
ADVANCED DATABASE SYSTEMS

Andy Pavlo // 15-721 // Spring 2023

Database
Compression

L
e

c
tu

re
 #

0
5

https://15721.courses.cs.cmu.edu/spring2023
http://db.cs.cmu.edu/

15-721 (Spring 2023)

LAST CLASS

We discussed methods for the DBMS to skip data
for sequential scans in OLAP queries via filters
(zone maps) and indexes.

2

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

REAL-WORLD DATA CHARACTERISTICS

Data sets tend to have highly skewed distributions
for attribute values.
→ Example: Zipfian distribution of the Brown Corpus

Data sets tend to have high correlation between
attributes of the same tuple.
→ Example: Zip Code to City, Order Date to Ship Date

3

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://en.wikipedia.org/wiki/Brown_Corpus

15-721 (Spring 2023)

OBSERVATION

I/O is (traditionally) the main bottleneck during
query execution. If the DBMS still needs to read
data, we need to ensure that it maximizes the
amount of useful information it can extract from it.

Key trade-off is speed vs. compression ratio
→ Compressing the data reduces DRAM requirements and

processing.

4

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

TODAY’S AGENDA

Background

Naïve Page Compression

Native Columnar Compression

Intermediate Data

5

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

DATABASE COMPRESSION

Reduce the size of the database physical
representation to increase the # of values accessed
and processed per unit of computation or I/O.

Goal #1: Must produce fixed-length values.

Goal #2: Must be a lossless scheme.

Goal #3: Ideally postpone decompression for as long
as possible during query execution.

6

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

LOSSLESS VS. LOSSY COMPRESSION

When a DBMS uses compression, it is always
lossless because people don't like losing data.

Any kind of lossy compression must be performed
at the application level.

Reading less than the entire data set during query
execution is sort of like of compression.
→ Approximate Query Processing

7

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

DATABASE COMPRESSION

If we want to add compression to our DBMS, the
first question we must ask ourselves is what is what
do want to compress.

This determines what compression schemes are
available to us…

8

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

COMPRESSION GRANULARITY

Choice #1: Block-level
→ Compress a block (e.g., database page, RowGroup) of

tuples in a table.

Choice #2: Tuple-level
→ Compress the contents of the entire tuple (NSM-only).

Choice #3: Attribute-level
→ Compress a single attribute value within one tuple.
→ Can target multiple attributes for the same tuple.

Choice #4: Column-level
→ Compress multiple values for one or more attributes stored

for multiple tuples (DSM-only).

9

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

NAÏVE COMPRESSION

Compress data using a general-purpose algorithm.
Scope of compression is only based on the data
provided as input.
→ LZO (1996), LZ4 (2011), Snappy (2011), Brotli (2013),

Oracle OZIP (2014), Zstd (2015)

Considerations
→ Computational overhead
→ Compress vs. decompress speed

10

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Oberhumer
https://en.wikipedia.org/wiki/LZ4_(compression_algorithm)
https://en.wikipedia.org/wiki/Snappy_(software)
https://en.wikipedia.org/wiki/Brotli
https://patents.google.com/patent/US9697221B2/en
https://en.wikipedia.org/wiki/Zstandard

15-721 (Spring 2023)

NAÏVE COMPRESSION

Compress data using a general-purpose algorithm.
Scope of compression is only based on the data
provided as input.
→ LZO (1996), LZ4 (2011), Snappy (2011), Brotli (2013),

Oracle OZIP (2014), Zstd (2015)

Considerations
→ Computational overhead
→ Compress vs. decompress speed

10

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Oberhumer
https://en.wikipedia.org/wiki/LZ4_(compression_algorithm)
https://en.wikipedia.org/wiki/Snappy_(software)
https://en.wikipedia.org/wiki/Brotli
https://patents.google.com/patent/US9697221B2/en
https://en.wikipedia.org/wiki/Zstandard

15-721 (Spring 2023)

MYSQL INNODB COMPRESSION

12

16 KB

[1,2,4,8] KB

Source: MySQL 5.7 Documentation

Buffer Pool Disk Pages

Uncompressed
page0

Compressed page0

mod log

Compressed page0

mod log

Compressed page1

mod log

Compressed page2

mod log

Updates

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dev.mysql.com/doc/refman/5.7/en/innodb-compression-internals.html

15-721 (Spring 2023)

NAÏVE COMPRESSION

The DBMS must decompress data first before it can
be read and (potentially) modified.
→ Even if the algo uses dictionary compression, the DBMS

cannot access the dictionary's contents.
→ This limits the practical scope of the compression scheme.

These schemes also do not consider the high-level
meaning or semantics of the data.

13

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

COLUMNAR COMPRESSION

Run-length Encoding

Dictionary Encoding

Bitmap Encoding

Delta Encoding

Bit Packing

15

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

RUN-LENGTH ENCODING

Compress runs of the same value in a single column
into triplets:
→ The value of the attribute.
→ The start position in the column segment.
→ The # of elements in the run.

Requires the columns to be sorted intelligently to
maximize compression opportunities.

Sometimes also called null suppression if the DBMS
only tracks empty space.

17

DATABASE COMPRESSION
SIGMOD RECORD 1993

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://dl.acm.org/citation.cfm?id=163096
http://dl.acm.org/citation.cfm?id=163096

15-721 (Spring 2023)

RUN-LENGTH ENCODING

18

Compressed Data

id

2

1

4

3

7

6

9

8

lit

(N,3,1)

(Y,0,3)

(N,5,1)

(Y,4,1)

(Y,6,2)

Original Data

id

2

1

4

3

7

6

9

8

lit

Y

Y

N

Y

N

Y

Y

Y
RLE Triplet
- Value
- Offset
- Length

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

RUN-LENGTH ENCODING

18

Compressed Data

id

2

1

4

3

7

6

9

8

lit

(N,3,1)

(Y,0,3)

(N,5,1)

(Y,4,1)

(Y,6,2)

RLE Triplet
- Value
- Offset
- Length

SELECT lit, COUNT(*)
FROM users
GROUP BY lit

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

RUN-LENGTH ENCODING

18

Compressed Data

id

2

1

4

3

7

6

9

8

lit

(N,3,1)

(Y,0,3)

(N,5,1)

(Y,4,1)

(Y,6,2)

Original Data

id

2

1

4

3

7

6

9

8

lit

Y

Y

N

Y

N

Y

Y

Y
RLE Triplet
- Value
- Offset
- Length

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

RUN-LENGTH ENCODING

18

Compressed DataSorted Data

id

2

1

6

3

9

8

7

4

lit

Y

Y

Y

Y

Y

Y

N

N

id

2

1

6

3

9

8

7

4

lit

(N,7,2)

(Y,0,6)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

DICTIONARY COMPRESSION

Replace frequent values with smaller fixed-length
codes and then maintain a mapping (dictionary)
from the codes to the original values
→ Typically, one code per attribute value.
→ Most widely used native compression scheme in DBMSs.

The ideal dictionary scheme supports fast encoding
and decoding for both point and range queries.

19

INTEGRATING COMPRESSION AND EXECUTION IN
COLUMN-ORIENTED DATABASE SYSTEMS
SIGMOD 2006

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/doi/10.1145/1142473.1142548
https://dl.acm.org/doi/10.1145/1142473.1142548

15-721 (Spring 2023)

DICTIONARY COMPRESSION

When to construct the dictionary?

What is the scope of the dictionary?

What data structure do we use for the dictionary?

What encoding scheme to use for the dictionary?

20

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

DICTIONARY CONSTRUCTION

Choice #1: All-At-Once
→ Compute the dictionary for all the tuples at a given point

of time.
→ New tuples must use a separate dictionary, or the all tuples

must be recomputed.
→ This is easy to do if the file is immutable.

Choice #2: Incremental
→ Merge new tuples in with an existing dictionary.
→ Likely requires re-encoding to existing tuples.

21

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

DICTIONARY SCOPE

Choice #1: Block-level
→ Only include a subset of tuples within a single table.
→ DBMS must decompress data when combining tuples from

different blocks (e.g., hash table for joins).

Choice #2: Table-level
→ Construct a dictionary for the entire table.
→ Better compression ratio, but expensive to update.

Choice #3: Multi-Table
→ Can be either subset or entire tables.
→ Sometimes helps with joins and set operations.

22

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

ENCODING / DECODING

Encode/Locate: For a given uncompressed value,
convert it into its compressed form.

Decode/Extract: For a given compressed value,
convert it back into its original form.

No magic hash function will do this for us.

24

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

ORDER-PRESERVING ENCODING

The encoded values need to support sorting in the
same order as original values.

25

SELECT * FROM users
WHERE name LIKE 'And%'

Original Data

name

Andrea

Wan

Andy

Matt

Compressed Data

code
10

20

30

40

value
Andrea

Andy

Matt

Wan

name
10

40

20

30

SELECT * FROM users
WHERE name BETWEEN 10 AND 20

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

ORDER-PRESERVING ENCODING

26

SELECT name FROM users
WHERE name LIKE 'And%'

SELECT DISTINCT name
FROM users
WHERE name LIKE 'And%'

Still must perform seq scan

Only need to access dictionary

Original Data

name

Andrea

Wan

Andy

Matt

Compressed Data

code
10

20

30

40

value
Andrea

Andy

Matt

Wan

name
10

40

20

30

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

DICTIONARY DATA STRUCTURES

Choice #1: Array
→ One array of variable length strings and another array with

pointers that maps to string offsets.
→ Expensive to update so only usable in immutable files.

Choice #2: Hash Table
→ Fast and compact.
→ Unable to support range and prefix queries.

Choice #3: B+Tree
→ Slower than a hash table and takes more memory.
→ Can support range and prefix queries.

27

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

DICTIONARY: ARRAY

First sort the values and then store
them sequentially in a byte array.
→ Need to also store the size of the value if

they are variable-length.

Replace the original data with
dictionary codes that are the (byte)
offset into this array.

28

Compressed Data

len|val

6|Andrea

4|Andy

4|Matt

3|Wan

name

0

17

7

12

Original Data

name

Andrea

Wan

Andy

Matt

INTEGRATING COMPRESSION AND EXECUTION IN
COLUMN-ORIENTED DATABASE SYSTEMS
SIGMOD 2006

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/doi/10.1145/1142473.1142548
https://dl.acm.org/doi/10.1145/1142473.1142548

15-721 (Spring 2023)

DICTIONARY: SHARED-LEAVES B+TREE

29

Decode Index

Encode Index

Decode Index

value
aab

code
10

aae 20
aaf 30
aaz 40

value
zzb

code
960

zzm 970
zzx 980
zzz 990

Original
Value

Encoded
Value

Encoded
Value

Original
Value

Sorted
Shared Leaf

Incremental
Encoding

DICTIONARY-BASED ORDER-PRESERVING STRING
COMPRESSION FOR MAIN MEMORY COLUMN STORES
SIGMOD 2009

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://15721.courses.cs.cmu.edu/spring2020/papers/09-compression/p283-binnig.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/09-compression/p283-binnig.pdf

15-721 (Spring 2023)

EXPOSING DICTIONARY TO DBMS

Parquet / ORC do not provide an API to directly
access a file's compression dictionary.

This means the DBMS cannot perform predicate
pushdown and operate directly on compressed data
before decompressing it.

Google's Artus proprietary format for Procella
supports this.

30

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/doi/10.14778/3352063.3352121

15-721 (Spring 2023)

COLUMNAR COMPRESSION

Run-length Encoding

Dictionary Encoding

Bitmap Encoding

Delta Encoding

Bit Packing

31

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

BITMAP ENCODING

Using bitmaps to represent a column can reduce its
storage size if the column's cardinality is low.

33

Compressed DataOriginal Data

id

2

1

4

3

7

6

9

8

lit

Y

Y

N

Y

N

Y

Y

Y

id

2

1

4

3

7

6

9

8

Y

1

1

0

1

0

1

1

1

N

0

0

1

0

1

0

0

0

lit

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

BITMAP ENCODING

Using bitmaps to represent a column can reduce its
storage size if the column's cardinality is low.

33

Compressed DataOriginal Data

id

2

1

4

3

7

6

9

8

lit

Y

Y

N

Y

N

Y

Y

Y

id

2

1

4

3

7

6

9

8

Y

1

1

0

1

0

1

1

1

N

0

0

1

0

1

0

0

0

lit

9 × 8-bits =
72 bits 9 × 2-bits =

18 bits

2 × 8-bits =
16 bits

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

BITMAP INDEX: COMPRESSION

Approach #1: General Purpose Compression
→ Use standard compression algorithms (e.g., Snappy, zstd).
→ Must decompress entire data chunk before DBMS can use

it to process a query.

Approach #2: Byte-aligned Bitmap Codes
→ Structured run-length encoding compression.

Approach #3: Roaring Bitmaps
→ Modern hybrid of run-length encoding and value lists.

34

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

ORACLE BYTE-ALIGNED BITMAP CODES

Divide bitmap into chunks that contain different
categories of bytes:
→ Gap Byte: All the bits are 0s.
→ Tail Byte: Some bits are 1s.

Encode each chunk that consists of some Gap
Bytes followed by some Tail Bytes.
→ Gap Bytes are compressed with RLE.
→ Tail Bytes are stored uncompressed unless it consists of

only 1-byte or has only one non-zero bit.

35

BYTE-ALIGNED BITMAP COMPRESSION
DATA COMPRESSION CONFERENCE 1995

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://dx.doi.org/10.1109/DCC.1995.515586
http://dx.doi.org/10.1109/DCC.1995.515586

15-721 (Spring 2023)

ORACLE BYTE-ALIGNED BITMAP CODES

36

Source: Brian Babcock

00000000 00000000 00010000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 01000000 00100010

Bitmap

Compressed Bitmap

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://web.stanford.edu/class/cs345/slides/Lecture9.ppt

15-721 (Spring 2023)

ORACLE BYTE-ALIGNED BITMAP CODES

36

Source: Brian Babcock

00000000 00000000 00010000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 01000000 00100010

Bitmap

Compressed Bitmap

Gap Bytes Tail Bytes

#1

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://web.stanford.edu/class/cs345/slides/Lecture9.ppt

15-721 (Spring 2023)

ORACLE BYTE-ALIGNED BITMAP CODES

36

Source: Brian Babcock

00000000 00000000 00010000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 01000000 00100010

Bitmap

Compressed Bitmap

Gap Bytes Tail Bytes

#1

#2

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://web.stanford.edu/class/cs345/slides/Lecture9.ppt

15-721 (Spring 2023)

ORACLE BYTE-ALIGNED BITMAP CODES

36

Chunk #1 (Bytes 1-3)

Header Byte:
→ Number of Gap Bytes (Bits 1-3)
→ Is the tail special? (Bit 4)
→ Number of verbatim bytes (if Bit 4=0)
→ Index of one-bit in tail byte (if Bit 4=1)

No gap length bytes since gap length < 7

No verbatim bytes since tail is special

Source: Brian Babcock

00000000 00000000 00010000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 01000000 00100010

Bitmap

Compressed Bitmap
(010)(1)(0100)#1

#1

1-3 4 5-7

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://web.stanford.edu/class/cs345/slides/Lecture9.ppt

15-721 (Spring 2023)

ORACLE BYTE-ALIGNED BITMAP CODES

36

Source: Brian Babcock

00000000 00000000 00010000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 01000000 00100010

Bitmap

Compressed Bitmap

Chunk #2 (Bytes 4-18)

Header Byte:
→ 13 gap bytes, two tail bytes
→ # of gaps is > 7, so must use extra byte

One gap length byte gives gap length = 13

Two verbatim bytes for tail.

(010)(1)(0100)#1

(111)(0)(0010)00001101
01000000 00100010

#2

#2

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://web.stanford.edu/class/cs345/slides/Lecture9.ppt

15-721 (Spring 2023)

ORACLE BYTE-ALIGNED BITMAP CODES

36

Source: Brian Babcock

00000000 00000000 00010000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 01000000 00100010

Bitmap

Compressed Bitmap

Chunk #2 (Bytes 4-18)

Header Byte:
→ 13 gap bytes, two tail bytes
→ # of gaps is > 7, so must use extra byte

One gap length byte gives gap length = 13

Two verbatim bytes for tail.

(010)(1)(0100)#1

(111)(0)(0010)00001101
01000000 00100010

#2

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://web.stanford.edu/class/cs345/slides/Lecture9.ppt

15-721 (Spring 2023)

ORACLE BYTE-ALIGNED BITMAP CODES

36

Source: Brian Babcock

00000000 00000000 00010000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 01000000 00100010

Bitmap

Compressed Bitmap

Chunk #2 (Bytes 4-18)

Header Byte:
→ 13 gap bytes, two tail bytes
→ # of gaps is > 7, so must use extra byte

One gap length byte gives gap length = 13

Two verbatim bytes for tail.

(010)(1)(0100)#1

(111)(0)(0010)00001101
01000000 00100010

#2
Gap Length

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://web.stanford.edu/class/cs345/slides/Lecture9.ppt

15-721 (Spring 2023)

ORACLE BYTE-ALIGNED BITMAP CODES

36

Source: Brian Babcock

00000000 00000000 00010000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 01000000 00100010

Bitmap

Compressed Bitmap

Chunk #2 (Bytes 4-18)

Header Byte:
→ 13 gap bytes, two tail bytes
→ # of gaps is > 7, so must use extra byte

One gap length byte gives gap length = 13

Two verbatim bytes for tail.

(010)(1)(0100)#1

(111)(0)(0010)00001101
01000000 00100010

#2

Verbatim Tail Bytes

Original: 18 bytes

BBC Compressed: 5 bytes

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://web.stanford.edu/class/cs345/slides/Lecture9.ppt

15-721 (Spring 2023)

OBSERVATION

Oracle's BBC is an obsolete format.
→ Although it provides good compression, it is slower than

recent alternatives due to excessive branching.
→ Word-Aligned Hybrid (WAH) encoding is a patented

variation on BBC that provides better performance.

None of these support random access.
→ If you want to check whether a given value is present, you

must start from the beginning and decompress the whole
thing.

37

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://sdm.lbl.gov/fastbit/compression.html

15-721 (Spring 2023)

ROARING BITMAPS

Store 32-bit integers in a compact two-level
indexing data structure.
→ Dense chunks are stored using bitmaps
→ Sparse chunks use packed arrays of 16-bit integers.

Used in Lucene, Hive, Spark, Pinot.

38

BETTER BITMAP PERFORMANCE WITH
ROARING BITMAPS
SOFTWARE: PRACTICE AND EXPERIENCE 2015

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://onlinelibrary.wiley.com/doi/10.1002/spe.2325/abstract
http://onlinelibrary.wiley.com/doi/10.1002/spe.2325/abstract

15-721 (Spring 2023)

ROARING BITMAPS

39

Chunk Partitions

0 1 2 3
For each value k, assign it to a
chunk based on k/216.
→ Store k in the chunk's container.

If # of values in container is less
than 4096, store as array.
Otherwise, store as Bitmap.

k=1000
1000/216=0
1000%216=1000

001
001
110
100
000
000
100
001
000
000

1000

Containers

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

ROARING BITMAPS

39

Chunk Partitions

0 1 2 3
For each value k, assign it to a
chunk based on k/216.
→ Store k in the chunk's container.

If # of values in container is less
than 4096, store as array.
Otherwise, store as Bitmap.

k=1000
1000/216=0
1000%216=1000

001
001
110
100
000
000
100
001
000
000

k=199658
199658/216=3
199658%216=50

1000

Set bit #50 to 1

Containers

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

DELTA ENCODING

Recording the difference between values that follow
each other in the same column.
→ Store base value in-line or in a separate look-up table.
→ Combine with RLE to get even better compression ratios.

40

Original Data

time

12:01
12:00

12:03
12:02

12:04

temp

99.4
99.5

99.6
99.5

99.4

Compressed Data

time

(+1,4)
12:00

temp

-0.1
99.5

+0.1
+0.1

-0.2

Compressed Data

time

+1
12:00

+1
+1

+1

temp

-0.1
99.5

+0.1
+0.1

-0.2

32-bits + (4 × 16-bits)
= 96 bits

5 × 32-bits
= 160 bits

32-bits + (2 × 16-bits)
= 64 bits

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

BIT PACKING

If the values for an integer attribute is
smaller than the range of its given
data type size, then reduce the
number of bits to represent each
value.

Use bit-shifting tricks to operate on
multiple values in a single word.
→ Like in BitWeaving/Vertical

42

Original Data

int32

191

13

92

56

120

81

172

231

00000000 00000000 00000000 10111111

00000000 00000000 00000000 00001101

00000000 00000000 00000000 01011100

00000000 00000000 00000000 00111000

00000000 00000000 00000000 01111000

00000000 00000000 00000000 01010001

00000000 00000000 00000000 10101100

00000000 00000000 00000000 11100111

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

BIT PACKING

If the values for an integer attribute is
smaller than the range of its given
data type size, then reduce the
number of bits to represent each
value.

Use bit-shifting tricks to operate on
multiple values in a single word.
→ Like in BitWeaving/Vertical

42

Original Data

int32

191

13

92

56

120

81

172

231

00000000 00000000 00000000 10111111

00000000 00000000 00000000 00001101

00000000 00000000 00000000 01011100

00000000 00000000 00000000 00111000

00000000 00000000 00000000 01111000

00000000 00000000 00000000 01010001

00000000 00000000 00000000 10101100

00000000 00000000 00000000 11100111

8 × 32-bits =
256 bits

8 × 8-bits =
64 bits

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

MOSTLY ENCODING

A variation of bit packing for when an attribute's
values are "mostly" less than the largest size, store
them with smaller data type.
→ The remaining values that cannot be compressed are

stored in their raw form.

43

Source: Redshift Documentation

Original Data

int32

191
13

92
99999999

81
120
231
172

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://docs.aws.amazon.com/redshift/latest/dg/c_MostlyN_encoding.html

15-721 (Spring 2023)

MOSTLY ENCODING

A variation of bit packing for when an attribute's
values are "mostly" less than the largest size, store
them with smaller data type.
→ The remaining values that cannot be compressed are

stored in their raw form.

43

Source: Redshift Documentation

Original Data Compressed Data

offset
3

value
999999998 × 32-bits =

256 bits
(8 × 8-bits) +
16-bits + 32-bits
= 112 bits

int32

191
13

92
99999999

81
120
231
172

mostly8

181
13

XXX
92
81
120
231
172

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://docs.aws.amazon.com/redshift/latest/dg/c_MostlyN_encoding.html

15-721 (Spring 2023)

INTERMEDIATE RESULTS

After the evaluating a predicate on compressed data,
the DBMS will decompress it as it moves from the
scan operator to the next operator.
→ Example: Execute a hash join on two tables that use

different compression schemes.

The DBMS (typically) does not recompress data
during query execution. Otherwise, the system
needs to embed decompression logic throughout
the entire execution engine.

44

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

PARTING THOUGHTS

Dictionary encoding is not always the most effective
compression scheme, but it is the most used.

The DBMS can combine different approaches for
even better compression.

45

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

NEXT CLASS

Query Execution!

46

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

	Introduction
	Slide 1: Database Compression
	Slide 2: LAST CLASS
	Slide 3: REAL-WORLD DATA CHARACTERISTICS
	Slide 4: OBSERVATION
	Slide 5: TODAY’S AGENDA

	Compression
	Slide 6: DATABASE COMPRESSION
	Slide 7: LOSSLESS VS. LOSSY COMPRESSION
	Slide 8: DATABASE COMPRESSION
	Slide 9: COMPRESSION GRANULARITY

	Naive Compression
	Slide 10: NAÏVE COMPRESSION
	Slide 11: NAÏVE COMPRESSION
	Slide 13: MYSQL INNODB COMPRESSION
	Slide 14: NAÏVE COMPRESSION

	Columnar Compression
	Slide 15: COLUMNAR COMPRESSION

	RLE
	Slide 16: RUN-LENGTH ENCODING
	Slide 17: RUN-LENGTH ENCODING
	Slide 18: RUN-LENGTH ENCODING
	Slide 19: RUN-LENGTH ENCODING
	Slide 20: RUN-LENGTH ENCODING

	Dictionary Encoding
	Slide 21: DICTIONARY COMPRESSION
	Slide 22: DICTIONARY COMPRESSION
	Slide 23: DICTIONARY CONSTRUCTION
	Slide 24: DICTIONARY SCOPE
	Slide 25: ENCODING / DECODING
	Slide 26: ORDER-PRESERVING ENCODING
	Slide 27: ORDER-PRESERVING ENCODING
	Slide 28: DICTIONARY DATA STRUCTURES
	Slide 29: DICTIONARY: ARRAY
	Slide 30: DICTIONARY: SHARED-LEAVES B+TREE
	Slide 31: EXPOSING DICTIONARY TO DBMS

	BitMap Encoding
	Slide 32: COLUMNAR COMPRESSION
	Slide 33: BITMAP ENCODING
	Slide 34: BITMAP ENCODING
	Slide 35: BITMAP INDEX: COMPRESSION
	Slide 36: ORACLE BYTE-ALIGNED BITMAP CODES
	Slide 37: ORACLE BYTE-ALIGNED BITMAP CODES
	Slide 38: ORACLE BYTE-ALIGNED BITMAP CODES
	Slide 39: ORACLE BYTE-ALIGNED BITMAP CODES
	Slide 40: ORACLE BYTE-ALIGNED BITMAP CODES
	Slide 41: ORACLE BYTE-ALIGNED BITMAP CODES
	Slide 42: ORACLE BYTE-ALIGNED BITMAP CODES
	Slide 43: ORACLE BYTE-ALIGNED BITMAP CODES
	Slide 44: ORACLE BYTE-ALIGNED BITMAP CODES
	Slide 45: OBSERVATION
	Slide 46: ROARING BITMAPS
	Slide 47: ROARING BITMAPS
	Slide 48: ROARING BITMAPS

	Delta Encoding
	Slide 49: DELTA ENCODING

	Bit Packing
	Slide 50: BIT PACKING
	Slide 51: BIT PACKING
	Slide 52: MOSTLY ENCODING
	Slide 53: MOSTLY ENCODING

	Intermediate Data
	Slide 54: INTERMEDIATE RESULTS

	Conclusion
	Slide 55: PARTING THOUGHTS
	Slide 56: NEXT CLASS

