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LAST CLASS

We discussed query processing models.
→ Vectorized model is best for OLAP.
→ Top-to-bottom (pull) approach is probably better.
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QUERY EXECUTION

A query plan is a DAG of operators.

An operator instance is an 
invocation of an operator on a unique 
segment of data.

A task is a sequence of one or more 
operator instances.

A task set is the collection of 
executable tasks for a logical pipeline.
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SCHEDULING

For each query plan, the DBMS must decide where, 
when, and how to execute it.
→ How many tasks should it use?
→ How many CPU cores should it use?
→ What CPU core should the tasks execute on?
→ Where should a task store its output?

The DBMS always knows more than the OS.
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SCHEDULING GOALS

Goal #1: Throughput
→ Maximize the # of completed queries.

Goal #2: Fairness
→ Ensure that no query is starved for resources

Goal #3: Query Responsiveness
→ Minimize tail latencies (especially for short queries)

Goal #4: Low Overhead
→ Workers should spend most of their time executing tasks 

not figuring out what task to run next.
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TODAY’S AGENDA

Worker Allocation

Data Placement

Scheduler Implementations
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PROCESS MODEL

A DBMS’s process model defines how the system 
is architected to support concurrent requests from a 
multi-user application.

A worker is the DBMS component that is 
responsible for executing tasks on behalf of the 
client and returning the results.

We will assume that the DBMS is multi-threaded.
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WORKER ALLOCATION

Approach #1: One Worker per Core
→ Each core is assigned one thread that is pinned to that core 

in the OS.
→ See sched_setaffinity

Approach #2: Multiple Workers per Core
→ Use a pool of workers per core (or per socket).
→ Allows CPU cores to be fully utilized in case one worker at 

a core blocks.
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TASK ASSIGNMENT

Approach #1: Push
→ A centralized dispatcher assigns tasks to workers and 

monitors their progress.
→ When the worker notifies the dispatcher that it is finished, 

it is given a new task.

Approach #1: Pull
→ Workers pull the next task from a queue, process it, and 

then return to get the next task.
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OBSERVATION

Regardless of what worker allocation or task 
assignment policy the DBMS uses, it's important 
that workers operate on local data.

The DBMS's scheduler must be aware of its 
hardware memory layout.
→ Uniform vs. Non-Uniform Memory Access 
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UNIFORM MEMORY ACCESS
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NON-UNIFORM MEMORY ACCESS
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DATA PLACEMENT

The DBMS can partition memory for a database 
and assign each partition to a CPU.

By controlling and tracking the location of 
partitions, it can schedule operators to execute on 
workers at the closest CPU core.

See Linux’s move_pages and numactl
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MEMORY ALLOCATION

What happens when the DBMS calls malloc?
→ Assume that the allocator doesn't already have a chunk of 

memory that it can give out.

Almost nothing:
→ The allocator will extend the process' data segment.
→ But this new virtual memory is not immediately backed by 

physical memory.
→ The OS only allocates physical memory when there is a 

page fault on access.

Now after a page fault, where does the OS allocate 
physical memory in a NUMA system?
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MEMORY ALLOCATION LOCATION

Approach #1: Interleaving
→ Distribute allocated memory uniformly across CPUs.

Approach #2: First-Touch
→ At the CPU of the thread that accessed the memory 

location that caused the page fault.

The OS can try to move memory to another NUMA 
region from observed access patterns.
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DATA PLACEMENT – OLAP
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PARTITIONING VS. PLACEMENT

A partitioning scheme is used to split the database 
based on some policy.
→ Round-robin
→ Attribute Ranges
→ Hashing 
→ Partial/Full Replication

A placement scheme then tells the DBMS where to 
put those partitions.
→ Round-robin
→ Interleave across cores
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OBSERVATION

We have the following so far:
→ Task Assignment Model
→ Data Placement Policy

But how do we decide how to create a set of tasks 
from a logical query plan?
→ This is relatively easy for OLTP queries.
→ Much harder for OLAP queries…
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STATIC SCHEDULING

The DBMS decides how many threads to use to 
execute the query when it generates the plan.
It does not change while the query executes.
→ The easiest approach is to just use the same # of tasks as the 

# of cores.
→ Can still assign tasks to threads based on data location to 

maximize local data processing.
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MORSEL-DRIVEN SCHEDULING

Dynamic scheduling of tasks that operate over 
horizontal partitions called "morsels" distributed 
across cores.
→ One worker per core.
→ One morsel per task.
→ Pull-based task assignment.
→ Round-robin data placement.

Supports parallel, NUMA-aware operator 
implementations.
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HYPER – ARCHITECTURE

No separate dispatcher thread.

The workers perform cooperative scheduling for 
each query plan using a single task queue.
→ Each worker tries to select tasks that will execute on 

morsels that are local to it.
→ If there are no local tasks, then the worker just pulls the 

next task from the global work queue.
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Data Table

HYPER – DATA PARTITIONING
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Global Task Queue

HYPER – EXECUTION EXAMPLE
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MORSEL-DRIVEN SCHEDULING

Because there is only one worker per core and one 
morsel per task, HyPer must use work stealing 
because otherwise threads could sit idle waiting for 
stragglers.

The DBMS uses a lock-free hash table to maintain 
the global work queues.
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OBSERVATION

Tasks can have different execution costs per tuple.
→ Example: Simple Selection vs. String Matching

HyPer also has no notion of execution priorities.
→ All query tasks are executed with the same 
→ Short-running queries get blocked behind long-running 

queries.
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UMBRA – MORSEL SCHEDULING 2.0

Tasks are not created statically at runtime.

Each task may contain multiple morsels.

Modern implementation of stride scheduling.

Priority decay.
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UMBRA – STRIDE SCHEDULING

Each worker maintains its own 
thread-local meta-data about the 
available tasks to execute.
→ Active Slots: Which entries in the global 

slot array have active task sets available.
→ Change Mask: Indicates when a new task 

set is added to the global slot array.
→ Return Mask: Indicates when a worker 

completes a task set.

Workers perform CaS updates to TLS 
meta-data to broadcast changes.
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UMBRA – STRIDE SCHEDULING

When a worker completes the last 
morsel for a query's active task set, it 
inserts the next task set into the global 
slot array and updates the return mask 
for all workers.
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SAP HANA – NUMA-AWARE SCHEDULER

Pull-based scheduling with multiple worker threads 
that are organized into groups (pools).
→ Each CPU can have multiple groups.
→ Each group has a soft and hard priority queue.

Uses a separate "watchdog" thread to check whether 
groups are saturated and can reassign tasks 
dynamically.

31

SCALING UP CONCURRENT MAIN-MEMORY COLUMN-STORE SCANS: 
TOWARDS ADAPTIVE NUMA-AWARE DATA AND TASK PLACEMENT
VLDB 2015

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://dl.acm.org/citation.cfm?id=2824043
http://dl.acm.org/citation.cfm?id=2824043


15-721 (Spring 2023)

SAP HANA – THREAD GROUPS

DBMS maintains soft and hard priority task 
queues for each thread group.
→ Threads can steal tasks from other groups’ soft queues.

Four different pools of thread per group:
→ Working: Actively executing a task.
→ Inactive: Blocked inside of the kernel due to a latch.
→ Free: Sleeps for a little, wake up to see whether there is a 

new task to execute.
→ Parked: Waiting for a task (like a free thread) but blocked 

in the kernel until the watchdog thread wakes it up.
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SAP HANA – NUMA-AWARE SCHEDULER

Dynamically adjust thread pinning based on 
whether a task is CPU or memory bound.
→ Allow more cross-region stealing if DBMS is CPU-bound.

SAP found that work stealing was not as beneficial 
for systems with a larger number of sockets.
→ HyPer (2-4 sockets) vs. HANA (64 sockets)

Using thread groups allows cores to execute other 
tasks instead of just only queries.
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Tasks

SAP HANA – NUMA-AWARE SCHEDULER
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SQL SERVER – SQLOS

SQLOS is a user-mode NUMA-aware OS layer that 
runs inside of the DBMS and manages provisioned 
hardware resources.
→ Determines which tasks are scheduled onto which threads.
→ Also manages I/O scheduling and higher-level concepts 

like logical database locks.

Non-preemptive thread scheduling through 
instrumented DBMS code.
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SQL SERVER – SQLOS

SQLOS quantum is 4 ms but the 
scheduler cannot enforce that.

DBMS developers must add
explicit yield calls in various
locations in the source code.

Other Examples:
→ ScyllaDB
→ FaunaDB
→ CoroBase

36

SELECT * FROM R WHERE R.val = ?

for t in R:
if eval(predicate, tuple, params):
emit(tuple)

Approximate Plan
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SQL SERVER – SQLOS
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scheduler cannot enforce that.

DBMS developers must add
explicit yield calls in various
locations in the source code.

Other Examples:
→ ScyllaDB
→ FaunaDB
→ CoroBase

36

SELECT * FROM R WHERE R.val = ?

last = now()
for tuple in R:

if now() – last > 4ms:
yield
last = now()

if eval(predicate, tuple, params):
emit(tuple)
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SQL SERVER – SQLOS

SQLOS quantum is 4 ms but the 
scheduler cannot enforce that.

DBMS developers must add
explicit yield calls in various
locations in the source code.

Other Examples:
→ ScyllaDB
→ FaunaDB
→ CoroBase

36

SELECT * FROM R WHERE R.val = ?

last = now()
for tuple in R:

if now() – last > 4ms:
yield
last = now()

if eval(predicate, tuple, params):
emit(tuple)
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OBSERVATION

If requests arrive at the DBMS faster than it can 
execute them, then the system becomes overloaded.

The OS cannot help us here because it does not 
know what threads are doing:
→ CPU Bound: Do nothing
→ Memory Bound: OOM

Easiest DBMS Solution: Crash
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FLOW CONTROL

Approach #1: Admission Control
→ Abort new requests when the system believes that it will 

not have enough resources to execute that request.

Approach #2: Throttling
→ Delay the responses to clients to increase the amount of 

time between requests.
→ This assumes a synchronous submission scheme.
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PARTING THOUGHTS

We ignored disk I/O scheduling.

A DBMS is a beautiful, strong-willed independent 
software. But it must use hardware correctly.
→ Data location is an important aspect of this.
→ Tracking memory location in a single-node DBMS is the 

same as tracking shards in a distributed DBMS

Do not let the OS ruin your life.
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NEXT CLASS

Vectorized Query Execution

40
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