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OBSERVATION

Today's lecture is about the lowest physical 
representation of data in a database.

What data "looks" like determines almost a DBMS's 
entire system architecture.
→ Processing Model
→ Tuple Materialization Strategy
→ Operator Algorithms
→ Data Ingestion / Updates
→ Concurrency Control (we will ignore this)
→ Query Optimization
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TODAY’S AGENDA

Storage Models

Type Representation

Partitioning
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STORAGE MODELS

A DBMS's storage model specifies how it 
physically organizes tuples on disk and in memory. 

Choice #1: N-ary Storage Model (NSM)

Choice #2: Decomposition Storage Model (DSM)

Choice #3: Hybrid Storage Model (PAX)
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COLUMN-STORES VS. ROW-STORES: HOW 
DIFFERENT ARE THEY REALLY?
SIGMOD 2008
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N-ARY STORAGE MODEL (NSM)

The DBMS stores (almost) all the attributes for a 
single tuple contiguously in a single page.

Ideal for OLTP workloads where txns tend to access 
individual entities and insert-heavy workloads.
→ Use the tuple-at-a-time iterator processing model.

NSM database page sizes are typically some constant 
multiple of 4 KB hardware pages.
→ Example: Oracle (4 KB), Postgres (8 KB), MySQL (16 KB)
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NSM: PHYSICAL ORGANIZATION

A disk-oriented NSM system stores a 
tuple's fixed-length and variable-
length attributes contiguously in a 
single slotted page.

The tuple's record id (page#, slot#) is 
how the DBMS uniquely identifies a 
physical tuple.
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A disk-oriented NSM system stores a 
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NSM: PHYSICAL ORGANIZATION

A disk-oriented NSM system stores a 
tuple's fixed-length and variable-
length attributes contiguously in a 
single slotted page.

The tuple's record id (page#, slot#) is 
how the DBMS uniquely identifies a 
physical tuple.
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NSM: PHYSICAL ORGANIZATION
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N-ARY STORAGE MODEL (NSM)

Advantages
→ Fast inserts, updates, and deletes.
→ Good for queries that need the entire tuple (OLTP).
→ Can use index-oriented physical storage for clustering.

Disadvantages
→ Not good for scanning large portions of the table and/or a 

subset of the attributes.
→ Terrible memory locality in access patterns.
→ Not ideal for compression because of multiple value 

domains within a single page.
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DECOMPOSITION STORAGE MODEL (DSM)

The DBMS stores a single attribute for all tuples 
contiguously in a block of data.

Ideal for OLAP workloads where read-only queries 
perform large scans over a subset of the table’s 
attributes.
→ Use a batched vectorized processing model.

File sizes are larger (100s of MBs), but it may still 
organize tuples within the file into smaller groups.
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DSM: PHYSICAL ORGANIZATION

Store attributes and meta-data (e.g., 
nulls) in separate arrays of fixed-
length values.
→ Most systems identify unique physical 

tuples using offsets into these arrays.
→ Need to handle variable-length values…

Maintain a separate file per attribute 
with a dedicated header area for meta-
data about entire column.
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DSM: TUPLE IDENTIFICATION

Choice #1: Fixed-length Offsets
→ Each value is the same length for an attribute.

Choice #2: Embedded Tuple Ids
→ Each value is stored with its tuple id in a column.
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DSM: VARIABLE-LENGTH DATA

Padding variable-length fields to ensure they are 
fixed-length is wasteful, especially for large 
attributes.

A better approach is to use dictionary compression to 
convert repetitive variable-length data into fixed-
length values (typically 32-bit integers).
→ More on this next week.
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DSM: SYSTEM HISTORY

1970s: Cantor DBMS

1980s: DSM Proposal

1990s: SybaseIQ (in-memory only)

2000s: Vertica, Vectorwise, MonetDB

2010s: Everyone
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DECOMPOSITION STORAGE MODEL (DSM)

Advantages
→ Reduces the amount wasted I/O per query because the 

DBMS only reads the data that it needs.
→ Faster query processing because of increased locality and 

cached data reuse.
→ Better data compression (more on this later)

Disadvantages
→ Slow for point queries, inserts, updates, and deletes 

because of tuple splitting/stitching/reorganization.
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OBSERVATION

OLAP queries almost never access a single column 
in a table by itself.
→ At some point during query execution, the DBMS must get 

other columns and stitch the original tuple back together.

But we still need to store data in a columnar format 
to get the storage + execution benefits.

We need columnar scheme that still stores 
attributes separately but keeps the data for each 
tuple physically close to each other…

14
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PAX STORAGE MODEL

Partition Attributes Across (PAX) is a hybrid 
storage model that vertically partitions attributes 
within a database page.
→ This is what Paraquet and Orc use.

The goal is to get the benefit of faster processing on 
columnar storage while retaining the spatial locality
benefits of row storage.
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DATA PAGE LAYOUTS FOR RELATIONAL DATABASES 
ON DEEP MEMORY HIERARCHIES
VLDB JOURNAL 2002
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PAX: PHYSICAL ORGANIZATION

Horizontally partition rows into 
groups. Then vertically partition their 
attributes into columns.

Global header contains directory with 
the offsets to the file's row groups.
→ This is stored in the footer if the file is 

immutable (Parquet, Orc).

Each row group contains its own 
meta-data header about its contents.
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MEMORY PAGES

An OLAP DBMS uses the buffer pool manager
methods that we discussed in the intro course.

OS maps physical pages to virtual memory pages.

The CPU's MMU maintains a TLB that contains the 
physical address of a virtual memory page.
→ The TLB resides in the CPU caches.
→ It cannot obviously store every possible entry for a large 

memory machine. 

When you allocate a block of memory, the allocator 
keeps that it aligned to page boundaries.
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TRANSPARENT HUGE PAGES (THP)

Instead of always allocating memory in 4 KB pages, 
Linux supports creating larger pages (2MB to 1GB)
→ Each page must be a contiguous blocks of memory.
→ Greatly reduces the # of TLB entries

With THP, the OS reorganizes pages in the 
background to keep things compact.
→ Split larger pages into smaller pages.
→ Combine smaller pages into larger pages.
→ Can cause the DBMS process to stall on memory access.

19

Source: Alexandr Nikitin
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TRANSPARENT HUGE PAGES (THP)

Historically, every DBMS advises you to disable this 
THP on Linux:
→ Oracle, SingleStore, NuoDB, MongoDB, Sybase, TiDB.
→ Vertica says to enable THP only for newer Linux distros.

Recent research from Google suggests that huge 
pages improved their data center workload by 7%.
→ 6.5% improvement in Spanner's throughput
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Source: Evan Jones
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DATA REPRESENTATION

INTEGER/BIGINT/SMALLINT/TINYINT
→ C/C++ Representation

FLOAT/REAL vs. NUMERIC/DECIMAL
→ IEEE-754 Standard / Fixed-point Decimals

TIME/DATE/TIMESTAMP
→ 32/64-bit int of (micro/milli)seconds since Unix epoch

VARCHAR/VARBINARY/TEXT/BLOB
→ Pointer to other location if type is ≥64-bits
→ Header with length and address to next location (if 

segmented), followed by data bytes.
→ Most DBMSs use dictionary compression for these.
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VARIABLE PRECISION NUMBERS

Inexact, variable-precision numeric type that uses 
the "native" C/C++ types.

Store directly as specified by IEEE-754.
→ Example: FLOAT, REAL/DOUBLE

These types are typically faster than fixed precision 
numbers because CPU ISA's (Xeon, Arm) have 
instructions / registers to support them.

But they do not guarantee exact values…

22
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VARIABLE PRECISION NUMBERS

23

#include <stdio.h>

int main(int argc, char* argv[]) {
float x = 0.1;
float y = 0.2;
printf("x+y = %f\n", x+y);
printf("0.3 = %f\n", 0.3);

}

Rounding Example

x+y = 0.300000
0.3 = 0.300000

Output
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VARIABLE PRECISION NUMBERS

23

#include <stdio.h>

int main(int argc, char* argv[]) {
float x = 0.1;
float y = 0.2;
printf("x+y = %f\n", x+y);
printf("0.3 = %f\n", 0.3);

}

Rounding Example

x+y = 0.300000
0.3 = 0.300000

Output

#include <stdio.h>

int main(int argc, char* argv[]) {
float x = 0.1;
float y = 0.2;
printf("x+y = %.20f\n", x+y);
printf("0.3 = %.20f\n", 0.3);

}

x+y = 0.30000001192092895508
0.3 = 0.29999999999999998890
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FIXED PRECISION NUMBERS

Numeric data types with (potentially) arbitrary 
precision and scale. Used when rounding errors are 
unacceptable.
→ Example: NUMERIC, DECIMAL

Many different implementations.
→ Example: Store in an exact, variable-length binary 

representation with additional meta-data.
→ Can be less expensive if the DBMS does not provide 

arbitrary precision (e.g., decimal point can be in a different 
position per value).

24
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POSTGRES: NUMERIC

25

typedef unsigned char NumericDigit;

typedef struct {

int ndigits;

int weight;

int scale;

int sign;

NumericDigit *digits;

} numeric;

# of Digits

Weight of 1st Digit

Scale Factor

Positive/Negative/NaN

Digit Storage

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023


15-721 (Spring 2023)

POSTGRES: NUMERIC

25

typedef unsigned char NumericDigit;

typedef struct {

int ndigits;

int weight;

int scale;

int sign;

NumericDigit *digits;

} numeric;

# of Digits

Weight of 1st Digit

Scale Factor

Positive/Negative/NaN

Digit Storage

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://doxygen.postgresql.org/interfaces_2ecpg_2pgtypeslib_2numeric_8c_source.html#l00722


15-721 (Spring 2023)

MYSQL: NUMERIC

26

typedef int32 decimal_digit_t;

struct decimal_t {

int intg, frac, len;

bool sign;

decimal_digit_t *buf;

};

# of Digits Before Point

# of Digits After Point 

Length (Bytes)

Positive/Negative

Digit Storage
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NULL DATA TYPES

Choice #1: Special Values
→ Designate a value to represent NULL for a data type (e.g., 

INT32_MIN).

Choice #2: Null Column Bitmap Header
→ Store a bitmap in a centralized header that specifies what 

attributes are null.

Choice #3: Per Attribute Null Flag
→ Store a flag that marks that a value is null.
→ Must use more space than just a single bit because this 

messes up with word alignment.

27
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OBSERVATION

Data is "hot" when it enters the database
→ A newly inserted tuple is more likely to be updated again 

the near future.

As a tuple ages, it is updated less frequently.
→ At some point, a tuple is only accessed in read-only queries 

along with other tuples.

28
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HYBRID STORAGE MODEL

Use separate execution engines that are optimized 
for either NSM or DSM databases.
→ Store new data in NSM for fast OLTP.
→ Migrate data to DSM for more efficient OLAP.
→ Combine query results from both engines to appear as a 

single logical database to the application.

Choice #1: Fractured Mirrors
→ Examples: Oracle, IBM DB2 Blu, Microsoft SQL Server

Choice #2: Delta Store
→ Examples: SAP HANA, Vertica, SingleStore, Databricks, 

Google Napa

29
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FRACTURED MIRRORS

Store a second copy of the database in a DSM layout 
that is automatically updated.
→ All updates are first entered in NSM then eventually copied 

into DSM mirror.
→ If the DBMS supports updates, it must invalidate tuples in 

the DSM mirror.

30

A CASE FOR FRACTURED MIRRORS
VLDB 2002

NSM
(Primary)

DSM
(Mirror)

Transactions 
Analytical
Queries
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DELTA STORE

Stage updates to the database in an NSM table.

A background thread migrates updates from delta 
store and applies them to DSM data.
→ Batch large chunks and then write them out as a PAX file.

31

NSM
Delta Store

DSM
Historical Data

Transactions 
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DATABASE PARTITIONING

Split database across multiple resources:
→ Disks, nodes, processors.
→ Often called "sharding" in NoSQL systems.

The DBMS executes query fragments on each 
partition and then combines the results to produce a 
single answer. 

The DBMS can partition a database physically
(shared nothing) or logically (shared disk).

32
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HORIZONTAL PARTITIONING

Split a table's tuples into disjoint subsets based on 
some partitioning key and scheme. 
→ Choose column(s) that divides the database equally in 

terms of size, load, or usage.

Partitioning Schemes:
→ Hashing
→ Ranges
→ Predicates

33

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023


15-721 (Spring 2023)

HORIZONTAL PARTITIONING

34

SELECT * FROM table
WHERE partitionKey = ?

Ideal Query:

PartitionsTable1
101 a XXX 2022-11-29

102 b XXY 2022-11-28

103 c XYZ 2022-11-29

104 d XYX 2022-11-27

105 e XYY 2022-11-29

hash(a)%4 = P2

hash(b)%4 = P4

hash(c)%4 = P3

hash(d)%4 = P2

hash(e)%4 = P1

Partitioning Key
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Storage

LOGICAL PARTITIONING

Node

Application
Server Node

Get Id=1

Id=1

Id=2

Id=3

Id=4

Id=1

Id=2

Id=3

Id=4
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Storage

LOGICAL PARTITIONING

Node

Application
Server Node

Get Id=3

Id=1

Id=2

Id=3

Id=4

Id=1

Id=2

Id=3

Id=4
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Storage

LOGICAL PARTITIONING

Node

Application
Server Node

Id=1

Id=2

Id=3

Id=4

Id=1

Id=2

Id=3

Id=4

Get Id=3
Get Id=2

35

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023


15-721 (Spring 2023)

Node

Node

PHYSICAL PARTITIONING

Application
Server

Get Id=1
Id=1

Id=2

Id=3

Id=4

36
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Node

Node

PHYSICAL PARTITIONING

Application
Server

Get Id=3

Id=1

Id=2

Id=3

Id=4
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PARTING THOUGHTS

Every modern OLAP system is using some variant 
of PAX storage. The key idea is that all data must be 
fixed-length.

Real-world tables contain mostly numeric attributes 
(int/float), but their occupied storage is mostly 
comprised of string data.

Modern columnar systems are so fast that most 
people do not denormalize data warehouse schemas.

37
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NEXT CLASS

How to accelerate OLAP queries on columnar data 
with auxiliary data structures.
→ Zone Maps
→ Bitmap Indexes
→ Sketches

We will also discuss Project #1.

38
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