Lecture #02

Carnegie Mellon University

ADVANCED DATABASE SYSTEMS

Modern OLAP
Databases

Andy Pavlo // 15-721 // Spring 2023

https://15721.courses.cs.cmu.edu/spring2023
http://db.cs.cmu.edu/

COURSE OUTLINE

Storage

— Columnar Storage
— Compression

— Indexes

££CMU-DB

15-721 (Spring 2023)

Query Execution:
— Processing Models
— Scheduling

— Vectorization

— Compilation

— Joins

— Materialized Views

Client Interface

Optimization

Query Execution

Storage

Query Optimization

Network Interfaces

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

TODAY’S AGENDA

Query Execution
Distributed System Architectures
OLAP Commoditization

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

DISTRIBUTED QUERY EXECUTION

Executing an OLAP query in a distributed DBMS is

roughly the same as on a single-node DBMS.
— Query plan is a DAG of physical operators.

For each operator, the DBMS considers where

input is coming from and where to send output.
— Table Scans

— Joins

— Aggregations

— Sorting

£=CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

W orker Nodes Shuffle Nodes
(Optional)

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

W orker Nodes Shuffle Nodes W orker Nodes
(Optional)

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

W orker Nodes Shuffle Nodes W orker Nodes
(Optional)

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

DATA CATEGORIES

Persistent Data:

— The "source of record" for the database (e.g., tables).

— Modern systems assume that these data files are immutable
but can support updates by rewriting them.

Intermediate Data;

— Short-lived artifacts produced by query operators during
execution and then consumed by other operators.

— The amount of intermediate data that a query generates
has little to no correlation to amount of persistent data that
it reads or the execution time.

BUILDING AN ELASTIC QUERY ENGINE ON
DISAGGREGATED STORAGE
NSDI 2022

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/doi/10.5555/3388242.3388275
https://dl.acm.org/doi/10.5555/3388242.3388275

DISTRIBUTED SYSTEM ARCHITECTURE

A distributed DBMS's system architecture specifies
the location of the database's persistent data files.
This affects how nodes coordinate with each other
and where they retrieve/store objects in the
database.

Two approaches (not mutually exclusive):
— Push Query to Data
— Pull Data to Query

| THE CASE FOR SHARED NOTHING

0CMU -DB

111111111111111

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dsf.berkeley.edu/papers/hpts85-nothing.pdf
https://dsf.berkeley.edu/papers/hpts85-nothing.pdf

$CMU-DB

15-721 (Spring 2023)

PUSH VS. PULL

Approach #1: Push Query to Data

— Send the query (or a portion of it) to the node that
contains the data,

— Perform as much filtering and processing as possible where
data resides before transmitting over network.

Approach #2: Pull Data to Query

— Bring the data to the node that is executing a query that
needs it for processing.

— This is necessary when there is no compute resources
available where persistent data files are located.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

S

PDF | Rss

With Amazon S3 Sale

Approa

W® Microsoft

Article « 07/20/2021 - 10 minutes to read 3 contributors 4 Feedback
The query Blob contents AP applies a simple Structured Query Language (SQL) statementon a blob's
contents and returns only the queried subset of the data. Vou can also call Query Blob contents toquery
the contents of a version or snapshot.

The query Blob contents request may be constructed as follows. HTTPS is recommended. Replace
myaccount with the name of your storage account:
pOST Method Request URI HTTP Version
dows.netfmyccntainerlmyblcb?cnmp:query HTTP/1.0
HTTP/11

https: / /myaccount. plob.core.win
net/mycontainer/myhloh'?comp:query&snapshot:<0at eTime>

5+ //myaccount. blob.core .windows .
ersionid:<nateT'1me>

http
mycontainer/mybloh?comp:query&v

hteps: //myaccount. plob.core.windows. net/

£=CMU-

15-721 (Springzo

amazon

ery language
ge (SQL) statements to filter the cont:
ents of an

Bt you need. B
] - By usin
ch reduces the co tg Amazon S3 Select to filter thj
st and latency to retrieve this d Is data, you can
Is data.

pr APache Par.
ue
only), and Seque:—l;?;mat. It also works with object
etermine how the Ide encrypted objects. You can [that are
records in the r ' specify th
esult are delimj €
ited.

azon S3 Select
supports a
Select, se subset of SQL .
e SQL reference for Amazon(§3-sFO[r more information
elect.

Pbject Conte
nt
e limits the amF;EST API, the AWS Command Lj
unt of data returned to 40 MBlﬂe Interface
- To retrieve

\pute resources
» Jocated.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://docs.aws.amazon.com/AmazonS3/latest/userguide/selecting-content-from-objects.html
https://learn.microsoft.com/en-us/rest/api/storageservices/query-blob-contents

SHARED NOTHING

Each DBMS instance has its own
CPU, memory, locally-attached disk.

— Nodes only communicate with each other
via network.

Database is partitioned into disjoint

subsets across nodes.
— Adding a new node requires physically
moving data between nodes.

Since data is local, the DBMS can
access it via POSIX API.

$2CMU-DB

15-721 (Spring 2023)

Network

DBMS
Node

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

SHARED DISK

Each node accesses a single logical
disk via an interconnect, but also have
their own private memory and

ephemeral storage.
— Must send messages between nodes to
learn about their current state.

Instead of a POSIX API, the DBMS
accesses disk using a userspace API.

$2CMU-DB

15-721 (Spring 2023)

Computéz il
Layer

Storéage

Layer |

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

SYSTEM ARCHITECTURE

Choice #1: Shared Nothing:

— Harder to scale capacity (data movement).
— Potentially better performance & efficiency.
— Apply filters where the data resides before transferring.

Choice #2: Shared Disk:

— Scale compute layer independently from the storage layer.

— Easy to shutdown idle compute layer resources.

— May need to pull uncached persistent data from storage
layer to compute layer before applying filters.

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

SHARED DISK

Traditionally the storage layer in shared-disk
DBMSs were dedicated on-prem NAS.

— Example: Oracle Exadata

Cloud object stores are now the prevailing storage
target for modern OLAP DBMSs because they are

"infinitely" scalable.
— Examples: Amazon S3, Azure Blob, Google Cloud Storage

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

0BJECT STORES

Partition the database's tables (persistent data) into

large, immutable files stored in an object store.

— All attributes for a tuple are stored in the same file in a
columnar layout (PAX).

— Header (or footer) contains meta-data about columnar
offsets, compression schemes, indexes, and zone maps.

The DBMS retrieves a block's header to determine
what byte ranges it needs to retrieve (if any).

Each cloud vendor provides their own proprietary
API to access data (PUT, GET, DELETE).

— Some vendors support predicate pushdown (S3).
$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

0BJECT STORES

Workers
. Virtual Compute Cluster
Partit Separated compute / storage
Node 1 Node N
large) One Worker pod per compute node
SN AH Executes portions of the query plan
col Custom network protocol over UDpP
* Data distribution between workers
—> He * Uses Intel DPDK
Off 50% higher throughput on AWS over TCP/IP A e T
The ﬂ Shard files cached in local NVMe SSD W W
Shards persisted in object store
What Custom AWS S3 access library
3X better throughput than stock $3 lib J l
Object store
Each
API 2 Yellowbrick

— Some vendors support predicate pusRAOWI (537:
£2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://youtu.be/uHMcVDNkHi4?t=963⋮

ADDITIONAL TOPICS

File Formats

Table Partitioning

Data Ingestion / Updates / Discovery
Scheduling / Adaptivity

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

OBSERVATION

Snowflake is a monolithic system comprised of
components built entirely in-house.

Most of the non-academic DBMSs we will cover
this semester will have a similar overall architecture.

But this means that multiple organizations are
writing the same DBMS software...

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

OLAP COMMODITIZATION

One recent trend of the last decade is the breakout
OLAP engine sub-systems into standalone open-

source components.

— This is typically done by organizations not in the business
of selling DBMS software.

Examples:

— System Catalogs

— Query Optimizers

— File Format / Access Libraries
— Execution Engines

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

££CMU-DB

15-721 (Spring 2023)

OLAP COMMODITIZATINN

Rethinking Database System Architecture:
Towards a Self-tuning RISC-style Database System

One recent trend of the last decad
OLAP engine sub-systems into st:
source components.

— This is typically done by organizatior
of selling DBMS software.

Examples:

— System Catalogs

— Query Optimizers

— File Format / Access Libraries
— Execution Engines

Surajit Chaudhuri

Microsoft Research
Redmond, WA 98052, USA
surajitc@microsoft.com

Abstract

Database technology is one of the cornerstones for
the new millennium’s IT landscape. However,
database systems as a unit of code packaging and
deployment are ar a crossroad: commercial
systems have been adding features for a long time
and have now reached complexity that makes them
a difficult choice, in terms of their "gain/pain
ratio”, as a central platform for value-added
information services such as ERP or ¢-commerce,
It is critical that databa systems be easy to
manage, predictable in their performance
i istics, and ulti i

elusive goal, RISC-style
functionality and interfac
We suggest a radical arc! itectural departure in
which database technology is packaged into much
aller RISC-style data managers with lean,

Gerhard Weikum
University of the Saarland
66123 Saarbruecken, Germany

weikum@cs.uni-sb.de

Success is a lousy teacher (to paraphrase Bill Gates), and
therefore we should not conclude that the database
Sstem, as the unit of engineering. deploying, and
operating packaged database technology, is in good
shape. A closer look at some important application arcas
and major trends in the sofiware industry strongly
indicates that base systems have an overly low
“gain/pain rati i with the dramatic drop of
hardware and software prices, the expenses due to human
administration and tuning staff dominate the cost of
ownership for a database system. The complexity and cost
of these feed-and-care tasks is likely to prohibit database
systems from further playing their traditionally prominent
role in the futre IT infrastructure, Next. database
technology is more likely to be adopted in unbundled and
dispersed form within higher-level application services,

Both of the above problems stem from packaging all

ized APIs, and with built-in self-
and auto-tuning capabilities

1. The Need for a New Departure

Database technology has an extremely successful track
record as a backbone of information technology (IT)
throughout the last three decades. High-level declarative
query languages like SQL and atomic transactions are key
assets in the c tive development and
of infi ion systems, Furthey . database 2
continues to play a major role in the trends of our modern
cyberspace society with applications ranging from web-

ons/services, and digital libraries (o
information Mmining on business as well as scientific data.
Thus, database fechnology has impressively proven its
benefits and seems 10 remain crucially relevant in the new
millennium as well,

Permission to copy without fee all or part of this material Is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the itle of the publication and its date appear, and notice s
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or 1o republish, requires a fee
andlor special permission from the Endowment

P of the 26th I ional Conf on Very

Large Databases, Cairo, Egypt, 2000

database technology into a single unit of development,
i , depl , and operation. We argue that
this architecture is no longer appropriate for the new age
of cyberspace applicati The alt approach that
we envision and advocate in this paper is to provide
RISC-style, functionally restricted, specialized data
managers that have a narrow interface as well as a smaller
footprint and are more amenable to automatic tuning.

The rest of the paper is organized as follows. Section 2
puts together some important observations indicating that
database systems in their traditional form are in crisis,
Section 3 briefly reviews carlier attempts for a new
architectural departure along the lines of the current
Paper, and discusses why they did not catch on, Section 4
outlines the envisioned architecture with emphasis on
RISC-style implificati of d:

components and consequences for the viability of auto.
tuning. Section 5 outlines a possible research agenda

towards our vision.

2. Crisis Indicators

To begin our analysis, let us put together a few important
obscrvations on how database systems are perceived by
customers, vendors, and the research community.

Observation 1: Featurism drives products beyond
manageability. Database systems offer more and more
features, leading to extremely broad and thus complex

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/doi/10.5555/645926.671696

$2CMU-DB

15-721 (Spring 2023)

SYSTEM CATALOGS

A DBMS tracks a database's schema (table, columns)

and data files in its catalog.

— [f the DBMS is on the data ingestion path, then it can
maintain the catalog incrementally.

— [f an external process adds data files, then it also needs to
update the catalog so that the DBMS is aware of them.

Notable implementations:
— HCatalog

— Google Data Catalog

— Amazon Glue Data Catalog

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://cwiki.apache.org/confluence/display/Hive/HCatalog
https://cloud.google.com/data-catalog/
https://docs.aws.amazon.com/glue/latest/dg/tables-described.html

SIGMOD 2014

$2CMU-DB

15-721 (Spring 2023)

QUERY OPTIMIZERS

Extendible search engine framework for heuristic-

and cost-based query optimization.
— DBMS provides transformation rules and cost estimates.
— Framework returns either a logical or physical query plan.

This is the hardest part to build in any DBMS.

Notable implementations:
— Greenplum Orca
— Apache Calcite

= |ORCA: A MODULAR QUERY OPTIMIZER APACHE CALCITE: A FOUNDATIONAL FRAMEWORK FOR OPTIMIZED
ARCHITECTURE FOR BIG DATA UERY PROCESSING OVER HETEROGENEOUS DATA SOURCES

SIGMOD 2018

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://github.com/greenplum-db/gporca
https://calcite.apache.org/
https://dl.acm.org/doi/10.1145/2588555.2595637
https://dl.acm.org/doi/10.1145/2588555.2595637
https://dl.acm.org/doi/10.1145/3183713.3190662
https://dl.acm.org/doi/10.1145/3183713.3190662

FILE FORMATS

Most DBMSs use a proprietary on-disk binary file
format for their databases. The only way to share
data between systems is to convert data into a

common text-based format
— Examples: CSV, JSON, XML

There are open-source binary file formats that make
it easier to access data across systems and libraries

for extracting data from files.
— Libraries provide an iterator interface to retrieve (batched)
columns from files.

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

UNIVERSAL FORMATS

Apache Parquet (2013)

— Compressed columnar storage from
Cloudera/Twitter

Apache ORC (2013)

— Compressed columnar storage from
Apache Hive.

Apache CarbonData (2013)

— Compressed columnar storage with
indexes from Huawei.

££CMU-DB

15-721 (Spring 2023)

Apache Iceberg (2017)

— Flexible data format that supports
schema evolution from Netflix.

HDF5 (1998)

— Multi-dimensional arrays for
scientific workloads.

Apache Arrow (2016)

— In-memory compressed columnar
storage from Pandas/Dremio.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://parquet.apache.org/
https://orc.apache.org/
https://carbondata.apache.org/
https://iceberg.apache.org/
https://arrow.apache.org/

EXECUTION ENGINES

Standalone libraries for executing vectorized query

operators on columnar data.

— Input is a DAG of physical operators.
— Require external scheduling and orchestration.

Notable implementations:
— Velox

— DataFusion
— Intel OAP

VELOX: META'S UNIFIED EXECUTION ENGINE
VLDB 2022

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://velox-lib.io/
https://arrow.apache.org/datafusion/
https://oap-project.github.io/
https://dl.acm.org/doi/abs/10.14778/3554821.3554829
https://dl.acm.org/doi/abs/10.14778/3554821.3554829

$2CMU-DB

15-721 (Spring 2023)

CONCLUSION

Today was about understanding the high-level
context of what modern OLAP DBMSs look like.

— Fundamentally these new DBMSs are not different than
previous distributed/parallel DBMSs except for the
prevalence of a cloud-based object store for shared disk.

Our focus for the rest of the semester will be about
state-of-the-art implementations of these systems'
components.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

NEXT CLASS

Storage Models
Data Representation
Partitioning
Catalogs

£=CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

	Introduction
	Slide 1: Modern OLAP Databases
	Slide 2: COURSE OUTLINE
	Slide 3: TODAY’S AGENDA

	Query Execution
	Slide 4: DISTRIBUTED QUERY EXECUTION
	Slide 5: DISTRIBUTED QUERY EXECUTION
	Slide 6: DISTRIBUTED QUERY EXECUTION
	Slide 7: DISTRIBUTED QUERY EXECUTION
	Slide 8: DISTRIBUTED QUERY EXECUTION
	Slide 9: DATA CATEGORIES

	Distributed Architectures
	Slide 10: DISTRIBUTED SYSTEM ARCHITECTURE
	Slide 11: PUSH VS. PULL
	Slide 12: PUSH VS. PULL
	Slide 13: SHARED NOTHING
	Slide 14: SHARED DISK
	Slide 15: SYSTEM ARCHITECTURE
	Slide 16: SHARED DISK
	Slide 17: OBJECT STORES
	Slide 18: OBJECT STORES
	Slide 19: ADDITIONAL TOPICS

	Commodization
	Slide 20: OBSERVATION
	Slide 21: OLAP COMMODITIZATION
	Slide 22: OLAP COMMODITIZATION
	Slide 23: SYSTEM CATALOGS
	Slide 24: QUERY OPTIMIZERS
	Slide 25: FILE FORMATS
	Slide 26: UNIVERSAL FORMATS
	Slide 27: EXECUTION ENGINES

	Conclusion
	Slide 28: CONCLUSION
	Slide 29: NEXT CLASS

