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LAST CLASS

Last two lectures were about minimize the amount
of data that the DBMS processes when executing
sequential scans.

We are now going to start discussing ways to
improve the DBMS's query execution performance.
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SEQUENTIAL SCAN OPTIMIZATIONS

Data Prefetching / Scan Sharing

Task Parallelization / Multi-threading
Clustering / Sorting

Late Materialization

Materialized Views / Result Caching
Data Skipping

Data Parallelization / Vectorization
Code Specialization / Compilation
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EXECUTION OPTIMIZATION

DBMS engineering is an orchestration of a bunch of
optimizations that seek to make full use of
hardware. There is not a single technique that is
more important than others.

Andy's Unscientific Top-3 Optimizations:
— Data Parallelization (Vectorization)

— Task Parallelization (Multi-threading)

— Code Specialization (Compilation)

$2CMU-DB

15-721 (Spring 2023)


https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

$2CMU-DB

15-721 (Spring 2023)

OPTIMIZATION GOALS

Approach #1: Reduce Instruction Count
— Use fewer instructions to do the same amount of work.

Approach #2: Reduce Cycles per Instruction
— Execute more CPU instructions in fewer cycles.

Approach #3: Parallelize Execution
— Use multiple threads to compute each query in parallel.
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OPTIMIZATION GOALS

From: Linus Torvalds <t0rvalds@linux—foundation.org>

To: Arnd Bergmann <arnd@kernel.org>, "Jason A. Donenfeld" <Jason@zx2c4.com>
14[1)1)]7()21(:11 ## CC: Linux Kernel Mailing List <linux-kernel@vger.kernel.org>

. | Subject: Re: [PATCH v2 07/13] asm-generic: unaligned always use struct

— Use fewer in| helpers
Date: Tue, 18 May 2021 06:12:03 -1000 [thread overview]
Message-ID: <CAHk-:wjqunyhAFSSserN@—
, Yfo7E6jUNSikC_thAKWTTsA@mail.gmail.com> (raw)
Approach #‘ In-Reply-To:

<CAK8P3a3hbts4k+rran8278ezCaME@UngqkdLW5N0p52YHUQQ@mail.gmail.com>
— Execute moj

On Tue, May 18, 2021 at 5:42 AM Arnd Bergmann <arnd@kernel.org> wrote:
>

To be on the safe side, we could pass —fno—tree-loop-vectorize along

>

> with -03 on the affected gcc versions, or use a bigger hammer
14[1)1)]7()2‘(:11 ## > (not use -03 at all, always set —fno—tree—loop-vectorize, o).
— Use multipl

—

personally think -03 in general is unsafe.

It has historically been horribly buggy. It's gotten better, but this
case clearly shows that "gotten better" really isn't that high of a
bar.
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QUERY EXECUTION

A query plan is a DAG of operators.

An operator instance is an
invocation of an operator on a unique
segment of data.

A task is a sequence of one or more
operator instances (also sometimes
referred to as a pipeline).
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SELECT A.id, B.value
FROM A JOIN B
ON A.id = B.1id
WHERE A.value < 99
AND B.value > 100

............................

p #2

--------------------------------------------------

Pipeline #
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TODAY’S AGENDA

MonetDB/X100 Analysis
Processing Models
Parallel Execution
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MONETDB/X106 (2085)

Low-level analysis of execution bottlenecks for in-
memory DBMSs on OLAP workloads.

— Show how DBMS are designed incorrectly for modern
CPU architectures.

Based on these findings, they proposed a new

DBMS called MonetDB/X100.

— Renamed to Vectorwise and acquired by Actian in 2010.
— Rebranded as Vector and Avalanche.

MONETDB/X100: HYPER-PIPELINING
UERY EXECUTION
IDR 2005
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CPU OVERVIEW

CPUs organize instructions into pipeline stages.

The goal is to keep all parts of the processor busy at
each cycle by masking delays from instructions that
cannot complete in a single cycle.

Super-scalar CPUs support multiple pipelines.
— Execute multiple instructions in parallel in a single cycle if
they are independent (out-of-order execution).

Everything is fast until there is a mistake...
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DBMS / CPU PROBLEMS

Problem #1: Dependencies
— [f one instruction depends on another instruction, then it
cannot be pushed immediately into the same pipeline.

Problem #2: Branch Prediction

— The CPU tries to predict what branch the program will
take and fill in the pipeline with its instructions.

— If it gets it wrong, it must throw away any speculative
work and flush the pipeline.
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BRANCH MISPREDICTION

Because of long pipelines, CPUs will speculatively
execute branches. This potentially hides the long
stalls between dependent instructions.

The most executed branching code in a DBMS is
the filter operation during a sequential scan.
But this is (nearly) impossible to predict correctly.
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C++ C++ language Declarations = Attributes

C++ attribute: Iikely, unlikely (since C++20)

Allow the compiler to optimize for the case where paths of execution including that statement are more or less likely
than any alternative path of execution that does not include such a statement

Syntax

[[likely]] (1)
[[unlikely]] (2)
Explanation

These attributes may be applied to labels and statements (other than declaration-statements). They may not be
simultaneously applied to the same label or statement.

1) Applies to a statement to allow the compiler to optimize for the case where paths of execution including that
statement are more likely than any alternative path of execution that does not include such a statement.

2) Applies to a statement to allow the compiler to optimize for the case where paths of execution including that
statement are less likely than any alternative path of execution that does not include such a statement.

A path of execution is deemed to include a label if and only if it contains a jump to that label:

int f(int i) {
switch(i) {
case 1: [[fallthrough]];
[[likely]] case 2: return 1;
}

return 2;

i == 2 is considered more likely than any other value of i, but the [[likelyl] has no effect onthe i == 1 case
even though it falls through the case 2: label.

Example

This section is incomplete
Reason: no example
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Don’t use the [[likely]] or
[[unlikely]] attributes

Posted on 2020-08-27 by Aaron Ballman

Create account  [search

Q

View Edit History

ly (since C++20)

re paths of execution i

- ution includin

s not include such a statemeng that statement are more or less likel
y

C++20 introduced the likelihood attributes [[1ikely] 7 and [(unli kelyll as away for a

programmer to give an opt mization hint to their implementation that a given code path is
more or less likely to be taken. On its face, this seems like a great set of attributes because
you can give hints to the optimizer in a way that is hopefully understood by all

implementations and will result in faster performance. What's not to love?

The attribute is specified to appertain to arbitrary statements or labels with the

tements (other
. P . s B . . . than de 1
recommended practice “to optimize for the case where paths of execution including it are ment. claration-statements). They may not be
arbitrarily more likely|unlikely than any alternative path of execution that does not r to optimize for the case where path
paths of execution i
including that

. . , . . ive path of executi
include such an attribute on a statement or label. * Pop quiz, what does this code do? xecution that does not include such a stat
statement.

r to optimize for
the case wh
e path of e : ere paths of PN
xecution that does not includeiﬁi;u:o? ItﬂCluding that
statement.

if (something) {
[[likelyll;

[[unlikely]] H
foo(something) ;

Yy t ]
and or conta S a jump to that label:

}

Sorry, but the answer key for this quiz is currently unavailable. However, one rule you
should follow about how to use these attributes is: never allow both attributes to appear in
the same path of execution. Lest you think, “but who would write such bad code?”, ue of i, but the [[likely]] has no effect o ;

consider this reasonable—looking-but—probably-very—unfortunate code: nthe @ = I case

P SN |
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SELECTION SCANS

SELECT * FROM table
WHERE key > $(low)
AND key < $(high)

Source: Bogdan Raducanu
£CMU-DB
e ( i

111111111111111 )
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SELECTION SCANS

Scalar (Branching) Scalar (Branchless)
i=20 i=20
for t in table: for t in table:
key = t.key copy(t, outputl[il])
if (key>low) && (key<high): key = t.key
copy(t, outputl[il) delta = (key>1ow 771 :0) &
i=1i+1 Y (key<high ? 1 : 0)
i =1 + delta

Source: Bogdan Raducanu
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SELECTION SCANS

)
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Selectivity

Source: Bogdan Raducanu
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EXCESSIVE INSTRUCTIONS

The DBMS needs to support different data types, so
it must check a values type before it performs any

operation on that value.

— This is usually implemented as giant switch statements.
— Also creates more branches that can be difficult for the
CPU to predict reliably.

Example: Postgres' addition for NUMERIC types.
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Example: Postgres'

-

*
Ed

int

add_wvar() -

Full version of add functionality on variable level (handling signs).
result might point to one of the operands toc without danger.

PGTYPESnumeric_add(numeric *varl, numeric *var2, numeric *result)
{

Ed

* Decide on the signs of the two variables what to do
*
if {varl-»sign == NUMERIC PO0S)
%f (var2->sign == NUMERIC_ P0S)

*®

* Both are positive result = +(ABS(varl) + ABS(var2))
E3

1f (add_abs{varl, var2, result) I= 0)
return -1;
result->sign = NUMERIC_POS;

else
£

* varl is positive, var2 is negative Must compare absolute values
Ed

Ew;tck (cmp_abs({varl, war2))

* ABS(varl) == ABS(var2)
* result = ZERD
-

#,’ _______
zero_var(result);
result-»>rscale Max{varl->rscale, var2->rscale);

éesult—bdscale - Max{varl-sdscale, var2->dscale);
reak;

* ABS(varl) = ABS(var2)
* result = +(ABS(varl) - ABS(var2))
3

*

1f (sub_abs({varl, var2, result) 1= o)
return -1;

result->sign = NUMERIC POS;

break;
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PROCESSING MODEL

A DBMS's processing model defines how the

system executes a query plan.
— Different trade-offs for workloads (OLTP vs. OLAP).

Approach #1: Iterator Model
Approach #2: Materialization Model

Approach #3: Vectorized / Batch Model
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ITERATOR MODEL

Each query plan operator implements a next

function.

— On each invocation, the operator returns either a single
tuple or a null marker if there are no more tuples.

— The operator implements a loop that calls next on its
children to retrieve their tuples and then process them.

Also called Volcano or Pipeline Model.
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ITERATOR MODEL

Control Flow —»
Data F
ata Flow=> noxt() [for t in child.NextQ):
emit(projection(t)) v..
[
.....
e
.P%zxt() for t, in left.Next(): "..
buildHashTable(t,) ‘
for t, in right.Next(): v.,.
if probe(t,): emit(t,t,) ".,.
...
ol

Next() |for t in child.Next():
if evalPred(t): emit(t)

Next() |for t in R:
emit(t)

l\ﬁxxt() for t in S:
emit(t)

A

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100
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Control Flow =

ITERATOR MODEL

Data Flow =

for t in child.Next():
emit(proj*ction(t))

)

for t, ja=left.Next():
byfldHashTableft,)

fgr t, in right.lfext():
if probe(t,): pmit(t,t,)

/

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

Single Tuplel

for t in child.Next():
if evalPred(t): emit(t)

for t in S:
emit(t)

for t in R:
emit(t)=—"

$2CMU-DB

15-721 (Spring 2023)

\
G value>100
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ITERATOR MODEL -

Control Flow — ;
Data Flow —> T A G ) SELECT R. 1d, S.cdate
emit(proj*ctiontt)) FROM R JOIN S
‘ \ ON R.id = S.id

for t, in left.Next(): WHERE S.value > 100

buildHashTable(t,)
for t, in right.Next() t

if probe(th: emit(t,X<it,)
R \ n R.id, S.cdate

for t in child.Next():
if evalPr*d(t): emit(l)

) \
e for t in R: for t inj: e qvalue>1@@
emlt(t) emit(t R s

$2CMU-DB
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ITERATOR MODEL

This is used in almost every DBMS. Allows for
tuple pipelining.

Some operators must block until their children emit

all their tuples.
— Joins, Subqueries, Order By

Output control works easily with this approach.

WioLie Omonsons & nuone cloudera

<2CMU-DB Z88lserver (7] Greenplum  @PosigesOL  ORACLE  D\MysSQL.

15-721 (Spring 2023)
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MATERIALIZATION MODEL

Each operator processes its input all at once and

then emits its output all at once.

— The operator "materializes" its output as a single result.

— The DBMS can push down hints (e.g., LIMIT) to avoid
scanning too many tuples.

— Can send either a materialized row or a single column.

The output can be either whole tuples (NSM) or
subsets of columns (DSM).
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MATERIALIZATION MODEL

Control Flow =

Data Flow —> out = [ ] SELECT R.id, S.cdate
for t in child.Output():
0( out.add(projection(t)) FROM R :,'-OIN S .
TETUTT Dtrén_ ON R.id = S.id
X WHERE S.value > 100
out = [ 1]
for t, in left.Output():
buildHashTable(t, 1
for t, in right.Outpgut(): .
if probe(t,): out]add(tbdt,) TU rid, s.caate
return out 1

f IX'R.id=S.id
out = [ ]

fgpr t in child.Output():

\
if evalPred(t): out.add(t) lue>100
L All Tuples l return out qva -
eout=[] out = [ ] R s

for t in R: for t in S:

out.add(t) out.add(t)
$CMUDB  |return out — return out

15-721 (Spring 2023)
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MATERIALIZATION MODEL

Control Flow — ;
Data Flow —> out = [ ] SELECT R.id, S.cdate
for t in child.Output():
GC out.add(projectJon(t)) FROM R :.'-OIN > .
TETUTT Dtrén_ ON R.id = S.id
X _J WHERE S.value > 100
out = [ 1]
for t, in left.Output():
buildHashTablegt,) 1

~for t, in right
( if probe(t,)
return ou

:Tout.add(

'

out = [ ] out = [ ]
for t in R: for t in S:
out.add(t) out.add(
£=CMU-DB return out return out

15-721 (Spring 2023)
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MATERIALIZATION MODEL

Control Flow — ;
Data Flow —> out = [ ] SELECT R.id, S.cdate
for t in child.Output():
e< out.add(projectJon(t)) FROM R :,'-OIN S .
TP Ot _ ON R.id = S.1id
X WHERE S.value > 100
out = [ ]
for t, in left.Output():
buildHashTablegt,) 1
=for t, in right Output(): 2 adl © el
(. if probe(t,)/ out.add(t,>t) n e mecaare
return ou 1
~ NR.id=S.id
out = [ ] ,\
for t in S:
if evalpre/d/): out.add(t) O alues100
L return out z
out = [ ] IHL !i;
for t in R:
out.add(t)
£=CMU-DB return out

15-721 (Spring 2023)
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MATERIALIZATION MODEL

Better for OLTP workloads because queries only

access a small number of tuples at a time.
— Lower execution / coordination overhead.
— Fewer function calls.

Not good for OLAP queries with large intermediate
results.

TERADATA =% CrateDB RAVENDSB
monetdb ) YOLTDB

0CMU -DB


https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

VECTORIZATION MODEL

Like the Iterator Model where each operator
implements a next function, but...

Each operator emits a batch of tuples instead of a

single tuple.

— The operator's internal loop processes multiple tuples at a
time.

— The size of the batch can vary based on hardware or query
properties.

$2CMU-DB
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VECTORIZATION MODEL

Control Flow =——» .
Data Flow —> out = [ ] SELECT R.id, S.cdate
for t in child.Next():
out.add(projection(t)) FROM R :,'.OIN S .
if |out|>n: emit(out) ON R.id = S.id
WHERE S.value > 100
out = [ ]
for t, in left.Next():
buildHashTable(t,) 1
for t, in right.Next(): :
if probe(t,): out.add(t>dt,) TU k.o, s.ciete
if |out|>n: emit(out) 1

NR.id=S.id
out = [ ]

for t in child.Next():

if evalPred(t): out.add(t) O alues100
if |out|>n: emit(out)

X
out = [ ] out = [ ] R s

for t in R: for t in S:
out.add(t) out.add(t)
££CMU-DB if |out|>n: emit(out) if |out|>n: emit(out)

15-721 (Spring 2023)
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VECTORIZATION MODEL

Control Flow =——»
Data Flow —» out = [ ]
*for t in child.Next():
(: out.add(projection(t))
1 n: emit(out)
|

out = [ ]

rfor t, in left.Next():
buildHashTableft,)

for t, in right.
if probe(t,):

xt():
uf. add(t,PXt,)
if Jout|>n: emit(dyut)
N

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

-f

C

(0)

t=1[1
r t in child.Next(\
if evalPred(t)?% out.§dd(t)

W (out
A

out = [ ]
for t in R:
out.add(t)

£2CMU-DB if |out|>n:

Tuple Batch

emit(out)

out = [ ]
for t in S:
out.add(t)
if |out|>n: emit(out)

15-721 (Spring 2023)
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VECTORIZATION MODEL

Ideal for OLAP queries because it greatly reduces
the number of invocations per operator.

Allows for operators to more easily use vectorized
(SIMD) instructions to process batches of tuples.

Ak @-Dwckos
presto . “*vectorwise %% snowflake =E=
_WNr— @ dCItCIbI'iCkS CockroachDB

ZSOL Server
Eé}‘,?ﬁ.?‘% " ClickHouse gtrino

$CMU-DB
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OBSERVATION

In the previous examples, the DBMS was starting at
the root of the query plan and pulling data up from
leaf operators.

This is the how most DBMSs implement their
execution engine.

£=CMU-DB
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PLAN PROCESSING DIRECTION

Approach #1: Top-to-Bottom (Pull)

— Start with the root and "pull" data up from its children.
— Tuples are always passed with function calls.

Approach #2: Bottom-to-Top (Push)

— Start with leaf nodes and "push" data to their parents.
— We will see this later in HyPer and Peloton ROF.

;.l HyPer
@*= DuckDB

Y% snowflake
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CESSTNG DIRECTION

Move to push-based execution model #1583

[GJELELEY Mytherin opened this issue on Apr 8, 2021 - 2 comments

Mytherin commented on Apr 8, 2021 - edited ~ Collaborator ===

Currently our execution model operates in a pull-based volcano-like fashion. That means that an operator exposes a
Getchunk function that fetches a result chunk from the operator. The operator will, in turn, fetch result chunks from its

children using this same interface until it reaches a source node (e.g. a base table scan or a parquet file) which can actually
emit files, after which execution resumes.

A simple example of such an operator is the projectian:

void PhysicalProjection: :GetchunkInternal(ExecutionContext &context, patachunk &chunk, PhysicaloperatorState *s
auto state = reinterpret_cas[<PhysicalPrnjectinnState *>(state_p);

// get the next chunk from the child
children[e] ->GetChunk(context, state->child_chunk, state->child_state. get());
if (state->child_chunk.size() == e) {

return;

}

state-)executnr.Execute(state->child_chunk, chunk);

This works semi-elegantly and has generally served us well. However, now that we have introduced pipeline parallelism the
model is beginning to show cracks. In the pipeline parallelism model, we no longer want to have the behavior of "pulling
from the root node". Instead, we want to execute pipelines separately.

The way this is done right now is a semi-hacky solution on top of this model. If we have a pipeline (e.g. a hash table build),
we pull from the child node of that hash table using Getchunk , and then call sink with the result of this. Partitioning is
done by writing partition information to the thread-local ExecutionContext object, and using that in the source node to
determine the desired partitioning. For example, here is how this is done in the TableScan

// table scan

auto &task = context.task;

// check if there is any parallel state to fetch
State.parallel_state = nullptr;

auto task_info = task task info findlthie):

er
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PUSH-BASED ITERATOR MODEL

for t, in R:
buildHashTable(t,)

b

for t, in S:
if evalPred(t):
if probeHashTable(t,):
emit(projection(t,Xt,))

SELECT R.id, S.cdate
FROM R JOIN S

ON R.id = S.1id
WHERE S.value > 100

—Pipeline #2

Pipeline #1
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PLAN PROCESSING DIRECTION

Approach #1: Top-to-Bottom (Pull)

— Easy to control output via LIMIT.

— Parent operator blocks until its child returns with a tuple.

— Additional overhead because operators' next functions are
implemented as virtual functions.

— Branching costs on each next invocation.

Approach #2: Bottom-to-Top (Push)

— Allows for tighter control of caches/registers in pipelines.
— Difficult to control output via LIMIT.
— Difficult to implement Sort-Merge Join.

— |PUSH VS. PULL-BASED LOOP FUSION IN

UERY ENGINES

$2CMU-DB

15-721 (Spring 2023)
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TODAY’S AGENDA

Elomet DBLHO0Amalusis
Preeessing Medels

Parallel Execution

$2CMU-DB
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PARALLEL EXECUTION

The DBMS executes multiple tasks simultaneously

to improve hardware utilization.
— Active tasks do not need to belong to the same query.

Approach #1: Inter-Query Parallelism
Approach #2: Intra-Query Parallelism

$2CMU-DB

15-721 (Spring 2023 )
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INTER-QUERY PARALLELISM

Improve overall performance by allowing multiple

queries to execute simultaneously.
— Most DBMSs use a simple first-come, first-served policy.

OLAP queries have parallelizable and non-
parallelizable phases. The goal is to always keep all
cores active.

We will discuss scheduling queries and multiplexing
tasks on cores in the next lecture.

£=CMU-DB

15-721 (Spring 2023 )
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INTRA-QUERY PARALLELISM

Improve the performance of a single query by
executing its operators in parallel.

Approach #1: Intra-Operator (Horizontal)
Approach #2: Inter-Operator (Vertical)

These techniques are not mutually exclusive.

There are parallel algorithms for every relational
operator.

£=CMU-DB

15-721 (Spring 2023 )
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INTRA-OPERATOR PARALLELISM

Approach #1: Intra-Operator (Horizontal)

— Operators are decomposed into independent instances that
perform the same function on different subsets of data.

The DBMS inserts an exchange operator into the

query plan to coalesce results from children
operators.
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INTRA-OPERATOR PARALLELISM

SELECT A.id, B.value
FROM A JOIN B
ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

Exchange

BuildHT W BuildHT || BuildHT @
i i

[><1
2N
0'
A B
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INTRA-OPERATOR PARALLELISM

SELECT A.id, B.value
FROM A JOIN B
ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

Exchange

— - e
| BuildHT § BuildHT | BuildHT | @

N
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INTRA-OPERATOR PARALLELISM

SELECT A.id, B.value
FROM A JOIN B
ON A.id = B.1id

>t><1 WHERE A.value < 99
AND B.value > 100

Exchange

Build HT Build HT Build HT @
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INTRA-OPERATOR PARALLELISM

SELECT A.id, B.value
FROM A JOIN B
ON A.id = B.1id

>t><1 WHERE A.value < 99
AND B.value > 100
Exchange

— - e
| BuildHT § BuildHT | BuildHT | @

P>
W

£
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INTRA-OPERATOR PARALLELISM

SELECT A.id, B.value
Exchange FROM A JOIN B
ON A.id = B.1id

WHERE A.value < 99
AND B.value > 100

TC

O O
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INTRA-OPERATOR PARALLELISM

SELECT A.id, B.value
FROM A JOIN B
ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

TC

Exchange
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INTER-OPERATOR PARALLELISM

Approach #2: Inter-Operator (Vertical)

— Operations are overlapped in order to pipeline data from
one stage to the next without materialization.

— Workers execute multiple operators from different
segments of a query plan at the same time.

— Still need exchange operators to combine intermediate
results from segments.

Also called pipelined parallelism.
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INTER-OPERATOR PARALLELISM

SELECT =*
FROM A
JOIN B
JOIN C
JOIN D
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PARTING THOUGHTS

The easiest way to implement something is not
going to always produce the most efficient
execution strategy for modern CPUs.

We will see that vectorized / bottom-up execution
will be the better way to execute OLAP queries.
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NEXT CLASS

Query Task Scheduling
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