Lecture #03

Carnegie Mellon University

ADVANCED DATABASE SYSTEMS

Storage Models
& Data Layout

Andy Pavlo // 15-721 // Spring 2023

https://15721.courses.cs.cmu.edu/spring2023
http://db.cs.cmu.edu/

OBSERVATION

Today's lecture is about the lowest physical
representation of data in a database.

What data "looks" like determines almost a DBMS's

entire system architecture.

— Processing Model

— Tuple Materialization Strategy

— Operator Algorithms

— Data Ingestion / Updates

— Concurrency Control (we will ignore this)
— Query Optimization

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

TODAY’S AGENDA

Storage Models
Type Representation
Partitioning

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

STORAGE MODELS

A DBMS's storage model specifies how it
physically organizes tuples on disk and in memory.

Choice #1: N-ary Storage Model (NSM)
Choice #2: Decomposition Storage Model (DSM)
Choice #3: Hybrid Storage Model (PAX)

== |COLUMN-STORES VS. ROW-STORES: HOW
~ | DIFFERENT ARE THEY REALLY?

SIGMOD 2008

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://15721.courses.cs.cmu.edu/spring2023/papers/03-storage/p967-abadi.pdf
https://15721.courses.cs.cmu.edu/spring2023/papers/03-storage/p967-abadi.pdf

N-ARY STORAGE MODEL (NSM)

The DBMS stores (almost) all the attributes for a
single tuple contiguously in a single page.

Ideal for OLTP workloads where txns tend to access

individual entities and insert-heavy workloads.
— Use the tuple-at-a-time iterator processing model.

NSM database page sizes are typically some constant

multiple of 4 KB hardware pages.
— Example: Oracle (4 KB), Postgres (8 KB), MySQL (16 KB)

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

NSM: PHYSICAL ORGANIZATION

A disk-oriented NSM system stores a
tuple's fixed-length and variable-
length attributes contiguously in a
single slotted page.

The tuple's record id (page#, slot#) is
how the DBMS uniquely identifies a ot Arva

physical tuple. , !
header o] | [[[[|y

Database Page

@ reade IR

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

NSM: PHYSICAL ORGANIZATION

A disk-oriented NSM system stores a

tuple's fixed-length and variable- > =
length attributes contiguously in a r—
single slotted page. Row #3

Row #4
Row #5

The tuple's record id (page#, slot#) is
how the DBMS uniquely identifies a

Slot Array

physical tuple. , !

of T T T 1w

| header ®

y
header [BEX
b0 cO

| header LS

Database Page

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

NSM: PHYSICAL ORGANIZATION

A disk-oriented NSM system stores a ColA ColB ColC
tuple's fixed-length and variable- 2°”’ :? C?
length attributes contiguously in a fou 2 =
single slotted page. Row #3 o3
Row #4 c4
row #5 [IECH] IEEM [|

The tuple's record id (page#, slot#) is
how the DBMS uniquely identifies a

. Slot Array
physical tuple. , !

Y
§°| header loleleolelelel »

S [7ezder IRCRIEEIE - | header JEY)
b4 c4 | a3 b3 c3

a2l o2 1N al
b1 cl ad | bo co

££CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

NSM: PHYSICAL

SELECT SUM(colA), AVG(colC)
FROM xxXx
WHERE colA > 1000

££CMU-DB

15-721 (Spring 2023)

ORGANIZATION

Row #0
Row #1
Row #2
Row #3
Row i#4
Row #5

Slot Array

| header | | |

| header BRI o header BED

b4 c4 a3 b3 c3

| header IEY
a0 bo [0

a2 b2 [Ne2

b1 cl

Database Page

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

NSM: PHYSICAL

££CMU-DB

15-721 (Spring 2023)

|WHERE colA > 1000|

SELECT SUM(colA), AVG(colC)
FROM xxXx

ORGANIZATION

ColB ColC
Row #0 | bo |
Row #1
Row #2
Row #3
Row #4 | b4 |
Row #5 | b5 |
Slot Array
\
l
| _header T T T T T 1T |mp

 header BRI S header JEY:

b4 (o] a3 b3 c3

a2 b2 (€2 al
b1 cl ad bo co

Database Page

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

NSM: PHYSICAL

££CMU-DB

15-721 (Spring 2023)

|WHERE colA > 1000|

SELECT| SUM(colA), AVG(colC)

FROM xxx

ORGANIZATION

ColB ColC
Row #0 | bo |
Row #1
Row #2
Row #3
Row #4 | b4 |
Row #5 | b5 |
Slot Array
\
l
| _header T T T T T 1T |mp

 header BRI S header JEY:

b4 (o] a3 b3 c3

a2 b2 NE2 al
b1 cl ad bo co

Database Page

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

N-ARY STORAGE MODEL (NSM)

Advantages

— Fast inserts, updates, and deletes.

— Good for queries that need the entire tuple (OLTP).
— Can use index-oriented physical storage for clustering.

Disadvantages

— Not good for scanning large portions of the table and/or a
subset of the attributes.

— Terrible memory locality in access patterns.

— Not ideal for compression because of multiple value
domains within a single page.

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

£=CMU-DB

15-721 (Spring 2023)

DECOMPOSITION STORAGE MODEL (DSM)

The DBMS stores a single attribute for all tuples
contiguously in a block of data.

I[deal for OLAP workloads where read-only queries
perform large scans over a subset of the table’s

attributes.
— Use a batched vectorized processing model.

File sizes are larger (100s of MBs), but it may still
organize tuples within the file into smaller groups.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

DSM: PHYSICAL ORGANIZATION

ColC

Store attributes and meta-data (e.g.,
nulls) in separate arrays of fixed-

length values.

— Most systems identify unique physical
tuples using offsets into these arrays.

— Need to handle variable-length values...

null bitmap
a4 ab

Maintain a separate file per attribute
with a dedicated header area for meta-
data about entire column.

®
= el al a2 a3
<3

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

DSM: PHYSICAL ORGANIZATION

Store attributes and meta-data (e.g., ColA [ColB| ColC
nulls) in separate arrays of fixed- o
ow

length values. -
— Most systems identify unique physical Row #3

tuples using offsets into these arrays. Row #4
— Need to handle variable-length values... Row #5
Maintain a separate file per attribute header null bitnp

a0 al a2 a3 a4 ab

with a dedicated header area for meta-
data about entire column.

header null bitmap
bo b1l b2 b3 b4 b5

File #2 File #1

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

DSM: PHYSICAL ORGANIZATION

Store attributes and meta-data (e.g.,
nulls) in separate arrays of fixed-

length values.

— Most systems identify unique physical
tuples using offsets into these arrays.

— Need to handle variable-length values...

Maintain a separate file per attribute % [header null bitnp
. . = BEVEEY a2 a3 a4 ab
with a dedicated header area for meta- %
data about entire column. ¥ U header null bitmap
E bo bl b2 b3 b4 b5
- header null bitmap
; c0 cl c2 c3 (o]
$=CMU-DB [c5

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

DSM: TUPLE IDENTIFICATION

Choice #1: Fixed-length Offsets

— Each value is the same length for an attribute.

Choice #2: Embedded Tuple Ids

— Each value is stored with its tuple id in a column.

Offsets Embedded Ids

W NN O

$2CMU-DB
111111 (Spring 2023)

A e fc]o

wm—‘sh
u.)l\)—‘@h
wMA@h
wm—‘sh

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

DSM: VARIABLE-LENGTH DATA

Padding variable-length fields to ensure they are
fixed-length is wasteful, especially for large
attributes.

A better approach is to use dictionary compression to
convert repetitive variable-length data into fixed-
length values (typically 32-bit integers).

— More on this next week.

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

DSM: SYSTEM HISTORY

1970s: Cantor DBMS

ﬁﬂ
1980s: DSM Proposal SYBASE

1990s: SybaselQ (in-memory only) P
2000s: Vertica, Vectorwise, MonetDB V_RTIO\ monetdb)

2010s: Everyone “** vectorwise
i kHouse Q QuestDB amazon
‘? presto . | ClickH Cs UMBRA ORACLE _-DD druid cloqgﬁﬁ, . REDSHIFT

i - ‘o W, ' o s
\ ¥/ @ ZSQLServer Exasol Greenplum o¢oE=

YeIIowbrlck N (Ve
r'nNno ARESDB . L)

= S Osinglestore InfiniDB
=CMUDB o ipp page TYellowbric FIREBOLT

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://dl.acm.org/citation.cfm?id=655555

DECOMPOSITION STORAGE MODEL (DSM)

$2CMU-DB

15-721 (Spring 2023)

Advantages

— Reduces the amount wasted I/O per query because the
DBMS only reads the data that it needs.

— Faster query processing because of increased locality and
cached data reuse.

— Better data compression (more on this later)

Disadvantages

— Slow for point queries, inserts, updates, and deletes
because of tuple splitting/stitching/reorganization.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

OBSERVATION

OLAP queries almost never access a single column

in a table by itself.

— At some point during query execution, the DBMS must get
other columns and stitch the original tuple back together.

But we still need to store data in a columnar format

to get the storage + execution benefits.

We need columnar scheme that still stores
attributes separately but keeps the data for each
tuple physically close to each other...

$CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

PAX STORAGE MODEL

Partition Attributes Across (PAX) is a hybrid
storage model that vertically partitions attributes

within a database page.
— This is what Paraquet and Orc use.

The goal is to get the benefit of faster processing on
columnar storage while retaining the spatial locality
benetfits of row storage.

== | DATA PAGE LAYOUTS FOR RELATIONAL DATABASES
ON DEEP MEMORY HIERARCHIES
VLDB JOURNAL 2002

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/doi/10.1007/s00778-002-0074-9
https://dl.acm.org/doi/10.1007/s00778-002-0074-9

PAX: PHYSICAL ORGANIZATION

Horizontally partition rows into ColA ColB ColC
groups. Then vertically partition their -
attributes into columns. fow 12
Row #3
Global header contains directory with Row #4
the offsets to the file's row groups. o =
— This is stored in the footer if the file is _header
immutable (Parquet, Orc). [header |

a a a

c0 1

dnoug moy

Each row group contains its own
meta-data header about its contents.

PAX File

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

PAX: PHYSICAL ORGANIZATION

Horizontally partition rows into

groups. Then vertically partition their Row #0

Row #1

attributes into columns. fou 12
Row #3
Global header contains directory with Row #4
! Row #5
the offsets to the file's row groups.
— This is stored in the footer if the file is |__header
immutable (Parquet, Orc). [header | g
= S
. . S g
Each row group contains its own :
meta-data header about its contents. N §
E

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

PAX: PHYSICAL ORGANIZATION

Horizontally partitiol Parquet: data organization
groups. Then verticqd . Data organization
attributes into column © Row-groups (default 126MB)
o Column chunks
o Pages (default 1MB) e [eomrens N
M koo Page 0
Global header conta; e =
& M [_omreme] |
the offsets to the file e e S
— This is stored in the m Rep/deflevels | ——
. ® Encoded values [Poet]
immutable (Parquet, s % il —
ll"""‘"" j ':
- N —
Each row group cor_®dtbricks
meta-data header about its contents. o ; L_feader—] -
™ :
g

$CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://youtu.be/1j8SdS7s_NY?t=705

$2CMU-DB

15-721 (Spring 2023)

MEMORY PAGES

An OLAP DBMS uses the buffer pool manager
methods that we discussed in the intro course.

OS maps physical pages to virtual memory pages.

The CPU's MMU maintains a TLB that contains the

physical address of a virtual memory page.

— The TLB resides in the CPU caches.

— [t cannot obviously store every possible entry for a large
memory machine.

When you allocate a block of memory, the allocator
keeps that it aligned to page boundaries.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://15445.courses.cs.cmu.edu/fall2022/schedule.html#sep-15-2022

TRANSPARENT HUGE PAGES (THP)

Instead of always allocating memory in 4 KB pages,
Linux supports creating larger pages (2MB to 1GB)

— Each page must be a contiguous blocks of memory.
— Greatly reduces the # of TLB entries

With THP, the OS reorganizes pages in the

background to keep things compact.

— Split larger pages into smaller pages.

— Combine smaller pages into larger pages.

— Can cause the DBMS process to stall on memory access.

Source: Alexandr Nikitin

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://alexandrnikitin.github.io/blog/transparent-hugepages-measuring-the-performance-impact/

TRANSPARENT HUGE PAGES (THP)

Historically, every DBMS advises you to disable this

THP on Linux:
— QOracle, SingleStore, NuoDB, MongoDB, Sybase, TiDB.
— Vertica says to enable THP only for newer Linux distros.

Recent research from Google suggests that huge

pages improved their data center workload by 7%.
— 6.5% improvement in Spanner's throughput

Source: Evan Jones

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://docs.oracle.com/cd/E11882_01/install.112/e47689/pre_install.htm#LADBI1519
https://support.singlestore.com/hc/en-us/articles/4412348517012-Disable-THP-Transparent-Hugepages-
http://doc.nuodb.com/Latest/Content/Note-About-%20Using-Transparent-Huge-Pages.htm
https://docs.mongodb.com/manual/tutorial/transparent-huge-pages/
https://blogs.sap.com/2014/05/22/sap-iq-and-linux-hugepagestransparent-hugepages/
https://www.pingcap.com/blog/transparent-huge-pages-why-we-disable-it-for-databases/
https://www.vertica.com/docs/9.3.x/HTML/Content/Authoring/InstallationGuide/BeforeYouInstall/transparenthugepages.htm
https://www.usenix.org/conference/osdi21/presentation/hunter
https://www.evanjones.ca/hugepages-are-a-good-idea.html

Source: Evan Jones

$2CMU-DB

15-721 (Spring 2023)

sE_ PAGFS (THP)

TRANSPARENT HL

Historically, every DBMS
THP on Linux:

— Oracle, SingleStore, NuoD

— Vertica says to enable THJ

Recent research from Gg

pages improved their dat
— 6.5% improvement in Spa

Huge Pages are a Good Idea

about | archive

[2023-January-16 11:46 1

Nearly all programs are written to access virtual memory addresses, which the CPU
must translate to physical addresses, These translations are usually fast because the
mappings are cached in the CPU's Translation LpgkgsigleﬁBglf@r7(T,L,B),. Unfortunately,
virtual memory on x86 has used a 4 kiB page size since the 386 was released in 1985,
when computers had a bit less memory than they do today. Also unfortunately, TLBs are

pretty small because they need to be fast. For example, AMD's Zen 4 Microarchitecture,

s

second level TLB with 3072 entries. This means when an application's working set is
larger than approximately 4 kiB x 3072 = 12 MiB, some memory accesses will require
Ppage table lookups, multiplying the number of memory accesses required. This is a
brand-new CPU, with one of the biggest TLBs on the market, so most systems will be
worse. Using larger virtual memory page sizes (aka huge Ppages) can reduce page
mapping overhead substantially. Since RAM is so much larger than it was in 1985, a
larger page size seems like obviously a good idea to me.

In 2021, Google published a paper about making their malloc implementation
(TCMalloc) huge pa ge aware (called Temeraire). They report this improved average
requests-per-second throughput across their fleet by 7%, by increasing the amount of
memory that is backed by huge pages. This made me curious about the "best case”
performance benefits. I wrote a small program that allocates 4 GiB, then randomly reads
uint64 values from it. On my Intel 11th generation Core i5-1135G7 (Tiger Lake) from
2020, using 2 MiB huge pages is 2.9x faster. I also tried 1 GiB pages, which is 3.1x faster
than 4 kiB pages, but only 8% faster than 2 MiB pages. My conclusion: Using madvise()
to get the kernel to use huge pages seems like a relatively easy performance win for
applications that use a large amount of RAM.

Unfortunately, using larger pages is not without its disadvantages. Notably, when the
Linux kernel's transparent huge page implementation was first introduced, it was

WAICH caused many performance ee

1€ clon be

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://docs.oracle.com/cd/E11882_01/install.112/e47689/pre_install.htm#LADBI1519
https://support.singlestore.com/hc/en-us/articles/4412348517012-Disable-THP-Transparent-Hugepages-
http://doc.nuodb.com/Latest/Content/Note-About-%20Using-Transparent-Huge-Pages.htm
https://docs.mongodb.com/manual/tutorial/transparent-huge-pages/
https://blogs.sap.com/2014/05/22/sap-iq-and-linux-hugepagestransparent-hugepages/
https://www.pingcap.com/blog/transparent-huge-pages-why-we-disable-it-for-databases/
https://www.vertica.com/docs/9.3.x/HTML/Content/Authoring/InstallationGuide/BeforeYouInstall/transparenthugepages.htm
https://www.usenix.org/conference/osdi21/presentation/hunter
https://www.evanjones.ca/hugepages-are-a-good-idea.html
https://www.evanjones.ca/hugepages-are-a-good-idea.html

DATA REPRESENTATION

INTEGER/BIGINT/SMALLINT/TINYINT

— C/C++ Representation

FLOAT/REAL vs. NUMERIC/DECIMAL
— IEEE-754 Standard / Fixed-point Decimals

TIME/DATE/TIMESTAMP

— 32/64-bit int of (micro/milli)seconds since Unix epoch

VARCHAR/VARBINARY/TEXT/BLOB

— Pointer to other location if type is >64-bits

— Header with length and address to next location (if
segmented), followed by data bytes.

— Most DBMSs use dictionary compression for these.

££CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

VARIABLE PRECISION NUMBERS

[nexact, variable-precision numeric type that uses
the "native" C/C++ types.

Store directly as specified by IEEE-754.
— Example: FLOAT, REAL/DOUBLE

These types are typically faster than fixed precision
numbers because CPU ISA's (Xeon, Arm) have
instructions / registers to support them.

But they do not guarantee exact values...

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://en.wikipedia.org/wiki/IEEE-754

VARIABLE PRECISION NUMBERS

Rounding Example Output

#include <stdio.h> x+y = 0.300000
0.3 = 0.300000

int main(int argc, charx argv[]) {
float x = 0.1;
float y = 0.2;
printf("x+y
printf("0.3

%f\n", xty);
%f\n", 0.3);

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

VARIABLE PRECISION NUMBERS

Rounding Example Output
#include <stdio.h> x+y = 0.300000
in¥include <stdio.h> 9.3 = 0.300000

0.30000001192092895508
0.29999999999999998890

+
int main(int argc, charx argv[]) { g g

float x = 0.1;
float y = 0.2;
) printf("xty = %.20f\n", xty);
printf("0.3 = %.20f\n", 0.3);

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

$2CMU-DB

15-721 (Spring 2023)

FIXED PRECISION NUMBERS

Numeric data types with (potentially) arbitrary
precision and scale. Used when rounding errors are

unacceptable.
— Example: NUMERIC, DECIMAL

Many different implementations.

— Example: Store in an exact, variable-length binary
representation with additional meta-data.

— Can be less expensive if the DBMS does not provide
arbitrary precision (e.g., decimal point can be in a different
position per value).

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

$CMU-DB

15-721 (Spring 2023)

FIXED PRECISION NUMBERS

Numeric data type
precision and scalg

unacceptable.
— Example: NUMERI

Many different in

— Example: Store in
representation wj

— Can be less expen

arbitrary precisio

guaﬂxnpomrv

We couldn't use the name "libfixedpoint” because it woyjd be terrible for SEO...

D PAsSED]

This is a portable C++ library for fixed-point decimals. It was ariginally developed as part of the NoisePage database
project at Carnegie Mellon University,
This library implements decimals as 128-bit integers and stores them in scaled format. For example, it will store the
decimal 12,23 with scale s 1223000 . Addition and subtraction Operations require two de.

Decimal multiplication accepts an argument of lower scale and returns
accepts an argument of the denominator scale and returns the decimal
function is also provided.

cimals of the same scale.
a decimal in the higher scale. Decimal division
in numerator scale. A rescale decimal

position per valuey:

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://github.com/cmu-db/libfixeypointy

POSTGRES: NUMERIC

of Digits

Weight of 1°t Digit
Scale Factor
Positive/Negative/NaN
Digit Storage

$2CMU-DB

15-721 (Spring 2023)

typedef unsigned char NumericDigit:

typedef struct {

int ndigits;

/int sdale:
int sign;

“r,ﬂ””'NumericDigit xdigits;

} numeric;

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

#

Weight o

Sc
Positive/Nega
Dig

$2CMU-DB

15-721 (Spring 2023)

AF e
* add var() -
*

* Full version of add functicnality on variable level (handling signs).
* result might point to one of the operands too without danger.
E3

int
PGTYPESnumeriec add(numeric *varl, numeric *var2, numeric *result)
{

E3
* Decide on the signs of the twg variables what to do
-

if {varl-»sign == NUMERIC Pos)

{
if {var2->sign == MUMERIC POS)
{

/*‘
* Both are positive result = +(ABS(varl) + ABS{varz))
*

if (add abs{varl, varZ, resuylt) 1= 0}
return -1;
result->sign = NUMERIC POS;

else
/Jk
* varl is positive, wvar2 is Negative Must compare absolute values
£

Ew;tck (cmp abs(varil, var2})

* ABS(varl) == AB5{war2)
* result = ZgRp
-

*/

zero var(result}),

result-srscale = Max(varl-brscale, var2-»rscale);
result-sdscale = Max(varl—»dscale, var2->dscale);

reak;

* ABS(varl) > ABS(varz)
* result = +{ABS(var1) - ABS{wvar2))
*

ES
if (sub abs(varl, var2, result} 1= @)
return -1;
result-»sign = NUMERIC POS;
break;
case -
* .

* ABS(varl) < ABS{varz)
* result = -(ABS(var2) - ABS(varl))
*

umericDigit:

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://doxygen.postgresql.org/interfaces_2ecpg_2pgtypeslib_2numeric_8c_source.html#l00722

MYSQL: NUMERIC

of Digits Before Point

typedef int32 decimal_digit_t;

struct decimal_t

of Digits After Point
Length (Bytes)

Positive/Negative

Digit Storage

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

#of D

of

££CMU-DB

15-721 (Spring 2023)

statl

¢ int do_add(const decimal_t *froml, const decimal_t *from2,

decimal_t *to) {
int intgl = RDUND_UP(froml-:intg), intg2 = ROUND_UP(fr0m2->intg),
fracl = ROUND_UP(fr0m1—>frac), frac2 RGUND_UP(from2->frac},
fracO = <td; :max(fracl, frac2), intgl = std: :max(intgl, intg2), ervor;

decl *hufl, xpuf2, *bufd, *gtop, *StopZ, X« carry;

1

sanity(to):

/* is there a need for extra word hecause of carry ? */
¥ = intgl > intg2

? fromi->buf[e]
1 intg2 > intgl ? fromz-)buf[ﬂ] X fromi->buf[0] + from2->buflel;

if (unlikely(x > DIG_MAX - 1)) /7 yes, there is */
{

intgo++;

to->buf{e] = &; /* safety */

FIX_INTG_FRAC_ERROR(to—>len, intge, fraco, error);
if (unlikely{error == E_DEC,OVERFLUW)} {
max_decimal(to—>1en * pIG_PER_DECI, @, to);

return errov;

bufe = to->puf + intgd + fraco;

to->sign = froml->sign;
to->frac = std::max(fr0m1—>frac, from2->frac);
. wrr~ pDER NDEC1:

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://github.com/mysql/mysql-server/blob/8.0/strings/decimal.cc#L1828

NULL DATA TYPES

Choice #1: Special Values

— Designate a value to represent NULL for a data type (e.g.,
INT32_MIN).

Choice #2: Null Column Bitmap Header

— Store a bitmap in a centralized header that specifies what
attributes are null.

Choice #3: Per Attribute Null Flag

— Store a flag that marks that a value is null.
— Must use more space than just a single bit because this
messes up with word alignment.

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

$2CMU-DB

15-721 (Spring 2023)

NULL DATA TYPES

Integer Numbers

Data Type
BOOL

BIT

TINYINT
SMALLINT
MEDIUMINT
INT

BIGINT

Size

2 bytes
9 bytes
2 bytes
4 bytes
4 bytes
8 bytes

12 bytes

I Size (Not Null)
1 byte
8 bytes
1 byte
2 bytes
3 bytes
4 bytes

8 bytes

‘ Synonyms ‘

BOOLEAN

INTEGER

Min Value

0

-128

-32768

-8388608

-2147483648

-2** 63

| Max Value

1

127

32767
8388607
2147483647

(2**63)-1

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://docs.memsql.com/sql-reference/v6.0/datatypes/

OBSERVATION

Data is "hot" when it enters the database
— A newly inserted tuple is more likely to be updated again
the near future.

As a tuple ages, it is updated less frequently.
— At some point, a tuple is only accessed in read-only queries
along with other tuples.

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

HYBRID STORAGE MODEL

Use separate execution engines that are optimized

for either NSM or DSM databases.

— Store new data in NSM for fast OLTP.

— Migrate data to DSM for more efficient OLAP.

— Combine query results from both engines to appear as a
single logical database to the application.

Choice #1: Fractured Mirrors
— Examples: Oracle, IBM DB2 Blu, Microsoft SQL Server

Choice #2: Delta Store

— Examples: SAP HANA, Vertica, SingleStore, Databricks,
Google Napa

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

FRACTURED MIRRORS

Store a second copy of the database in a DSM layout

that is automatically updated.

— All updates are first entered in NSM then eventually copied
into DSM mirror.

— [f the DBMS supports updates, it must invalidate tuples in

the DSM mirror.

NSM DSM
. Primar Mirror
££5 Transactions » (Erimew) (Mirror)

3

Analytzcal
s Queries

25 | A CASE FOR FRACTURED MIRRORS
7|VLDB 2002

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://dl.acm.org/citation.cfm?id=1287407
http://dl.acm.org/citation.cfm?id=1287407

DELTA STORE

Stage updates to the database in an NSM table.

A background thread migrates updates from delta

store and applies them to DSM data.
— Batch large chunks and then write them out as a PAX file.

DSM
NSM Historical Data

Delta Store

%%% Transactions »

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

DATABASE PARTITIONING

Split database across multiple resources:

— Disks, nodes, processors.
— Often called "sharding" in NoSQL systems.

The DBMS executes query fragments on each
partition and then combines the results to produce a
single answer.

The DBMS can partition a database physically
(shared nothing) or logically (shared disk).

£=CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

HORIZONTAL PARTITIONING

Split a table's tuples into disjoint subsets based on

some partitioning key and scheme.
— Choose column(s) that divides the database equally in
terms of size, load, or usage.

Partitioning Schemes:
— Hashing

— Ranges

— Predicates

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

HORIZONTAL PARTITIONING

Partitioning Key Table1

101 |a XXX 12022-11-29

102 |b XXY 12022-11-28

103 |c XYZ |2022-11-29

104 |d XYX 12022-11-27

105 e XYY |2022-11-29

Ideal Query:

hash(a)%4 = P2
hash(b)%4 = P4
hash(c)%4 = P3
hash(d)%4 = P2
hash(e)%4 = P1

SELECT * FROM table

WHERE partitionKey =

$2CMU-DB

15-721 (Spring 2023)

Partitions

SES
SES

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

HORIZONTAL PARTITIONING

Partitioning Key Table1

m

Y A A AR
N A5

Ideal Query:

hash(a)%4 = P2
hash(b)%4 = P4
hash(c)%4 = P3
hash(d)%4 = P2
hash(e)%4 = P1

SELECT * FROM table
WHERE partitionKey = ?

££CMU-DB

15-721 (Spring 2023)

Partitions

SES
SES

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

Partitioning Key

=< Tablel

101 |a XXX 12022-11-29

102 |b XXY 12022-11-28

103 |c XYZ |2022-11-29

104 |d XYX 12022-11-27

105 |e XYY |2022-11-29
Ideal Query:

hash(a)%4 = P2
hash(b)%4 = P4
hash(c)%4 = P3
hash(d)%4 = P2
hash(e)%4 = P1

SELECT * FROM table

WHERE partitionKey = ?

$2CMU-DB

15-721 (Spring 2023)

HORIZONTAL PARTITIONING

Partitions

C
lﬂl

~

C
| p3 J

~

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

Partitioning Key

=< Tablel

101 |a XXX 12022-11-29

102 |b XXY 12022-11-28

103 |c XYZ |2022-11-29

104 |d XYX 12022-11-27

105 |e XYY |2022-11-29
Ideal Query:

hash(a)%4 = P2
hash(b)%4 = P4
hash(c)%4 = P3
hash(d)%4 = P2
hash(e)%4 = P1

$2CMU-DB

15-721 (Spring 2023)

SELECT * FROM table

WHEREIpartitionKey = ?!

HORIZONTAL PARTITIONING

Partitions

C
lﬂl

~

C
| p3 J

~

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

LOGICAL

PARTITIONING

Get Id=1

AR
e
7
D]
Application
Server

Id=1
Id=2

Id=3
I1d=4

15-721 (Spring 2023)

Storage

d lid

Id=1
Id=2
Id=3
Id=4

=

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

LOGICAL PARTITIONING

Node Id=1

#% Id=2

l Get Id=3

Application
Server

#@ Id=3

I1d=4

$2CMU-DB
o

15-721 (Spring 2023)

f

Storage

d lid

Id=1
Id=2
Id=3
Id=4

~N

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

LOGICAL PARTITIONING

Node ||[Td=1 2 2
#% Tdes Storage
9 d Id
Id=1
Id=2
I1d=3
Application ! 1d=4
Server Node |
#% Td=3
\ J 1d=4 G J

£=CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

PHYSICAL PARTITIONING

Node im—>,

Li3°

Get Id=1

AR
e
7
D]
Application

Server Node — |
Id=3
o

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

PHYSICAL PARTITIONING

Node im—>,

Li3°

A
7
Tain e l Get Id=3
Application
Server Node — |
=2i3°

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

PARTING THOUGHTS

Every modern OLAP system is using some variant
of PAX storage. The key idea is that all data must be
fixed-length.

Real-world tables contain mostly numeric attributes
(int/float), but their occupied storage is mostly
comprised of string data.

Modern columnar systems are so fast that most
people do not denormalize data warehouse schemas.

£=CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

NEXT CLASS

How to accelerate OLAP queries on columnar data

with auxiliary data structures.
— Zone Maps

— Bitmap Indexes

— Sketches

We will also discuss Project #1.

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://15721.courses.cs.cmu.edu/spring2023/project1.html

	Introduction
	Slide 1: Storage Models & Data Layout
	Slide 2: OBSERVATION
	Slide 3: TODAY’S AGENDA

	Storage Models
	Slide 4: STORAGE MODELS
	Slide 5: N-ARY STORAGE MODEL (NSM)
	Slide 6: NSM: PHYSICAL ORGANIZATION
	Slide 7: NSM: PHYSICAL ORGANIZATION
	Slide 8: NSM: PHYSICAL ORGANIZATION
	Slide 9: NSM: PHYSICAL ORGANIZATION
	Slide 10: NSM: PHYSICAL ORGANIZATION
	Slide 11: NSM: PHYSICAL ORGANIZATION
	Slide 12: N-ARY STORAGE MODEL (NSM)
	Slide 13: DECOMPOSITION STORAGE MODEL (DSM)
	Slide 14: DSM: PHYSICAL ORGANIZATION
	Slide 15: DSM: PHYSICAL ORGANIZATION
	Slide 16: DSM: PHYSICAL ORGANIZATION
	Slide 17: DSM: TUPLE IDENTIFICATION
	Slide 18: DSM: VARIABLE-LENGTH DATA
	Slide 19: DSM: SYSTEM HISTORY
	Slide 20: DECOMPOSITION STORAGE MODEL (DSM)
	Slide 21: OBSERVATION
	Slide 22: PAX STORAGE MODEL
	Slide 23: PAX: PHYSICAL ORGANIZATION
	Slide 24: PAX: PHYSICAL ORGANIZATION
	Slide 25: PAX: PHYSICAL ORGANIZATION
	Slide 26: MEMORY PAGES
	Slide 27: TRANSPARENT HUGE PAGES (THP)
	Slide 28: TRANSPARENT HUGE PAGES (THP)
	Slide 29: TRANSPARENT HUGE PAGES (THP)

	Type Representation
	Slide 30: DATA REPRESENTATION
	Slide 31: VARIABLE PRECISION NUMBERS
	Slide 32: VARIABLE PRECISION NUMBERS
	Slide 33: VARIABLE PRECISION NUMBERS
	Slide 34: FIXED PRECISION NUMBERS
	Slide 35: FIXED PRECISION NUMBERS
	Slide 36: POSTGRES: NUMERIC
	Slide 37: POSTGRES: NUMERIC
	Slide 38: MYSQL: NUMERIC
	Slide 39: MYSQL: NUMERIC
	Slide 40: NULL DATA TYPES
	Slide 41: NULL DATA TYPES

	Hybrid Storage
	Slide 42: OBSERVATION
	Slide 43: HYBRID STORAGE MODEL
	Slide 44: FRACTURED MIRRORS
	Slide 45: DELTA STORE

	Partitioning
	Slide 46: DATABASE PARTITIONING
	Slide 47: HORIZONTAL PARTITIONING
	Slide 48: HORIZONTAL PARTITIONING
	Slide 49: HORIZONTAL PARTITIONING
	Slide 50: HORIZONTAL PARTITIONING
	Slide 51: HORIZONTAL PARTITIONING
	Slide 52: LOGICAL PARTITIONING
	Slide 53: LOGICAL PARTITIONING
	Slide 54: LOGICAL PARTITIONING
	Slide 55: PHYSICAL PARTITIONING
	Slide 56: PHYSICAL PARTITIONING

	Conclusion
	Slide 57: PARTING THOUGHTS
	Slide 58: NEXT CLASS

