$CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

2010s - SHARED-DISK ENGINES

Instead of writing a custom storage manager, the

DBMS leverages distributed storage.
— Scale execution layer independently of storage.
— Favors log-structured approaches.

This is what most people think of when they talk
about a data lake.

APACHE so<snowflake
DRII—I— 4h APACHE

- Spark’
@ presto = [A% P

BY Microsoft

S)druid ae cloudera: Qpinot

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

2010s - GRAPH SYSTEMS

Systems for storing and querying graph data.

— Similar to the network data model (CODASYL)

Their (supposed) advantage over other data models
is to provide a graph-centric query API

— SQL:2023 is adding graph query syntax (SQL/PCG)

Latest research (2023) shows that a relational
DBMS outperforms state-of the-art graph DBMSs.

- . TigerGraph @ NebulaGraph ::“'."‘:‘3:"‘.
@neosj A MM Y .

JanusGraph AR
© Gograpm O
CMUDE gréphbaseal ferminusDB @ IndraDB STRARH

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://homepages.cwi.nl/~boncz/edbt2022.pdf
https://www.cidrdb.org/cidr2023/papers/p66-wolde.pdf

2010s - TIMESERIES SYSTEMS

Specialized systems that are designed to store
timeseries / event data.

The design of these systems make deep assumptions
about the distribution of data and workload query
patterns.

@ M3 & TIMESCALE @ influxdb

(© GreptimeDB SMEI%IQRIA ClickHouse @ g

£=CMU-DB

15-721 (Spring 2023)

«

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

2020s - BLOCKCHAIN DATABASES

Decentralized distributed log with incremental
checksums (Merkle Trees).

— Uses Byzantine Fault Tolerant (BFT) protocol to
determine next entry to append to log.

Andy is not aware of a blockchain usecase that could
not also be solved with a "traditional” OLTP DBMS
and/or external policies (e.g., authentication).

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://en.wikipedia.org/wiki/Merkle_tree

2010s - SPECIALIZED SYSTEMS

Embedded DBMSs
Multi-Model DBMSs

Hardware Acceleration
Array / Matrix / Vector DBMSs

£=CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

SQREAM__ nmmﬂkmmm i _
——prmaal ol \ TED
£ 8 NILVICKO! im0 1 g S
FrExvh 8 7 ;_-i“_ e ‘ I) P K k= rlg ’

4- rw\i .}«% ,‘;’: A a i ,J,,l._f 7 /(

N PPy l .é;
|—;S.:S.;ct.9£e;Q.LR.DB-M51 é-& DYV S\—/IN X SP . ﬁ

[UUL | v DBM‘S’sprSUMDMS'F%gfeS“
.‘

Bah ' Hardware Acceleration

Pomthase

123

CGYR 1L
RADH . B

_ coDATIR L -
m &
2 “!nn(lv g F,rsfso' %t
; : llﬂ’

NETEZZA BCELOT

{ T MSSDBY o SRR
: - - —.’)
W) K ie: .w °° ? ITTIA'S =

A A =™e \J
InstantDB dh Lij /\ =t ';ﬁ T | Tokyo ‘
‘ =l ‘. % = Cablnet 8192¢8

——
dmn‘*"'
evator

o ACK

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dbdb.io/

PARTING THOUGHTS

The demarcation lines of DBMS categories will
continue to blur over time as specialized systems

expand the scope of their domains.
— Every NoSQL DBMS (except for Redis) now supports SQL

The relational model and declarative query
languages promote better data engineering.

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

NEXT CLASS

Modern Analytical Database Systems

Make sure that you submit the first reading review

https://cmudb.10/15721-s23-submit

££CMU-DB
Lt (i

111111111111111)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://cmudb.io/15721-s23-submit

	Introduction
	Slide 1: History of Databases
	Slide 2
	Slide 3: TODAY’S AGENDA
	Slide 4: WHY YOU SHOULD TAKE THIS COURSE
	Slide 5
	Slide 6: COURSE OBJECTIVES
	Slide 7: COURSE TOPICS
	Slide 8: BACKGROUND
	Slide 9: COURSE LOGISTICS
	Slide 10: OFFICE HOURS
	Slide 11: TEACHING ASSISTANTS
	Slide 12: COURSE RUBRIC
	Slide 13: READING ASSIGNMENTS
	Slide 14: PLAGIARISM WARNING
	Slide 15: PROJECT #1
	Slide 16: PROJECT #2
	Slide 17: PROJECT #3
	Slide 18: PLAGIARISM WARNING
	Slide 19: FINAL EXAM
	Slide 20: GRADE BREAKDOWN
	Slide 21: COURSE MAILING LIST

	History
	Slide 22
	Slide 23: HISTORY REPEATS ITSELF
	Slide 24: 1960s – IDS
	Slide 25: 1960s – CODASYL
	Slide 26: NETWORK DATA MODEL
	Slide 27: NETWORK DATA MODEL
	Slide 28: 1960S – IBM IMS
	Slide 29: HIERARCHICAL DATA MODEL
	Slide 30: 1970s – RELATIONAL MODEL
	Slide 31: 1970s – RELATIONAL MODEL
	Slide 32: RELATIONAL DATA MODEL
	Slide 33: RELATIONAL DATA MODEL
	Slide 34: 1970s – RELATIONAL MODEL
	Slide 35: 1980s – RELATIONAL MODEL
	Slide 36: 1980s – RELATIONAL MODEL
	Slide 37: 1980s – OBJECT-ORIENTED DATABASES
	Slide 38: OBJECT-ORIENTED MODEL
	Slide 39: OBJECT-ORIENTED MODEL
	Slide 40: 1990s – BORING DAYS
	Slide 41: 2000s – INTERNET BOOM
	Slide 42: 2000s – DATA WAREHOUSES
	Slide 43: 2000s – MAPREDUCE SYSTEMS
	Slide 44: 2000s – NoSQL SYSTEMS
	Slide 45: 2010s – NewSQL SYSTEMS
	Slide 47: 2010s – CLOUD SYSTEMS
	Slide 48: 2010s – SHARED-DISK ENGINES
	Slide 49: 2010s – GRAPH SYSTEMS
	Slide 50: 2010s – TIMESERIES SYSTEMS
	Slide 51: 2020s – BLOCKCHAIN DATABASES
	Slide 52: 2010s – SPECIALIZED SYSTEMS
	Slide 53: 2010s – SPECIALIZED SYSTEMS
	Slide 54: PARTING THOUGHTS
	Slide 55: NEXT CLASS

