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LAST CLASS

Last two lectures were about minimize the amount 
of data that the DBMS processes when executing 
sequential scans.

We are now going to start discussing ways to 
improve the DBMS's query execution performance.
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SEQUENTIAL SCAN OPTIMIZATIONS

Data Prefetching / Scan Sharing

Task Parallelization / Multi-threading

Clustering / Sorting

Late Materialization

Materialized Views / Result Caching

Data Skipping

Data Parallelization / Vectorization

Code Specialization / Compilation
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EXECUTION OPTIMIZATION

DBMS engineering is an orchestration of a bunch of 
optimizations that seek to make full use of 
hardware. There is not a single technique that is 
more important than others.

Andy's Unscientific Top-3 Optimizations:
→ Data Parallelization (Vectorization)
→ Task Parallelization (Multi-threading)
→ Code Specialization (Compilation)

4

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023


15-721 (Spring 2023)

OPTIMIZATION GOALS

Approach #1: Reduce Instruction Count
→ Use fewer instructions to do the same amount of work.

Approach #2: Reduce Cycles per Instruction
→ Execute more CPU instructions in fewer cycles.

Approach #3: Parallelize Execution
→ Use multiple threads to compute each query in parallel.
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QUERY EXECUTION

A query plan is a DAG of operators.

An operator instance is an 
invocation of an operator on a unique 
segment of data.

A task is a sequence of one or more 
operator instances (also sometimes 
referred to as a pipeline).
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TODAY’S AGENDA

MonetDB/X100 Analysis

Processing Models

Parallel Execution
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MONETDB/X100 (2005)

Low-level analysis of execution bottlenecks for in-
memory DBMSs on OLAP workloads.
→ Show how DBMS are designed incorrectly for modern 

CPU architectures.

Based on these findings, they proposed a new 
DBMS called MonetDB/X100.
→ Renamed to Vectorwise and acquired by Actian in 2010.
→ Rebranded as Vector and Avalanche.
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CPU OVERVIEW

CPUs organize instructions into pipeline stages.

The goal is to keep all parts of the processor busy at 
each cycle by masking delays from instructions that 
cannot complete in a single cycle.

Super-scalar CPUs support multiple pipelines.
→ Execute multiple instructions in parallel in a single cycle if 

they are independent (out-of-order execution).

Everything is fast until there is a mistake…
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DBMS / CPU PROBLEMS

Problem #1: Dependencies
→ If one instruction depends on another instruction, then it 

cannot be pushed immediately into the same pipeline.

Problem #2: Branch Prediction
→ The CPU tries to predict what branch the program will 

take and fill in the pipeline with its instructions.
→ If it gets it wrong, it must throw away any speculative 

work and flush the pipeline.
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BRANCH MISPREDICTION

Because of long pipelines, CPUs will speculatively 
execute branches. This potentially hides the long 
stalls between dependent instructions.

The most executed branching code in a DBMS is 
the filter operation during a sequential scan.
But this is (nearly) impossible to predict correctly.
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SELECT * FROM table
WHERE key > $(low)

AND key < $(high)

SELECTION SCANS
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SELECTION SCANS

12

Scalar (Branching)

i = 0
for t in table:
key = t.key
if (key>low) && (key<high):

copy(t, output[i])
i = i + 1

Scalar (Branchless)

i = 0
for t in table:
copy(t, output[i])
key = t.key
delta = (key>low ? 1 : 0) &

⮱(key<high ? 1 : 0)
i = i + delta

Source: Bogdan Raducanu
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SELECTION SCANS
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EXCESSIVE INSTRUCTIONS

The DBMS needs to support different data types, so 
it must check a values type before it performs any 
operation on that value.
→ This is usually implemented as giant switch statements.
→ Also creates more branches that can be difficult for the 

CPU to predict reliably.

Example: Postgres' addition for NUMERIC types.
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PROCESSING MODEL

A DBMS's processing model defines how the 
system executes a query plan.
→ Different trade-offs for workloads (OLTP vs. OLAP).

Approach #1: Iterator Model

Approach #2: Materialization Model

Approach #3: Vectorized / Batch Model
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ITERATOR MODEL

Each query plan operator implements a next
function.
→ On each invocation, the operator returns either a single 

tuple or a null marker if there are no more tuples.
→ The operator implements a loop that calls next on its 

children to retrieve their tuples and then process them.

Also called Volcano or Pipeline Model.
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R S

R.id=S.id

value>100

R.id, S.cdate
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SELECT R.id, S.cdate
FROM R JOIN S

ON R.id = S.id
WHERE S.value > 100

ITERATOR MODEL

for t in R:
emit(t)

for t1 in left.Next():
buildHashTable(t1)

for t2 in right.Next():
if probe(t2): emit(t1⨝t2)

for t in child.Next():
emit(projection(t))

for t in child.Next():
if evalPred(t): emit(t)

for t in S:
emit(t)

Next()

Next()

Next() Next()

Next()
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ITERATOR MODEL

This is used in almost every DBMS. Allows for 
tuple pipelining.

Some operators must block until their children emit 
all their tuples.
→ Joins, Subqueries, Order By

Output control works easily with this approach.
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MATERIALIZATION MODEL

Each operator processes its input all at once and 
then emits its output all at once.
→ The operator "materializes" its output as a single result.
→ The DBMS can push down hints (e.g., LIMIT) to avoid 

scanning too many tuples.
→ Can send either a materialized row or a single column.

The output can be either whole tuples (NSM) or 
subsets of columns (DSM).
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MATERIALIZATION MODEL

out = [ ]
for t in R:

out.add(t)
return out

out = [ ]
for t1 in left.Output():
buildHashTable(t1)

for t2 in right.Output():
if probe(t2): out.add(t1⨝t2)

return out

out = [ ]
for t in child.Output():

out.add(projection(t))
return out

out = [ ]
for t in child.Output():

if evalPred(t): out.add(t)
return out

out = [ ]
for t in S:
out.add(t)

return out

1

2
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All Tuples
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MATERIALIZATION MODEL

Better for OLTP workloads because queries only 
access a small number of tuples at a time.
→ Lower execution / coordination overhead.
→ Fewer function calls.

Not good for OLAP queries with large intermediate 
results.
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VECTORIZATION MODEL

Like the Iterator Model where each operator 
implements a next function, but…

Each operator emits a batch of tuples instead of a 
single tuple.
→ The operator's internal loop processes multiple tuples at a 

time.
→ The size of the batch can vary based on hardware or query 

properties.
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VECTORIZATION MODEL

out = [ ]
for t in R:

out.add(t)
if |out|>n: emit(out)

out = [ ]
for t1 in left.Next():
buildHashTable(t1)

for t2 in right.Next():
if probe(t2): out.add(t1⨝t2)
if |out|>n: emit(out)

out = [ ]
for t in child.Next():

out.add(projection(t))
if |out|>n: emit(out)

out = [ ]
for t in child.Next():
if evalPred(t): out.add(t)
if |out|>n: emit(out)

out = [ ]
for t in S:
out.add(t)
if |out|>n: emit(out)
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VECTORIZATION MODEL
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1

2

3
out = [ ]
for t in S:
out.add(t)
if |out|>n: emit(out)

5

4

Tuple Batch
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VECTORIZATION MODEL

Ideal for OLAP queries because it greatly reduces 
the number of invocations per operator.

Allows for operators to more easily use vectorized 
(SIMD) instructions to process batches of tuples.
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OBSERVATION

In the previous examples, the DBMS was starting at 
the root of the query plan and pulling data up from 
leaf operators.

This is the how most DBMSs implement their 
execution engine.
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PLAN PROCESSING DIRECTION

Approach #1: Top-to-Bottom (Pull)
→ Start with the root and "pull" data up from its children.
→ Tuples are always passed with function calls.

Approach #2: Bottom-to-Top (Push)
→ Start with leaf nodes and "push" data to their parents.
→ We will see this later in HyPer and Peloton ROF.

26
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SELECT R.id, S.cdate
FROM R JOIN S

ON R.id = S.id
WHERE S.value > 100

PUSH-BASED ITERATOR MODEL

for t2 in S:
if evalPred(t):

if probeHashTable(t2):
emit(projection(t1⨝t2))

2

for t1 in R:
buildHashTable(t1)

1

27

Pipeline #1

Pipeline #2

R S

R.id=S.id

value>100

R.id, S.cdate
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PLAN PROCESSING DIRECTION

Approach #1: Top-to-Bottom (Pull)
→ Easy to control output via LIMIT.
→ Parent operator blocks until its child returns with a tuple.
→ Additional overhead because operators' next functions are

implemented as virtual functions.
→ Branching costs on each next invocation.

Approach #2: Bottom-to-Top (Push)
→ Allows for tighter control of caches/registers in pipelines.
→ Difficult to control output via LIMIT.
→ Difficult to implement Sort-Merge Join.

28
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PARALLEL EXECUTION

The DBMS executes multiple tasks simultaneously 
to improve hardware utilization.
→ Active tasks do not need to belong to the same query.

Approach #1: Inter-Query Parallelism

Approach #2: Intra-Query Parallelism

30
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INTER-QUERY PARALLELISM

Improve overall performance by allowing multiple 
queries to execute simultaneously.
→ Most DBMSs use a simple first-come, first-served policy.

OLAP queries have parallelizable and non-
parallelizable phases. The goal is to always keep all 
cores active.

We will discuss scheduling queries and multiplexing 
tasks on cores in the next lecture.
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INTRA-QUERY PARALLELISM

Improve the performance of a single query by 
executing its operators in parallel.

Approach #1: Intra-Operator (Horizontal)

Approach #2: Inter-Operator (Vertical)

These techniques are not mutually exclusive.

There are parallel algorithms for every relational 
operator.
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INTRA-OPERATOR PARALLELISM

Approach #1: Intra-Operator (Horizontal)
→ Operators are decomposed into independent instances that 

perform the same function on different subsets of data.

The DBMS inserts an exchange operator into the 
query plan to coalesce results from children
operators.
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SELECT A.id, B.value
FROM A JOIN B
ON A.id = B.id

WHERE A.value < 99
AND B.value > 100

INTRA-OPERATOR PARALLELISM
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INTER-OPERATOR PARALLELISM

Approach #2: Inter-Operator (Vertical)
→ Operations are overlapped in order to pipeline data from 

one stage to the next without materialization.
→ Workers execute multiple operators from different 

segments of a query plan at the same time.
→ Still need exchange operators to combine intermediate 

results from segments.

Also called pipelined parallelism.
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SELECT *
FROM A
JOIN B
JOIN C
JOIN D

INTER-OPERATOR PARALLELISM
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PARTING THOUGHTS

The easiest way to implement something is not 
going to always produce the most efficient 
execution strategy for modern CPUs.

We will see that vectorized / bottom-up execution 
will be the better way to execute OLAP queries.
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NEXT CLASS

Query Task Scheduling
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