
ADVANCED DATABASE SYSTEMS

Andy Pavlo // 15-721 // Spring 2023

Modern OLAP 
Databases

L
e

c
tu

re
 #

0
2

https://15721.courses.cs.cmu.edu/spring2023
http://db.cs.cmu.edu/


15-721 (Spring 2023)

COURSE OUTLINE

Storage
→ Columnar Storage
→ Compression
→ Indexes

Query Execution:
→ Processing Models
→ Scheduling
→ Vectorization
→ Compilation
→ Joins
→ Materialized Views

Query Optimization

Network Interfaces

2

Client Interface

Optimization

Query Execution

Storage

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023


15-721 (Spring 2023)

TODAY’S AGENDA

Query Execution

Distributed System Architectures

OLAP Commoditization

3

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023


15-721 (Spring 2023)

DISTRIBUTED QUERY EXECUTION

Executing an OLAP query in a distributed DBMS is 
roughly the same as on a single-node DBMS.
→ Query plan is a DAG of physical operators.

For each operator, the DBMS considers where 
input is coming from and where to send output.
→ Table Scans
→ Joins
→ Aggregations
→ Sorting

4

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023


15-721 (Spring 2023)

DISTRIBUTED QUERY EXECUTION

5

Intermediate
Data

Intermediate
Data

⋮

Worker Nodes

Persistent Data

Persistent Data

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023


15-721 (Spring 2023)

DISTRIBUTED QUERY EXECUTION

5

⋮

Shuffle Nodes
(Optional)

Intermediate
Data

Intermediate
Data

⋮

Worker Nodes

Persistent Data

Persistent Data

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023


15-721 (Spring 2023)

DISTRIBUTED QUERY EXECUTION

5

⋮

Shuffle Nodes
(Optional)

Intermediate
Data

Intermediate
Data

⋮

Worker Nodes

⋮

Worker Nodes

Persistent Data

Persistent Data

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023


15-721 (Spring 2023)

DISTRIBUTED QUERY EXECUTION

5

⋮

Shuffle Nodes
(Optional)

Intermediate
Data

Intermediate
Data

⋮

Worker Nodes

⋮

Worker Nodes

Final
Result

Persistent Data

Persistent Data

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023


15-721 (Spring 2023)

DATA CATEGORIES

Persistent Data:
→ The "source of record" for the database (e.g., tables).
→ Modern systems assume that these data files are immutable 

but can support updates by rewriting them.

Intermediate Data:
→ Short-lived artifacts produced by query operators during 

execution and then consumed by other operators.
→ The amount of intermediate data that a query generates 

has little to no correlation to amount of persistent data that 
it reads or the execution time.

6

BUILDING AN ELASTIC QUERY ENGINE ON 
DISAGGREGATED STORAGE
NSDI 2022

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/doi/10.5555/3388242.3388275
https://dl.acm.org/doi/10.5555/3388242.3388275


15-721 (Spring 2023)

DISTRIBUTED SYSTEM ARCHITECTURE

A distributed DBMS's system architecture specifies 
the location of the database's persistent data files. 
This affects how nodes coordinate with each other 
and where they retrieve/store objects in the 
database.

Two approaches (not mutually exclusive):
→ Push Query to Data
→ Pull Data to Query

7

THE CASE FOR SHARED NOTHING
HPTS 1985

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dsf.berkeley.edu/papers/hpts85-nothing.pdf
https://dsf.berkeley.edu/papers/hpts85-nothing.pdf


15-721 (Spring 2023)

PUSH VS. PULL

Approach #1: Push Query to Data
→ Send the query (or a portion of it) to the node that 

contains the data.
→ Perform as much filtering and processing as possible where 

data resides before transmitting over network.

Approach #2: Pull Data to Query
→ Bring the data to the node that is executing a query that 

needs it for processing.
→ This is necessary when there is no compute resources 

available where persistent data files are located.

8

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023


15-721 (Spring 2023)

PUSH VS. PULL

Approach #1: Push Query to Data
→ Send the query (or a portion of it) to the node that 

contains the data.
→ Perform as much filtering and processing as possible where 

data resides before transmitting over network.

Approach #2: Pull Data to Query
→ Bring the data to the node that is executing a query that 

needs it for processing.
→ This is necessary when there is no compute resources 

available where persistent data files are located.

8

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://docs.aws.amazon.com/AmazonS3/latest/userguide/selecting-content-from-objects.html
https://learn.microsoft.com/en-us/rest/api/storageservices/query-blob-contents


15-721 (Spring 2023)

SHARED NOTHING

Each DBMS instance has its own 
CPU, memory, locally-attached disk.
→ Nodes only communicate with each other 

via network.

Database is partitioned into disjoint 
subsets across nodes.
→ Adding a new node requires physically 

moving data between nodes.

Since data is local, the DBMS can 
access it via POSIX API.

9

Network

DBMS 
Node

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023


15-721 (Spring 2023)

SHARED DISK

Each node accesses a single logical 
disk via an interconnect, but also have 
their own private memory and 
ephemeral storage.
→ Must send messages between nodes to 

learn about their current state.

Instead of a POSIX API, the DBMS 
accesses disk using a userspace API.

10

Network

Network

Compute 
Layer

Storage 
Layer

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023


15-721 (Spring 2023)

SYSTEM ARCHITECTURE

Choice #1: Shared Nothing:
→ Harder to scale capacity (data movement).
→ Potentially better performance & efficiency.
→ Apply filters where the data resides before transferring.

Choice #2: Shared Disk:
→ Scale compute layer independently from the storage layer.
→ Easy to shutdown idle compute layer resources.
→ May need to pull uncached persistent data from storage 

layer to compute layer before applying filters.

11

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023


15-721 (Spring 2023)

SHARED DISK

Traditionally the storage layer in shared-disk 
DBMSs were dedicated on-prem NAS.
→ Example: Oracle Exadata

Cloud object stores are now the prevailing storage 
target for modern OLAP DBMSs because they are 
"infinitely" scalable.
→ Examples: Amazon S3, Azure Blob, Google Cloud Storage

12

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023


15-721 (Spring 2023)

OBJECT STORES

Partition the database's tables (persistent data) into 
large, immutable files stored in an object store.
→ All attributes for a tuple are stored in the same file in a 

columnar layout (PAX).
→ Header (or footer) contains meta-data about columnar 

offsets, compression schemes, indexes, and zone maps.

The DBMS retrieves a block's header to determine 
what byte ranges it needs to retrieve (if any).

Each cloud vendor provides their own proprietary 
API to access data (PUT, GET, DELETE).
→ Some vendors support predicate pushdown (S3).

13

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023


15-721 (Spring 2023)

OBJECT STORES

Partition the database's tables (persistent data) into 
large, immutable files stored in an object store.
→ All attributes for a tuple are stored in the same file in a 

columnar layout (PAX).
→ Header (or footer) contains meta-data about columnar 

offsets, compression schemes, indexes, and zone maps.

The DBMS retrieves a block's header to determine 
what byte ranges it needs to retrieve (if any).

Each cloud vendor provides their own proprietary 
API to access data (PUT, GET, DELETE).
→ Some vendors support predicate pushdown (S3).

13

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://youtu.be/uHMcVDNkHi4?t=963⋮


15-721 (Spring 2023)

ADDITIONAL TOPICS

File Formats

Table Partitioning

Data Ingestion / Updates / Discovery

Scheduling / Adaptivity

14

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023


15-721 (Spring 2023)

OBSERVATION

Snowflake is a monolithic system comprised of 
components built entirely in-house.

Most of the non-academic DBMSs we will cover 
this semester will have a similar overall architecture.

But this means that multiple organizations are 
writing the same DBMS software…

15

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023


15-721 (Spring 2023)

OLAP COMMODITIZATION

One recent trend of the last decade is the breakout 
OLAP engine sub-systems into standalone open-
source components.
→ This is typically done by organizations not in the business 

of selling DBMS software.

Examples:
→ System Catalogs
→ Query Optimizers
→ File Format / Access Libraries
→ Execution Engines

16

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023


15-721 (Spring 2023)

OLAP COMMODITIZATION

One recent trend of the last decade is the breakout 
OLAP engine sub-systems into standalone open-
source components.
→ This is typically done by organizations not in the business 

of selling DBMS software.

Examples:
→ System Catalogs
→ Query Optimizers
→ File Format / Access Libraries
→ Execution Engines

16

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/doi/10.5555/645926.671696


15-721 (Spring 2023)

SYSTEM CATALOGS

A DBMS tracks a database's schema (table, columns) 
and data files in its catalog.
→ If the DBMS is on the data ingestion path, then it can 

maintain the catalog incrementally.
→ If an external process adds data files, then it also needs to 

update the catalog so that the DBMS is aware of them.

Notable implementations:
→ HCatalog
→ Google Data Catalog
→ Amazon Glue Data Catalog

17

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://cwiki.apache.org/confluence/display/Hive/HCatalog
https://cloud.google.com/data-catalog/
https://docs.aws.amazon.com/glue/latest/dg/tables-described.html


15-721 (Spring 2023)

QUERY OPTIMIZERS

Extendible search engine framework for heuristic-
and cost-based query optimization.
→ DBMS provides transformation rules and cost estimates.
→ Framework returns either a logical or physical query plan.

This is the hardest part to build in any DBMS.

Notable implementations:
→ Greenplum Orca
→ Apache Calcite

18

ORCA: A MODULAR QUERY OPTIMIZER 
ARCHITECTURE FOR BIG DATA
SIGMOD 2014

APACHE CALCITE: A FOUNDATIONAL FRAMEWORK FOR OPTIMIZED 
QUERY PROCESSING OVER HETEROGENEOUS DATA SOURCES
SIGMOD 2018

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://github.com/greenplum-db/gporca
https://calcite.apache.org/
https://dl.acm.org/doi/10.1145/2588555.2595637
https://dl.acm.org/doi/10.1145/2588555.2595637
https://dl.acm.org/doi/10.1145/3183713.3190662
https://dl.acm.org/doi/10.1145/3183713.3190662


15-721 (Spring 2023)

FILE FORMATS

Most DBMSs use a proprietary on-disk binary file 
format for their databases.The only way to share 
data between systems is to convert data into a 
common text-based format
→ Examples: CSV, JSON, XML

There are open-source binary file formats that make 
it easier to access data across systems and libraries 
for extracting data from files.
→ Libraries provide an iterator interface to retrieve (batched) 

columns from files.

19

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023


15-721 (Spring 2023)

UNIVERSAL FORMATS

Apache Parquet (2013)
→ Compressed columnar storage from 

Cloudera/Twitter

Apache ORC (2013)
→ Compressed columnar storage from 

Apache Hive.

Apache CarbonData (2013)
→ Compressed columnar storage with 

indexes from Huawei.

20

Apache Iceberg (2017)
→ Flexible data format that supports 

schema evolution from Netflix.

HDF5 (1998)
→ Multi-dimensional arrays for 

scientific workloads.

Apache Arrow (2016)
→ In-memory compressed columnar 

storage from Pandas/Dremio.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://parquet.apache.org/
https://orc.apache.org/
https://carbondata.apache.org/
https://iceberg.apache.org/
https://arrow.apache.org/


15-721 (Spring 2023)

EXECUTION ENGINES

Standalone libraries for executing vectorized query 
operators on columnar data.
→ Input is a DAG of physical operators.
→ Require external scheduling and orchestration.

Notable implementations:
→ Velox
→ DataFusion
→ Intel OAP

21

VLDB 2022

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://velox-lib.io/
https://arrow.apache.org/datafusion/
https://oap-project.github.io/
https://dl.acm.org/doi/abs/10.14778/3554821.3554829
https://dl.acm.org/doi/abs/10.14778/3554821.3554829


15-721 (Spring 2023)

CONCLUSION

Today was about understanding the high-level 
context of what modern OLAP DBMSs look like.
→ Fundamentally these new DBMSs are not different than 

previous distributed/parallel DBMSs except for the 
prevalence of a cloud-based object store for shared disk.

Our focus for the rest of the semester will be about 
state-of-the-art implementations of these systems' 
components.

22

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023


15-721 (Spring 2023)

NEXT CLASS

Storage Models

Data Representation

Partitioning

Catalogs

23

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

	Introduction
	Slide 1: Modern OLAP Databases
	Slide 2: COURSE OUTLINE
	Slide 3: TODAY’S AGENDA

	Query Execution
	Slide 4: DISTRIBUTED QUERY EXECUTION
	Slide 5: DISTRIBUTED QUERY EXECUTION
	Slide 6: DISTRIBUTED QUERY EXECUTION
	Slide 7: DISTRIBUTED QUERY EXECUTION
	Slide 8: DISTRIBUTED QUERY EXECUTION
	Slide 9: DATA CATEGORIES

	Distributed Architectures
	Slide 10: DISTRIBUTED SYSTEM ARCHITECTURE
	Slide 11: PUSH VS. PULL
	Slide 12: PUSH VS. PULL
	Slide 13: SHARED NOTHING
	Slide 14: SHARED DISK
	Slide 15: SYSTEM ARCHITECTURE
	Slide 16: SHARED DISK
	Slide 17: OBJECT STORES
	Slide 18: OBJECT STORES
	Slide 19: ADDITIONAL TOPICS

	Commodization
	Slide 20: OBSERVATION
	Slide 21: OLAP COMMODITIZATION
	Slide 22: OLAP COMMODITIZATION
	Slide 23: SYSTEM CATALOGS
	Slide 24: QUERY OPTIMIZERS
	Slide 25: FILE FORMATS
	Slide 26: UNIVERSAL FORMATS
	Slide 27: EXECUTION ENGINES

	Conclusion
	Slide 28: CONCLUSION
	Slide 29: NEXT CLASS


