
ADVANCED DATABASE SYSTEMS

Andy Pavlo // 15-721 // Spring 2023

Query
Execution

L
e

c
tu

re
 #

0
6

https://15721.courses.cs.cmu.edu/spring2023
http://db.cs.cmu.edu/

15-721 (Spring 2023)

LAST CLASS

Last two lectures were about minimize the amount
of data that the DBMS processes when executing
sequential scans.

We are now going to start discussing ways to
improve the DBMS's query execution performance.

2

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

SEQUENTIAL SCAN OPTIMIZATIONS

Data Prefetching / Scan Sharing

Task Parallelization / Multi-threading

Clustering / Sorting

Late Materialization

Materialized Views / Result Caching

Data Skipping

Data Parallelization / Vectorization

Code Specialization / Compilation

3

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

EXECUTION OPTIMIZATION

DBMS engineering is an orchestration of a bunch of
optimizations that seek to make full use of
hardware. There is not a single technique that is
more important than others.

Andy's Unscientific Top-3 Optimizations:
→ Data Parallelization (Vectorization)
→ Task Parallelization (Multi-threading)
→ Code Specialization (Compilation)

4

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

OPTIMIZATION GOALS

Approach #1: Reduce Instruction Count
→ Use fewer instructions to do the same amount of work.

Approach #2: Reduce Cycles per Instruction
→ Execute more CPU instructions in fewer cycles.

Approach #3: Parallelize Execution
→ Use multiple threads to compute each query in parallel.

5

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

OPTIMIZATION GOALS

Approach #1: Reduce Instruction Count
→ Use fewer instructions to do the same amount of work.

Approach #2: Reduce Cycles per Instruction
→ Execute more CPU instructions in fewer cycles.

Approach #3: Parallelize Execution
→ Use multiple threads to compute each query in parallel.

5

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://lore.kernel.org/lkml/CAHk-=wjuoGyxDhAF8SsrTkN0-YfCx7E6jUN3ikC_tn2AKWTTsA@mail.gmail.com/

15-721 (Spring 2023)

QUERY EXECUTION

A query plan is a DAG of operators.

An operator instance is an
invocation of an operator on a unique
segment of data.

A task is a sequence of one or more
operator instances (also sometimes
referred to as a pipeline).

6

SELECT A.id, B.value
FROM A JOIN B
ON A.id = B.id

WHERE A.value < 99
AND B.value > 100

Pipeline #1

Pipeline #2

A B

⨝
s

p

s

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

TODAY’S AGENDA

MonetDB/X100 Analysis

Processing Models

Parallel Execution

7

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

MONETDB/X100 (2005)

Low-level analysis of execution bottlenecks for in-
memory DBMSs on OLAP workloads.
→ Show how DBMS are designed incorrectly for modern

CPU architectures.

Based on these findings, they proposed a new
DBMS called MonetDB/X100.
→ Renamed to Vectorwise and acquired by Actian in 2010.
→ Rebranded as Vector and Avalanche.

8

MONETDB/X100: HYPER-PIPELINING
QUERY EXECUTION
CIDR 2005

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://www.informationweek.com/database/ingres-unveils-vectorwise-database-engine/d/d-id/1089785
https://www.actian.com/analytic-database/avalanche/
https://15721.courses.cs.cmu.edu/spring2020/papers/13-execution/boncz-cidr2005.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/13-execution/boncz-cidr2005.pdf

15-721 (Spring 2023)

CPU OVERVIEW

CPUs organize instructions into pipeline stages.

The goal is to keep all parts of the processor busy at
each cycle by masking delays from instructions that
cannot complete in a single cycle.

Super-scalar CPUs support multiple pipelines.
→ Execute multiple instructions in parallel in a single cycle if

they are independent (out-of-order execution).

Everything is fast until there is a mistake…

9

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

DBMS / CPU PROBLEMS

Problem #1: Dependencies
→ If one instruction depends on another instruction, then it

cannot be pushed immediately into the same pipeline.

Problem #2: Branch Prediction
→ The CPU tries to predict what branch the program will

take and fill in the pipeline with its instructions.
→ If it gets it wrong, it must throw away any speculative

work and flush the pipeline.

10

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

BRANCH MISPREDICTION

Because of long pipelines, CPUs will speculatively
execute branches. This potentially hides the long
stalls between dependent instructions.

The most executed branching code in a DBMS is
the filter operation during a sequential scan.
But this is (nearly) impossible to predict correctly.

11

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

BRANCH MISPREDICTION

Because of long pipelines, CPUs will speculatively
execute branches. This potentially hides the long
stalls between dependent instructions.

The most executed branching code in a DBMS is
the filter operation during a sequential scan.
But this is (nearly) impossible to predict correctly.

11

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://en.cppreference.com/w/cpp/language/attributes/likely

15-721 (Spring 2023)

BRANCH MISPREDICTION

Because of long pipelines, CPUs will speculatively
execute branches. This potentially hides the long
stalls between dependent instructions.

The most executed branching code in a DBMS is
the filter operation during a sequential scan.
But this is (nearly) impossible to predict correctly.

11

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://en.cppreference.com/w/cpp/language/attributes/likely
https://blog.aaronballman.com/2020/08/dont-use-the-likely-or-unlikely-attributes/

15-721 (Spring 2023)

SELECT * FROM table
WHERE key > $(low)

AND key < $(high)

SELECTION SCANS

12

Source: Bogdan Raducanu

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/citation.cfm?id=2465292

15-721 (Spring 2023)

SELECTION SCANS

12

Scalar (Branching)

i = 0
for t in table:
key = t.key
if (key>low) && (key<high):

copy(t, output[i])
i = i + 1

Scalar (Branchless)

i = 0
for t in table:
copy(t, output[i])
key = t.key
delta = (key>low ? 1 : 0) &

⮱(key<high ? 1 : 0)
i = i + delta

Source: Bogdan Raducanu

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/citation.cfm?id=2465292

15-721 (Spring 2023)

SELECTION SCANS

13

Source: Bogdan Raducanu

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/citation.cfm?id=2465292

15-721 (Spring 2023)

EXCESSIVE INSTRUCTIONS

The DBMS needs to support different data types, so
it must check a values type before it performs any
operation on that value.
→ This is usually implemented as giant switch statements.
→ Also creates more branches that can be difficult for the

CPU to predict reliably.

Example: Postgres' addition for NUMERIC types.

14

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

EXCESSIVE INSTRUCTIONS

The DBMS needs to support different data types, so
it must check a values type before it performs any
operation on that value.
→ This is usually implemented as giant switch statements.
→ Also creates more branches that can be difficult for the

CPU to predict reliably.

Example: Postgres' addition for NUMERIC types.

14

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://doxygen.postgresql.org/interfaces_2ecpg_2pgtypeslib_2numeric_8c_source.html#l00722

15-721 (Spring 2023)

PROCESSING MODEL

A DBMS's processing model defines how the
system executes a query plan.
→ Different trade-offs for workloads (OLTP vs. OLAP).

Approach #1: Iterator Model

Approach #2: Materialization Model

Approach #3: Vectorized / Batch Model

15

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

ITERATOR MODEL

Each query plan operator implements a next
function.
→ On each invocation, the operator returns either a single

tuple or a null marker if there are no more tuples.
→ The operator implements a loop that calls next on its

children to retrieve their tuples and then process them.

Also called Volcano or Pipeline Model.

16

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

R S

R.id=S.id

value>100

R.id, S.cdate

⨝
s

p

SELECT R.id, S.cdate
FROM R JOIN S

ON R.id = S.id
WHERE S.value > 100

ITERATOR MODEL

for t in R:
emit(t)

for t1 in left.Next():
buildHashTable(t1)

for t2 in right.Next():
if probe(t2): emit(t1⨝t2)

for t in child.Next():
emit(projection(t))

for t in child.Next():
if evalPred(t): emit(t)

for t in S:
emit(t)

Next()

Next()

Next() Next()

Next()

17

Control Flow
Data Flow

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

R S

R.id=S.id

value>100

R.id, S.cdate

⨝
s

p

SELECT R.id, S.cdate
FROM R JOIN S

ON R.id = S.id
WHERE S.value > 100

ITERATOR MODEL

for t in R:
emit(t)

for t1 in left.Next():
buildHashTable(t1)

for t2 in right.Next():
if probe(t2): emit(t1⨝t2)

for t in child.Next():
emit(projection(t))

for t in child.Next():
if evalPred(t): emit(t)

for t in S:
emit(t)

1

2

3

Single Tuple

17

Control Flow
Data Flow

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

R S

R.id=S.id

value>100

R.id, S.cdate

⨝
s

p

SELECT R.id, S.cdate
FROM R JOIN S

ON R.id = S.id
WHERE S.value > 100

ITERATOR MODEL

for t in R:
emit(t)

for t1 in left.Next():
buildHashTable(t1)

for t2 in right.Next():
if probe(t2): emit(t1⨝t2)

for t in child.Next():
emit(projection(t))

for t in child.Next():
if evalPred(t): emit(t)

for t in S:
emit(t)

1

2

3 5

4

17

Control Flow
Data Flow

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

ITERATOR MODEL

This is used in almost every DBMS. Allows for
tuple pipelining.

Some operators must block until their children emit
all their tuples.
→ Joins, Subqueries, Order By

Output control works easily with this approach.

18

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

MATERIALIZATION MODEL

Each operator processes its input all at once and
then emits its output all at once.
→ The operator "materializes" its output as a single result.
→ The DBMS can push down hints (e.g., LIMIT) to avoid

scanning too many tuples.
→ Can send either a materialized row or a single column.

The output can be either whole tuples (NSM) or
subsets of columns (DSM).

19

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

MATERIALIZATION MODEL

out = []
for t in R:

out.add(t)
return out

out = []
for t1 in left.Output():
buildHashTable(t1)

for t2 in right.Output():
if probe(t2): out.add(t1⨝t2)

return out

out = []
for t in child.Output():

out.add(projection(t))
return out

out = []
for t in child.Output():

if evalPred(t): out.add(t)
return out

out = []
for t in S:
out.add(t)

return out

1

2

3

All Tuples

SELECT R.id, S.cdate
FROM R JOIN S

ON R.id = S.id
WHERE S.value > 100

R S

R.id=S.id

value>100

R.id, S.cdate

⨝
s

p

20

Control Flow
Data Flow

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

MATERIALIZATION MODEL

out = []
for t in R:

out.add(t)
return out

out = []
for t1 in left.Output():
buildHashTable(t1)

for t2 in right.Output():
if probe(t2): out.add(t1⨝t2)

return out

out = []
for t in child.Output():

out.add(projection(t))
return out

out = []
for t in child.Output():

if evalPred(t): out.add(t)
return out

out = []
for t in S:
out.add(t)

return out

1

2

3 5

4

SELECT R.id, S.cdate
FROM R JOIN S

ON R.id = S.id
WHERE S.value > 100

R S

R.id=S.id

value>100

R.id, S.cdate

⨝
s

p

20

Control Flow
Data Flow

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

MATERIALIZATION MODEL

out = []
for t in R:

out.add(t)
return out

out = []
for t1 in left.Output():
buildHashTable(t1)

for t2 in right.Output():
if probe(t2): out.add(t1⨝t2)

return out

out = []
for t in child.Output():

out.add(projection(t))
return out

1

2

3

SELECT R.id, S.cdate
FROM R JOIN S

ON R.id = S.id
WHERE S.value > 100

R S

R.id=S.id

value>100

R.id, S.cdate

⨝
s

p
out = []
for t in S:

if evalPred(t): out.add(t)
return out

20

Control Flow
Data Flow

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

MATERIALIZATION MODEL

Better for OLTP workloads because queries only
access a small number of tuples at a time.
→ Lower execution / coordination overhead.
→ Fewer function calls.

Not good for OLAP queries with large intermediate
results.

21

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

VECTORIZATION MODEL

Like the Iterator Model where each operator
implements a next function, but…

Each operator emits a batch of tuples instead of a
single tuple.
→ The operator's internal loop processes multiple tuples at a

time.
→ The size of the batch can vary based on hardware or query

properties.

22

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

VECTORIZATION MODEL

out = []
for t in R:

out.add(t)
if |out|>n: emit(out)

out = []
for t1 in left.Next():
buildHashTable(t1)

for t2 in right.Next():
if probe(t2): out.add(t1⨝t2)
if |out|>n: emit(out)

out = []
for t in child.Next():

out.add(projection(t))
if |out|>n: emit(out)

out = []
for t in child.Next():
if evalPred(t): out.add(t)
if |out|>n: emit(out)

out = []
for t in S:
out.add(t)
if |out|>n: emit(out)

SELECT R.id, S.cdate
FROM R JOIN S

ON R.id = S.id
WHERE S.value > 100

R S

R.id=S.id

value>100

R.id, S.cdate

⨝
s

p

23

Control Flow
Data Flow

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

VECTORIZATION MODEL

out = []
for t in R:

out.add(t)
if |out|>n: emit(out)

out = []
for t1 in left.Next():
buildHashTable(t1)

for t2 in right.Next():
if probe(t2): out.add(t1⨝t2)
if |out|>n: emit(out)

out = []
for t in child.Next():

out.add(projection(t))
if |out|>n: emit(out)

out = []
for t in child.Next():
if evalPred(t): out.add(t)
if |out|>n: emit(out)

1

2

3
out = []
for t in S:
out.add(t)
if |out|>n: emit(out)

5

4

Tuple Batch

SELECT R.id, S.cdate
FROM R JOIN S

ON R.id = S.id
WHERE S.value > 100

R S

R.id=S.id

value>100

R.id, S.cdate

⨝
s

p

23

Control Flow
Data Flow

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

VECTORIZATION MODEL

Ideal for OLAP queries because it greatly reduces
the number of invocations per operator.

Allows for operators to more easily use vectorized
(SIMD) instructions to process batches of tuples.

24

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

OBSERVATION

In the previous examples, the DBMS was starting at
the root of the query plan and pulling data up from
leaf operators.

This is the how most DBMSs implement their
execution engine.

25

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

PLAN PROCESSING DIRECTION

Approach #1: Top-to-Bottom (Pull)
→ Start with the root and "pull" data up from its children.
→ Tuples are always passed with function calls.

Approach #2: Bottom-to-Top (Push)
→ Start with leaf nodes and "push" data to their parents.
→ We will see this later in HyPer and Peloton ROF.

26

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://15721.courses.cs.cmu.edu/spring2019/papers/19-compilation/p539-neumann.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/21-vectorization2/menon-vldb2017.pdf

15-721 (Spring 2023)

PLAN PROCESSING DIRECTION

Approach #1: Top-to-Bottom (Pull)
→ Start with the root and "pull" data up from its children.
→ Tuples are always passed with function calls.

Approach #2: Bottom-to-Top (Push)
→ Start with leaf nodes and "push" data to their parents.
→ We will see this later in HyPer and Peloton ROF.

26

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://15721.courses.cs.cmu.edu/spring2019/papers/19-compilation/p539-neumann.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/21-vectorization2/menon-vldb2017.pdf
https://github.com/duckdb/duckdb/issues/1583

15-721 (Spring 2023)

SELECT R.id, S.cdate
FROM R JOIN S

ON R.id = S.id
WHERE S.value > 100

PUSH-BASED ITERATOR MODEL

for t2 in S:
if evalPred(t):

if probeHashTable(t2):
emit(projection(t1⨝t2))

2

for t1 in R:
buildHashTable(t1)

1

27

Pipeline #1

Pipeline #2

R S

R.id=S.id

value>100

R.id, S.cdate

⨝
s

p

Control Flow
Data Flow

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

PLAN PROCESSING DIRECTION

Approach #1: Top-to-Bottom (Pull)
→ Easy to control output via LIMIT.
→ Parent operator blocks until its child returns with a tuple.
→ Additional overhead because operators' next functions are

implemented as virtual functions.
→ Branching costs on each next invocation.

Approach #2: Bottom-to-Top (Push)
→ Allows for tighter control of caches/registers in pipelines.
→ Difficult to control output via LIMIT.
→ Difficult to implement Sort-Merge Join.

28

PUSH VS. PULL-BASED LOOP FUSION IN
QUERY ENGINES
ARXIV 2016

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://arxiv.org/abs/1610.09166
https://arxiv.org/abs/1610.09166

15-721 (Spring 2023)

TODAY’S AGENDA

MonetDB/X100 Analysis

Processing Models

Parallel Execution

29

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

PARALLEL EXECUTION

The DBMS executes multiple tasks simultaneously
to improve hardware utilization.
→ Active tasks do not need to belong to the same query.

Approach #1: Inter-Query Parallelism

Approach #2: Intra-Query Parallelism

30

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

INTER-QUERY PARALLELISM

Improve overall performance by allowing multiple
queries to execute simultaneously.
→ Most DBMSs use a simple first-come, first-served policy.

OLAP queries have parallelizable and non-
parallelizable phases. The goal is to always keep all
cores active.

We will discuss scheduling queries and multiplexing
tasks on cores in the next lecture.

31

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

INTRA-QUERY PARALLELISM

Improve the performance of a single query by
executing its operators in parallel.

Approach #1: Intra-Operator (Horizontal)

Approach #2: Inter-Operator (Vertical)

These techniques are not mutually exclusive.

There are parallel algorithms for every relational
operator.

32

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

INTRA-OPERATOR PARALLELISM

Approach #1: Intra-Operator (Horizontal)
→ Operators are decomposed into independent instances that

perform the same function on different subsets of data.

The DBMS inserts an exchange operator into the
query plan to coalesce results from children
operators.

33

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

SELECT A.id, B.value
FROM A JOIN B
ON A.id = B.id

WHERE A.value < 99
AND B.value > 100

INTRA-OPERATOR PARALLELISM

34

A2A1 A3

Build HT Build HT Build HT

1 2 3

Exchange

A B

⨝
s

p

s
s s s
p p p

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

SELECT A.id, B.value
FROM A JOIN B
ON A.id = B.id

WHERE A.value < 99
AND B.value > 100

INTRA-OPERATOR PARALLELISM

34

A2A1 A3

Build HT Build HT Build HT

1 2 3

Exchange

A B

⨝
s

p

s
s s s
p p p

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

SELECT A.id, B.value
FROM A JOIN B
ON A.id = B.id

WHERE A.value < 99
AND B.value > 100

INTRA-OPERATOR PARALLELISM

34

A2A1 A3

Build HT Build HT Build HT

1 2 3

Exchange

A B

⨝
s

p

s
s s s

⨝

p p p

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

SELECT A.id, B.value
FROM A JOIN B
ON A.id = B.id

WHERE A.value < 99
AND B.value > 100

INTRA-OPERATOR PARALLELISM

34

A2A1 A3

Build HT Build HT Build HT

1 2 3

Exchange

A B

⨝
s

p

s
s s s

B1 B2 B3
1 2 3

s s s

⨝

p p p p p p

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

SELECT A.id, B.value
FROM A JOIN B
ON A.id = B.id

WHERE A.value < 99
AND B.value > 100

INTRA-OPERATOR PARALLELISM

34

A2A1 A3

Build HT Build HT Build HT

1 2 3

Exchange

A B

⨝
s

p

s
s s s

B1 B2 B3
1 2 3

s s s

Probe HT Probe HT Probe HT

⨝

p p p p p p

Exchange

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

SELECT A.id, B.value
FROM A JOIN B
ON A.id = B.id

WHERE A.value < 99
AND B.value > 100

INTRA-OPERATOR PARALLELISM

34

A2A1 A3

Build HT Build HT Build HT

1 2 3

Exchange

A B

⨝
s

p

s
s s s

B1 B2 B3
1 2 3

s s s

Probe HT Probe HT Probe HT

⨝

p p p p p p

Exchange

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

INTER-OPERATOR PARALLELISM

Approach #2: Inter-Operator (Vertical)
→ Operations are overlapped in order to pipeline data from

one stage to the next without materialization.
→ Workers execute multiple operators from different

segments of a query plan at the same time.
→ Still need exchange operators to combine intermediate

results from segments.

Also called pipelined parallelism.

35

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

SELECT *
FROM A
JOIN B
JOIN C
JOIN D

INTER-OPERATOR PARALLELISM

36

A B

⨝

C D

⨝

⨝

A

⨝
B

⨝
C D

⨝

Exchange Exchange

Exchange

⨝

3 4

1 2

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

PARTING THOUGHTS

The easiest way to implement something is not
going to always produce the most efficient
execution strategy for modern CPUs.

We will see that vectorized / bottom-up execution
will be the better way to execute OLAP queries.

38

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

NEXT CLASS

Query Task Scheduling

39

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

	Introduction
	Slide 1: Query Execution
	Slide 2: LAST CLASS
	Slide 3: SEQUENTIAL SCAN OPTIMIZATIONS
	Slide 4: EXECUTION OPTIMIZATION
	Slide 5: OPTIMIZATION GOALS
	Slide 6: OPTIMIZATION GOALS
	Slide 7: QUERY EXECUTION
	Slide 8: TODAY’S AGENDA

	MonetDB/X100
	Slide 9: MONETDB/X100 (2005)
	Slide 10: CPU OVERVIEW
	Slide 11: DBMS / CPU PROBLEMS
	Slide 12: BRANCH MISPREDICTION
	Slide 13: BRANCH MISPREDICTION
	Slide 14: BRANCH MISPREDICTION
	Slide 15: SELECTION SCANS
	Slide 16: SELECTION SCANS
	Slide 17: SELECTION SCANS
	Slide 18: EXCESSIVE INSTRUCTIONS
	Slide 19: EXCESSIVE INSTRUCTIONS

	Processing Models
	Slide 20: PROCESSING MODEL
	Slide 21: ITERATOR MODEL
	Slide 22: ITERATOR MODEL
	Slide 23: ITERATOR MODEL
	Slide 24: ITERATOR MODEL
	Slide 25: ITERATOR MODEL
	Slide 26: MATERIALIZATION MODEL
	Slide 27: MATERIALIZATION MODEL
	Slide 28: MATERIALIZATION MODEL
	Slide 29: MATERIALIZATION MODEL
	Slide 30: MATERIALIZATION MODEL
	Slide 31: VECTORIZATION MODEL
	Slide 32: VECTORIZATION MODEL
	Slide 33: VECTORIZATION MODEL
	Slide 34: VECTORIZATION MODEL
	Slide 35: OBSERVATION
	Slide 36: PLAN PROCESSING DIRECTION
	Slide 37: PLAN PROCESSING DIRECTION
	Slide 38: PUSH-BASED ITERATOR MODEL
	Slide 39: PLAN PROCESSING DIRECTION

	Parallelism
	Slide 40: TODAY’S AGENDA
	Slide 41: PARALLEL EXECUTION
	Slide 42: INTER-QUERY PARALLELISM
	Slide 43: INTRA-QUERY PARALLELISM
	Slide 44: INTRA-OPERATOR PARALLELISM
	Slide 45: INTRA-OPERATOR PARALLELISM
	Slide 46: INTRA-OPERATOR PARALLELISM
	Slide 47: INTRA-OPERATOR PARALLELISM
	Slide 48: INTRA-OPERATOR PARALLELISM
	Slide 49: INTRA-OPERATOR PARALLELISM
	Slide 50: INTRA-OPERATOR PARALLELISM
	Slide 51: INTER-OPERATOR PARALLELISM
	Slide 52: INTER-OPERATOR PARALLELISM

	Conclusion
	Slide 53: PARTING THOUGHTS
	Slide 54: NEXT CLASS

