
ADVANCED DATABASE SYSTEMS

Andy Pavlo // 15-721 // Spring 2023

Storage Models
& Data Layout

L
e

c
tu

re
 #

0
3

https://15721.courses.cs.cmu.edu/spring2023
http://db.cs.cmu.edu/

15-721 (Spring 2023)

OBSERVATION

Today's lecture is about the lowest physical
representation of data in a database.

What data "looks" like determines almost a DBMS's
entire system architecture.
→ Processing Model
→ Tuple Materialization Strategy
→ Operator Algorithms
→ Data Ingestion / Updates
→ Concurrency Control (we will ignore this)
→ Query Optimization

2

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

TODAY’S AGENDA

Storage Models

Type Representation

Partitioning

3

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

STORAGE MODELS

A DBMS's storage model specifies how it
physically organizes tuples on disk and in memory.

Choice #1: N-ary Storage Model (NSM)

Choice #2: Decomposition Storage Model (DSM)

Choice #3: Hybrid Storage Model (PAX)

4

COLUMN-STORES VS. ROW-STORES: HOW
DIFFERENT ARE THEY REALLY?
SIGMOD 2008

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://15721.courses.cs.cmu.edu/spring2023/papers/03-storage/p967-abadi.pdf
https://15721.courses.cs.cmu.edu/spring2023/papers/03-storage/p967-abadi.pdf

15-721 (Spring 2023)

N-ARY STORAGE MODEL (NSM)

The DBMS stores (almost) all the attributes for a
single tuple contiguously in a single page.

Ideal for OLTP workloads where txns tend to access
individual entities and insert-heavy workloads.
→ Use the tuple-at-a-time iterator processing model.

NSM database page sizes are typically some constant
multiple of 4 KB hardware pages.
→ Example: Oracle (4 KB), Postgres (8 KB), MySQL (16 KB)

5

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

D
at

ab
as

e
P

ag
e

NSM: PHYSICAL ORGANIZATION

A disk-oriented NSM system stores a
tuple's fixed-length and variable-
length attributes contiguously in a
single slotted page.

The tuple's record id (page#, slot#) is
how the DBMS uniquely identifies a
physical tuple.

6

b0

b1

b2

b3

b4

b5

a0

a1

a2

a3

a4

a5

c0

c1

c2

c3

c4

c5

Row #0

Row #1

Row #2

Row #3

Row #4

Row #5

Col A Col B Col C

header

b0a0 c0header

Slot Array

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

D
at

ab
as

e
P

ag
e

NSM: PHYSICAL ORGANIZATION

A disk-oriented NSM system stores a
tuple's fixed-length and variable-
length attributes contiguously in a
single slotted page.

The tuple's record id (page#, slot#) is
how the DBMS uniquely identifies a
physical tuple.

6

b0

b1

b2

b3

b4

b5

a0

a1

a2

a3

a4

a5

c0

c1

c2

c3

c4

c5

Row #0

Row #1

Row #2

Row #3

Row #4

Row #5

Col A Col B Col C

header

b0a0 c0headerb1 c1
a1header

Slot Array

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

D
at

ab
as

e
P

ag
e

NSM: PHYSICAL ORGANIZATION

A disk-oriented NSM system stores a
tuple's fixed-length and variable-
length attributes contiguously in a
single slotted page.

The tuple's record id (page#, slot#) is
how the DBMS uniquely identifies a
physical tuple.

6

b0

b1

b2

b3

b4

b5

a0

a1

a2

a3

a4

a5

c0

c1

c2

c3

c4

c5

Row #0

Row #1

Row #2

Row #3

Row #4

Row #5

Col A Col B Col C

header

b0a0 c0headerb1 c1
a1header

Slot Array

b2a2 c2header
b3a3 c3headerb4 c4

a4headerb5a5 c5header

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

D
at

ab
as

e
P

ag
e

NSM: PHYSICAL ORGANIZATION

6

b0

b1

b2

b3

b4

b5

a0

a1

a2

a3

a4

a5

c0

c1

c2

c3

c4

c5

Row #0

Row #1

Row #2

Row #3

Row #4

Row #5

Col A Col B Col C

header

b0a0 c0headerb1 c1
a1header

Slot Array

b2a2 c2header
b3a3 c3headerb4 c4

a4headerb5a5 c5header

SELECT SUM(colA), AVG(colC)
FROM xxx
WHERE colA > 1000

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

D
at

ab
as

e
P

ag
e

NSM: PHYSICAL ORGANIZATION

6

b0

b1

b2

b3

b4

b5

a0

a1

a2

a3

a4

a5

c0

c1

c2

c3

c4

c5

Row #0

Row #1

Row #2

Row #3

Row #4

Row #5

Col A Col B Col C

header

b0a0 c0headerb1 c1
a1header

Slot Array

b2a2 c2header
b3a3 c3headerb4 c4

a4headerb5a5 c5header

SELECT SUM(colA), AVG(colC)
FROM xxx
WHERE colA > 1000

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

D
at

ab
as

e
P

ag
e

NSM: PHYSICAL ORGANIZATION

6

b0

b1

b2

b3

b4

b5

a0

a1

a2

a3

a4

a5

c0

c1

c2

c3

c4

c5

Row #0

Row #1

Row #2

Row #3

Row #4

Row #5

Col A Col B Col C

header

b0a0 c0headerb1 c1
a1header

Slot Array

b2a2 c2header
b3a3 c3headerb4 c4

a4headerb5a5 c5header

SELECT SUM(colA), AVG(colC)
FROM xxx
WHERE colA > 1000

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

N-ARY STORAGE MODEL (NSM)

Advantages
→ Fast inserts, updates, and deletes.
→ Good for queries that need the entire tuple (OLTP).
→ Can use index-oriented physical storage for clustering.

Disadvantages
→ Not good for scanning large portions of the table and/or a

subset of the attributes.
→ Terrible memory locality in access patterns.
→ Not ideal for compression because of multiple value

domains within a single page.

7

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

DECOMPOSITION STORAGE MODEL (DSM)

The DBMS stores a single attribute for all tuples
contiguously in a block of data.

Ideal for OLAP workloads where read-only queries
perform large scans over a subset of the table’s
attributes.
→ Use a batched vectorized processing model.

File sizes are larger (100s of MBs), but it may still
organize tuples within the file into smaller groups.

8

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

DSM: PHYSICAL ORGANIZATION

Store attributes and meta-data (e.g.,
nulls) in separate arrays of fixed-
length values.
→ Most systems identify unique physical

tuples using offsets into these arrays.
→ Need to handle variable-length values…

Maintain a separate file per attribute
with a dedicated header area for meta-
data about entire column.

9

b0

b1

b2

b3

b4

b5

a0

a1

a2

a3

a4

a5

c0

c1

c2

c3

c4

c5

Row #0

Row #1

Row #2

Row #3

Row #4

Row #5

Col A Col B Col C

header null bitmap
a0 a1 a2 a3 a4 a5

F
il

e
 #

1

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

DSM: PHYSICAL ORGANIZATION

Store attributes and meta-data (e.g.,
nulls) in separate arrays of fixed-
length values.
→ Most systems identify unique physical

tuples using offsets into these arrays.
→ Need to handle variable-length values…

Maintain a separate file per attribute
with a dedicated header area for meta-
data about entire column.

9

b0

b1

b2

b3

b4

b5

a0

a1

a2

a3

a4

a5

c0

c1

c2

c3

c4

c5

Row #0

Row #1

Row #2

Row #3

Row #4

Row #5

Col A Col B Col C

header null bitmap
a0 a1 a2 a3 a4 a5

F
il

e
 #

1

header null bitmap
b0 b1 b2 b3 b4 b5

F
il

e
 #

2

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

DSM: PHYSICAL ORGANIZATION

Store attributes and meta-data (e.g.,
nulls) in separate arrays of fixed-
length values.
→ Most systems identify unique physical

tuples using offsets into these arrays.
→ Need to handle variable-length values…

Maintain a separate file per attribute
with a dedicated header area for meta-
data about entire column.

9

b0

b1

b2

b3

b4

b5

a0

a1

a2

a3

a4

a5

c0

c1

c2

c3

c4

c5

Row #0

Row #1

Row #2

Row #3

Row #4

Row #5

Col A Col B Col C

header null bitmap
a0 a1 a2 a3 a4 a5

F
il

e
 #

1

header null bitmap
b0 b1 b2 b3 b4 b5

F
il

e
 #

2

header null bitmap

c5
c0 c1 c2 c3 c4

F
il

e
 #

3

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

DSM: TUPLE IDENTIFICATION

Choice #1: Fixed-length Offsets
→ Each value is the same length for an attribute.

Choice #2: Embedded Tuple Ids
→ Each value is stored with its tuple id in a column.

10

Offsets

0
1
2
3

A B C D

Embedded Ids

A

0
1
2
3

B

0
1
2
3

C

0
1
2
3

D

0
1
2
3

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

DSM: VARIABLE-LENGTH DATA

Padding variable-length fields to ensure they are
fixed-length is wasteful, especially for large
attributes.

A better approach is to use dictionary compression to
convert repetitive variable-length data into fixed-
length values (typically 32-bit integers).
→ More on this next week.

11

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

DSM: SYSTEM HISTORY

1970s: Cantor DBMS

1980s: DSM Proposal

1990s: SybaseIQ (in-memory only)

2000s: Vertica, Vectorwise, MonetDB

2010s: Everyone

12

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://dl.acm.org/citation.cfm?id=655555

15-721 (Spring 2023)

DECOMPOSITION STORAGE MODEL (DSM)

Advantages
→ Reduces the amount wasted I/O per query because the

DBMS only reads the data that it needs.
→ Faster query processing because of increased locality and

cached data reuse.
→ Better data compression (more on this later)

Disadvantages
→ Slow for point queries, inserts, updates, and deletes

because of tuple splitting/stitching/reorganization.

13

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

OBSERVATION

OLAP queries almost never access a single column
in a table by itself.
→ At some point during query execution, the DBMS must get

other columns and stitch the original tuple back together.

But we still need to store data in a columnar format
to get the storage + execution benefits.

We need columnar scheme that still stores
attributes separately but keeps the data for each
tuple physically close to each other…

14

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

PAX STORAGE MODEL

Partition Attributes Across (PAX) is a hybrid
storage model that vertically partitions attributes
within a database page.
→ This is what Paraquet and Orc use.

The goal is to get the benefit of faster processing on
columnar storage while retaining the spatial locality
benefits of row storage.

15

DATA PAGE LAYOUTS FOR RELATIONAL DATABASES
ON DEEP MEMORY HIERARCHIES
VLDB JOURNAL 2002

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/doi/10.1007/s00778-002-0074-9
https://dl.acm.org/doi/10.1007/s00778-002-0074-9

15-721 (Spring 2023)

PAX: PHYSICAL ORGANIZATION

Horizontally partition rows into
groups. Then vertically partition their
attributes into columns.

Global header contains directory with
the offsets to the file's row groups.
→ This is stored in the footer if the file is

immutable (Parquet, Orc).

Each row group contains its own
meta-data header about its contents.

16

b0

b1

b2

b3

b4

b5

a0

a1

a2

a3

a4

a5

c0

c1

c2

c3

c4

c5

Row #0

Row #1

Row #2

Row #3

Row #4

Row #5

Col A Col B Col C

header

P
A

X
 F

il
e a0 a1 a2 b0 b1 b2

c0 c1 c2

header

R
ow

 G
rou

p

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

PAX: PHYSICAL ORGANIZATION

Horizontally partition rows into
groups. Then vertically partition their
attributes into columns.

Global header contains directory with
the offsets to the file's row groups.
→ This is stored in the footer if the file is

immutable (Parquet, Orc).

Each row group contains its own
meta-data header about its contents.

16

b0

b1

b2

b3

b4

b5

a0

a1

a2

a3

a4

a5

c0

c1

c2

c3

c4

c5

Row #0

Row #1

Row #2

Row #3

Row #4

Row #5

Col A Col B Col C

header

P
A

X
 F

il
e a0 a1 a2 b0 b1 b2

c0 c1 c2

header

R
ow

 G
rou

p

a3 a4 a5 b3 b4 b5

c3 c4 c5

header

R
ow

 G
rou

p

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

PAX: PHYSICAL ORGANIZATION

Horizontally partition rows into
groups. Then vertically partition their
attributes into columns.

Global header contains directory with
the offsets to the file's row groups.
→ This is stored in the footer if the file is

immutable (Parquet, Orc).

Each row group contains its own
meta-data header about its contents.

16

b0

b1

b2

b3

b4

b5

a0

a1

a2

a3

a4

a5

c0

c1

c2

c3

c4

c5

Row #0

Row #1

Row #2

Row #3

Row #4

Row #5

Col A Col B Col C

header

P
A

X
 F

il
e a0 a1 a2 b0 b1 b2

c0 c1 c2

header

R
ow

 G
rou

p

a3 a4 a5 b3 b4 b5

c3 c4 c5

header

R
ow

 G
rou

p

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://youtu.be/1j8SdS7s_NY?t=705

15-721 (Spring 2023)

MEMORY PAGES

An OLAP DBMS uses the buffer pool manager
methods that we discussed in the intro course.

OS maps physical pages to virtual memory pages.

The CPU's MMU maintains a TLB that contains the
physical address of a virtual memory page.
→ The TLB resides in the CPU caches.
→ It cannot obviously store every possible entry for a large

memory machine.

When you allocate a block of memory, the allocator
keeps that it aligned to page boundaries.

18

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://15445.courses.cs.cmu.edu/fall2022/schedule.html#sep-15-2022

15-721 (Spring 2023)

TRANSPARENT HUGE PAGES (THP)

Instead of always allocating memory in 4 KB pages,
Linux supports creating larger pages (2MB to 1GB)
→ Each page must be a contiguous blocks of memory.
→ Greatly reduces the # of TLB entries

With THP, the OS reorganizes pages in the
background to keep things compact.
→ Split larger pages into smaller pages.
→ Combine smaller pages into larger pages.
→ Can cause the DBMS process to stall on memory access.

19

Source: Alexandr Nikitin

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://alexandrnikitin.github.io/blog/transparent-hugepages-measuring-the-performance-impact/

15-721 (Spring 2023)

TRANSPARENT HUGE PAGES (THP)

Historically, every DBMS advises you to disable this
THP on Linux:
→ Oracle, SingleStore, NuoDB, MongoDB, Sybase, TiDB.
→ Vertica says to enable THP only for newer Linux distros.

Recent research from Google suggests that huge
pages improved their data center workload by 7%.
→ 6.5% improvement in Spanner's throughput

20

Source: Evan Jones

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://docs.oracle.com/cd/E11882_01/install.112/e47689/pre_install.htm#LADBI1519
https://support.singlestore.com/hc/en-us/articles/4412348517012-Disable-THP-Transparent-Hugepages-
http://doc.nuodb.com/Latest/Content/Note-About-%20Using-Transparent-Huge-Pages.htm
https://docs.mongodb.com/manual/tutorial/transparent-huge-pages/
https://blogs.sap.com/2014/05/22/sap-iq-and-linux-hugepagestransparent-hugepages/
https://www.pingcap.com/blog/transparent-huge-pages-why-we-disable-it-for-databases/
https://www.vertica.com/docs/9.3.x/HTML/Content/Authoring/InstallationGuide/BeforeYouInstall/transparenthugepages.htm
https://www.usenix.org/conference/osdi21/presentation/hunter
https://www.evanjones.ca/hugepages-are-a-good-idea.html

15-721 (Spring 2023)

TRANSPARENT HUGE PAGES (THP)

Historically, every DBMS advises you to disable this
THP on Linux:
→ Oracle, SingleStore, NuoDB, MongoDB, Sybase, TiDB.
→ Vertica says to enable THP only for newer Linux distros.

Recent research from Google suggests that huge
pages improved their data center workload by 7%.
→ 6.5% improvement in Spanner's throughput

20

Source: Evan Jones

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://docs.oracle.com/cd/E11882_01/install.112/e47689/pre_install.htm#LADBI1519
https://support.singlestore.com/hc/en-us/articles/4412348517012-Disable-THP-Transparent-Hugepages-
http://doc.nuodb.com/Latest/Content/Note-About-%20Using-Transparent-Huge-Pages.htm
https://docs.mongodb.com/manual/tutorial/transparent-huge-pages/
https://blogs.sap.com/2014/05/22/sap-iq-and-linux-hugepagestransparent-hugepages/
https://www.pingcap.com/blog/transparent-huge-pages-why-we-disable-it-for-databases/
https://www.vertica.com/docs/9.3.x/HTML/Content/Authoring/InstallationGuide/BeforeYouInstall/transparenthugepages.htm
https://www.usenix.org/conference/osdi21/presentation/hunter
https://www.evanjones.ca/hugepages-are-a-good-idea.html
https://www.evanjones.ca/hugepages-are-a-good-idea.html

15-721 (Spring 2023)

DATA REPRESENTATION

INTEGER/BIGINT/SMALLINT/TINYINT
→ C/C++ Representation

FLOAT/REAL vs. NUMERIC/DECIMAL
→ IEEE-754 Standard / Fixed-point Decimals

TIME/DATE/TIMESTAMP
→ 32/64-bit int of (micro/milli)seconds since Unix epoch

VARCHAR/VARBINARY/TEXT/BLOB
→ Pointer to other location if type is ≥64-bits
→ Header with length and address to next location (if

segmented), followed by data bytes.
→ Most DBMSs use dictionary compression for these.

21

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

VARIABLE PRECISION NUMBERS

Inexact, variable-precision numeric type that uses
the "native" C/C++ types.

Store directly as specified by IEEE-754.
→ Example: FLOAT, REAL/DOUBLE

These types are typically faster than fixed precision
numbers because CPU ISA's (Xeon, Arm) have
instructions / registers to support them.

But they do not guarantee exact values…

22

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://en.wikipedia.org/wiki/IEEE-754

15-721 (Spring 2023)

VARIABLE PRECISION NUMBERS

23

#include <stdio.h>

int main(int argc, char* argv[]) {
float x = 0.1;
float y = 0.2;
printf("x+y = %f\n", x+y);
printf("0.3 = %f\n", 0.3);

}

Rounding Example

x+y = 0.300000
0.3 = 0.300000

Output

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

VARIABLE PRECISION NUMBERS

23

#include <stdio.h>

int main(int argc, char* argv[]) {
float x = 0.1;
float y = 0.2;
printf("x+y = %f\n", x+y);
printf("0.3 = %f\n", 0.3);

}

Rounding Example

x+y = 0.300000
0.3 = 0.300000

Output

#include <stdio.h>

int main(int argc, char* argv[]) {
float x = 0.1;
float y = 0.2;
printf("x+y = %.20f\n", x+y);
printf("0.3 = %.20f\n", 0.3);

}

x+y = 0.30000001192092895508
0.3 = 0.29999999999999998890

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

FIXED PRECISION NUMBERS

Numeric data types with (potentially) arbitrary
precision and scale. Used when rounding errors are
unacceptable.
→ Example: NUMERIC, DECIMAL

Many different implementations.
→ Example: Store in an exact, variable-length binary

representation with additional meta-data.
→ Can be less expensive if the DBMS does not provide

arbitrary precision (e.g., decimal point can be in a different
position per value).

24

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

FIXED PRECISION NUMBERS

Numeric data types with (potentially) arbitrary
precision and scale. Used when rounding errors are
unacceptable.
→ Example: NUMERIC, DECIMAL

Many different implementations.
→ Example: Store in an exact, variable-length binary

representation with additional meta-data.
→ Can be less expensive if the DBMS does not provide

arbitrary precision (e.g., decimal point can be in a different
position per value).

24

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://github.com/cmu-db/libfixeypointy

15-721 (Spring 2023)

POSTGRES: NUMERIC

25

typedef unsigned char NumericDigit;

typedef struct {

int ndigits;

int weight;

int scale;

int sign;

NumericDigit *digits;

} numeric;

of Digits

Weight of 1st Digit

Scale Factor

Positive/Negative/NaN

Digit Storage

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

POSTGRES: NUMERIC

25

typedef unsigned char NumericDigit;

typedef struct {

int ndigits;

int weight;

int scale;

int sign;

NumericDigit *digits;

} numeric;

of Digits

Weight of 1st Digit

Scale Factor

Positive/Negative/NaN

Digit Storage

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://doxygen.postgresql.org/interfaces_2ecpg_2pgtypeslib_2numeric_8c_source.html#l00722

15-721 (Spring 2023)

MYSQL: NUMERIC

26

typedef int32 decimal_digit_t;

struct decimal_t {

int intg, frac, len;

bool sign;

decimal_digit_t *buf;

};

of Digits Before Point

of Digits After Point

Length (Bytes)

Positive/Negative

Digit Storage

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

MYSQL: NUMERIC

26

typedef int32 decimal_digit_t;

struct decimal_t {

int intg, frac, len;

bool sign;

decimal_digit_t *buf;

};

of Digits Before Point

of Digits After Point

Length (Bytes)

Positive/Negative

Digit Storage

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://github.com/mysql/mysql-server/blob/8.0/strings/decimal.cc#L1828

15-721 (Spring 2023)

NULL DATA TYPES

Choice #1: Special Values
→ Designate a value to represent NULL for a data type (e.g.,

INT32_MIN).

Choice #2: Null Column Bitmap Header
→ Store a bitmap in a centralized header that specifies what

attributes are null.

Choice #3: Per Attribute Null Flag
→ Store a flag that marks that a value is null.
→ Must use more space than just a single bit because this

messes up with word alignment.

27

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

NULL DATA TYPES

Choice #1: Special Values
→ Designate a value to represent NULL for a data type (e.g.,

INT32_MIN).

Choice #2: Null Column Bitmap Header
→ Store a bitmap in a centralized header that specifies what

attributes are null.

Choice #3: Per Attribute Null Flag
→ Store a flag that marks that a value is null.
→ Must use more space than just a single bit because this

messes up with word alignment.

27

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://docs.memsql.com/sql-reference/v6.0/datatypes/

15-721 (Spring 2023)

OBSERVATION

Data is "hot" when it enters the database
→ A newly inserted tuple is more likely to be updated again

the near future.

As a tuple ages, it is updated less frequently.
→ At some point, a tuple is only accessed in read-only queries

along with other tuples.

28

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

HYBRID STORAGE MODEL

Use separate execution engines that are optimized
for either NSM or DSM databases.
→ Store new data in NSM for fast OLTP.
→ Migrate data to DSM for more efficient OLAP.
→ Combine query results from both engines to appear as a

single logical database to the application.

Choice #1: Fractured Mirrors
→ Examples: Oracle, IBM DB2 Blu, Microsoft SQL Server

Choice #2: Delta Store
→ Examples: SAP HANA, Vertica, SingleStore, Databricks,

Google Napa

29

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

FRACTURED MIRRORS

Store a second copy of the database in a DSM layout
that is automatically updated.
→ All updates are first entered in NSM then eventually copied

into DSM mirror.
→ If the DBMS supports updates, it must invalidate tuples in

the DSM mirror.

30

A CASE FOR FRACTURED MIRRORS
VLDB 2002

NSM
(Primary)

DSM
(Mirror)

Transactions
Analytical
Queries

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://dl.acm.org/citation.cfm?id=1287407
http://dl.acm.org/citation.cfm?id=1287407

15-721 (Spring 2023)

DELTA STORE

Stage updates to the database in an NSM table.

A background thread migrates updates from delta
store and applies them to DSM data.
→ Batch large chunks and then write them out as a PAX file.

31

NSM
Delta Store

DSM
Historical Data

Transactions

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

DATABASE PARTITIONING

Split database across multiple resources:
→ Disks, nodes, processors.
→ Often called "sharding" in NoSQL systems.

The DBMS executes query fragments on each
partition and then combines the results to produce a
single answer.

The DBMS can partition a database physically
(shared nothing) or logically (shared disk).

32

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

HORIZONTAL PARTITIONING

Split a table's tuples into disjoint subsets based on
some partitioning key and scheme.
→ Choose column(s) that divides the database equally in

terms of size, load, or usage.

Partitioning Schemes:
→ Hashing
→ Ranges
→ Predicates

33

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

HORIZONTAL PARTITIONING

34

SELECT * FROM table
WHERE partitionKey = ?

Ideal Query:

PartitionsTable1
101 a XXX 2022-11-29

102 b XXY 2022-11-28

103 c XYZ 2022-11-29

104 d XYX 2022-11-27

105 e XYY 2022-11-29

hash(a)%4 = P2

hash(b)%4 = P4

hash(c)%4 = P3

hash(d)%4 = P2

hash(e)%4 = P1

Partitioning Key

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

HORIZONTAL PARTITIONING

34

SELECT * FROM table
WHERE partitionKey = ?

Ideal Query:

PartitionsTable1
101 a XXX 2022-11-29

102 b XXY 2022-11-28

103 c XYZ 2022-11-29

104 d XYX 2022-11-27

105 e XYY 2022-11-29

hash(a)%4 = P2

hash(b)%4 = P4

hash(c)%4 = P3

hash(d)%4 = P2

hash(e)%4 = P1

Partitioning Key

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

HORIZONTAL PARTITIONING

34

SELECT * FROM table
WHERE partitionKey = ?

Ideal Query:

PartitionsTable1
101 a XXX 2022-11-29

102 b XXY 2022-11-28

103 c XYZ 2022-11-29

104 d XYX 2022-11-27

105 e XYY 2022-11-29

P3 P4

P1 P2

hash(a)%4 = P2

hash(b)%4 = P4

hash(c)%4 = P3

hash(d)%4 = P2

hash(e)%4 = P1

Partitioning Key

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

HORIZONTAL PARTITIONING

34

SELECT * FROM table
WHERE partitionKey = ?

Ideal Query:

PartitionsTable1
101 a XXX 2022-11-29

102 b XXY 2022-11-28

103 c XYZ 2022-11-29

104 d XYX 2022-11-27

105 e XYY 2022-11-29

P3 P4

P1 P2

hash(a)%4 = P2

hash(b)%4 = P4

hash(c)%4 = P3

hash(d)%4 = P2

hash(e)%4 = P1

Partitioning Key

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

Storage

LOGICAL PARTITIONING

Node

Application
Server Node

Get Id=1

Id=1

Id=2

Id=3

Id=4

Id=1

Id=2

Id=3

Id=4

35

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

Storage

LOGICAL PARTITIONING

Node

Application
Server Node

Get Id=3

Id=1

Id=2

Id=3

Id=4

Id=1

Id=2

Id=3

Id=4

35

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

Storage

LOGICAL PARTITIONING

Node

Application
Server Node

Id=1

Id=2

Id=3

Id=4

Id=1

Id=2

Id=3

Id=4

Get Id=3
Get Id=2

35

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

Node

Node

PHYSICAL PARTITIONING

Application
Server

Get Id=1
Id=1

Id=2

Id=3

Id=4

36

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

Node

Node

PHYSICAL PARTITIONING

Application
Server

Get Id=3

Id=1

Id=2

Id=3

Id=4

36

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

PARTING THOUGHTS

Every modern OLAP system is using some variant
of PAX storage. The key idea is that all data must be
fixed-length.

Real-world tables contain mostly numeric attributes
(int/float), but their occupied storage is mostly
comprised of string data.

Modern columnar systems are so fast that most
people do not denormalize data warehouse schemas.

37

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

NEXT CLASS

How to accelerate OLAP queries on columnar data
with auxiliary data structures.
→ Zone Maps
→ Bitmap Indexes
→ Sketches

We will also discuss Project #1.

38

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://15721.courses.cs.cmu.edu/spring2023/project1.html

	Introduction
	Slide 1: Storage Models & Data Layout
	Slide 2: OBSERVATION
	Slide 3: TODAY’S AGENDA

	Storage Models
	Slide 4: STORAGE MODELS
	Slide 5: N-ARY STORAGE MODEL (NSM)
	Slide 6: NSM: PHYSICAL ORGANIZATION
	Slide 7: NSM: PHYSICAL ORGANIZATION
	Slide 8: NSM: PHYSICAL ORGANIZATION
	Slide 9: NSM: PHYSICAL ORGANIZATION
	Slide 10: NSM: PHYSICAL ORGANIZATION
	Slide 11: NSM: PHYSICAL ORGANIZATION
	Slide 12: N-ARY STORAGE MODEL (NSM)
	Slide 13: DECOMPOSITION STORAGE MODEL (DSM)
	Slide 14: DSM: PHYSICAL ORGANIZATION
	Slide 15: DSM: PHYSICAL ORGANIZATION
	Slide 16: DSM: PHYSICAL ORGANIZATION
	Slide 17: DSM: TUPLE IDENTIFICATION
	Slide 18: DSM: VARIABLE-LENGTH DATA
	Slide 19: DSM: SYSTEM HISTORY
	Slide 20: DECOMPOSITION STORAGE MODEL (DSM)
	Slide 21: OBSERVATION
	Slide 22: PAX STORAGE MODEL
	Slide 23: PAX: PHYSICAL ORGANIZATION
	Slide 24: PAX: PHYSICAL ORGANIZATION
	Slide 25: PAX: PHYSICAL ORGANIZATION
	Slide 26: MEMORY PAGES
	Slide 27: TRANSPARENT HUGE PAGES (THP)
	Slide 28: TRANSPARENT HUGE PAGES (THP)
	Slide 29: TRANSPARENT HUGE PAGES (THP)

	Type Representation
	Slide 30: DATA REPRESENTATION
	Slide 31: VARIABLE PRECISION NUMBERS
	Slide 32: VARIABLE PRECISION NUMBERS
	Slide 33: VARIABLE PRECISION NUMBERS
	Slide 34: FIXED PRECISION NUMBERS
	Slide 35: FIXED PRECISION NUMBERS
	Slide 36: POSTGRES: NUMERIC
	Slide 37: POSTGRES: NUMERIC
	Slide 38: MYSQL: NUMERIC
	Slide 39: MYSQL: NUMERIC
	Slide 40: NULL DATA TYPES
	Slide 41: NULL DATA TYPES

	Hybrid Storage
	Slide 42: OBSERVATION
	Slide 43: HYBRID STORAGE MODEL
	Slide 44: FRACTURED MIRRORS
	Slide 45: DELTA STORE

	Partitioning
	Slide 46: DATABASE PARTITIONING
	Slide 47: HORIZONTAL PARTITIONING
	Slide 48: HORIZONTAL PARTITIONING
	Slide 49: HORIZONTAL PARTITIONING
	Slide 50: HORIZONTAL PARTITIONING
	Slide 51: HORIZONTAL PARTITIONING
	Slide 52: LOGICAL PARTITIONING
	Slide 53: LOGICAL PARTITIONING
	Slide 54: LOGICAL PARTITIONING
	Slide 55: PHYSICAL PARTITIONING
	Slide 56: PHYSICAL PARTITIONING

	Conclusion
	Slide 57: PARTING THOUGHTS
	Slide 58: NEXT CLASS

