
ADVANCED DATABASE SYSTEMS

Andy Pavlo // 15-721 // Spring 2023

Query
Scheduling

L
e

c
tu

re
 #

0
7

https://15721.courses.cs.cmu.edu/spring2023
http://db.cs.cmu.edu/

15-721 (Spring 2023)

LAST CLASS

We discussed query processing models.
→ Vectorized model is best for OLAP.
→ Top-to-bottom (pull) approach is probably better.

2

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

QUERY EXECUTION

A query plan is a DAG of operators.

An operator instance is an
invocation of an operator on a unique
segment of data.

A task is a sequence of one or more
operator instances.

A task set is the collection of
executable tasks for a logical pipeline.

3

SELECT A.id, B.value
FROM A JOIN B
ON A.id = B.id

WHERE A.value < 99
AND B.value > 100

Pipeline #1

Pipeline #2

A B

⨝
s

p

s

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

QUERY EXECUTION

A query plan is a DAG of operators.

An operator instance is an
invocation of an operator on a unique
segment of data.

A task is a sequence of one or more
operator instances.

A task set is the collection of
executable tasks for a logical pipeline.

3

SELECT A.id, B.value
FROM A JOIN B
ON A.id = B.id

WHERE A.value < 99
AND B.value > 100

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

SCHEDULING

For each query plan, the DBMS must decide where,
when, and how to execute it.
→ How many tasks should it use?
→ How many CPU cores should it use?
→ What CPU core should the tasks execute on?
→ Where should a task store its output?

The DBMS always knows more than the OS.

4

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

SCHEDULING GOALS

Goal #1: Throughput
→ Maximize the # of completed queries.

Goal #2: Fairness
→ Ensure that no query is starved for resources

Goal #3: Query Responsiveness
→ Minimize tail latencies (especially for short queries)

Goal #4: Low Overhead
→ Workers should spend most of their time executing tasks

not figuring out what task to run next.

5

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

TODAY’S AGENDA

Worker Allocation

Data Placement

Scheduler Implementations

6

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

PROCESS MODEL

A DBMS’s process model defines how the system
is architected to support concurrent requests from a
multi-user application.

A worker is the DBMS component that is
responsible for executing tasks on behalf of the
client and returning the results.

We will assume that the DBMS is multi-threaded.

7

ARCHITECTURE OF A DATABASE SYSTEM
FOUNDATIONS AND TRENDS IN DATABASES 2007

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://db.cs.berkeley.edu/papers/fntdb07-architecture.pdf
http://db.cs.berkeley.edu/papers/fntdb07-architecture.pdf

15-721 (Spring 2023)

WORKER ALLOCATION

Approach #1: One Worker per Core
→ Each core is assigned one thread that is pinned to that core

in the OS.
→ See sched_setaffinity

Approach #2: Multiple Workers per Core
→ Use a pool of workers per core (or per socket).
→ Allows CPU cores to be fully utilized in case one worker at

a core blocks.

8

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://man7.org/linux/man-pages/man2/sched_setaffinity.2.html

15-721 (Spring 2023)

TASK ASSIGNMENT

Approach #1: Push
→ A centralized dispatcher assigns tasks to workers and

monitors their progress.
→ When the worker notifies the dispatcher that it is finished,

it is given a new task.

Approach #1: Pull
→ Workers pull the next task from a queue, process it, and

then return to get the next task.

9

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

OBSERVATION

Regardless of what worker allocation or task
assignment policy the DBMS uses, it's important
that workers operate on local data.

The DBMS's scheduler must be aware of its
hardware memory layout.
→ Uniform vs. Non-Uniform Memory Access

10

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

UNIFORM MEMORY ACCESS

11

System Bus

Cache Cache Cache Cache

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

NON-UNIFORM MEMORY ACCESS

12

C
ac

he
C

ac
he

C
ache

C
ache

Intel (2008): QuickPath Interconnect
Intel (2017): UltraPath Interconnect

AMD (??): HyperTransport
AMD (2017): Infinity Fabric

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

DATA PLACEMENT

The DBMS can partition memory for a database
and assign each partition to a CPU.

By controlling and tracking the location of
partitions, it can schedule operators to execute on
workers at the closest CPU core.

See Linux’s move_pages and numactl

13

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://man7.org/linux/man-pages/man2/move_pages.2.html
https://linux.die.net/man/8/numactl

15-721 (Spring 2023)

MEMORY ALLOCATION

What happens when the DBMS calls malloc?
→ Assume that the allocator doesn't already have a chunk of

memory that it can give out.

Almost nothing:
→ The allocator will extend the process' data segment.
→ But this new virtual memory is not immediately backed by

physical memory.
→ The OS only allocates physical memory when there is a

page fault on access.

Now after a page fault, where does the OS allocate
physical memory in a NUMA system?

14

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

MEMORY ALLOCATION LOCATION

Approach #1: Interleaving
→ Distribute allocated memory uniformly across CPUs.

Approach #2: First-Touch
→ At the CPU of the thread that accessed the memory

location that caused the page fault.

The OS can try to move memory to another NUMA
region from observed access patterns.

15

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

DATA PLACEMENT – OLAP

17

0

10000

20000

30000

 8 24 40 56 72 88 104 120 136 152

T
u

pl
es

 R
ea

d
P

er
 S

ec
on

d
(M

)

Threads

Random Partition Local Partition Only

Source: Haibin Lin

Sequential Scan on 10m tuples
Processor: 8 sockets, 10 cores per node (2x HT)

Hyper-Threading

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://www.linhaibin.com/

15-721 (Spring 2023)

PARTITIONING VS. PLACEMENT

A partitioning scheme is used to split the database
based on some policy.
→ Round-robin
→ Attribute Ranges
→ Hashing
→ Partial/Full Replication

A placement scheme then tells the DBMS where to
put those partitions.
→ Round-robin
→ Interleave across cores

18

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

OBSERVATION

We have the following so far:
→ Task Assignment Model
→ Data Placement Policy

But how do we decide how to create a set of tasks
from a logical query plan?
→ This is relatively easy for OLTP queries.
→ Much harder for OLAP queries…

19

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

STATIC SCHEDULING

The DBMS decides how many threads to use to
execute the query when it generates the plan.
It does not change while the query executes.
→ The easiest approach is to just use the same # of tasks as the

of cores.
→ Can still assign tasks to threads based on data location to

maximize local data processing.

20

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

MORSEL-DRIVEN SCHEDULING

Dynamic scheduling of tasks that operate over
horizontal partitions called "morsels" distributed
across cores.
→ One worker per core.
→ One morsel per task.
→ Pull-based task assignment.
→ Round-robin data placement.

Supports parallel, NUMA-aware operator
implementations.

21

MORSEL-DRIVEN PARALLELISM: A NUMA-AWARE QUERY
EVALUATION FRAMEWORK FOR THE MANY-CORE AGE
SIGMOD 2014

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://dl.acm.org/citation.cfm?id=1287407
http://dl.acm.org/citation.cfm?id=1287407

15-721 (Spring 2023)

HYPER – ARCHITECTURE

No separate dispatcher thread.

The workers perform cooperative scheduling for
each query plan using a single task queue.
→ Each worker tries to select tasks that will execute on

morsels that are local to it.
→ If there are no local tasks, then the worker just pulls the

next task from the global work queue.

22

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

Data Table

HYPER – DATA PARTITIONING

23

1

2

3

id a1 a2 a3

A2

A1

A3

Morsels

SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id
AND A.value < 99
AND B.value > 100

A B

⨝
s

p

s

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

Global Task Queue

HYPER – EXECUTION EXAMPLE

24

SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id
AND A.value < 99
AND B.value > 100

1

Morsels

Buffer

2

Morsels

Buffer

3

Morsels

BufferA B

⨝
s

p

s

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

Global Task Queue

HYPER – EXECUTION EXAMPLE

24

SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id
AND A.value < 99
AND B.value > 100

1

Morsels

Buffer

2

Morsels

Buffer

3

Morsels

BufferA B

⨝
s

p

s

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

Global Task Queue

HYPER – EXECUTION EXAMPLE

24

SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id
AND A.value < 99
AND B.value > 100

1

Morsels

Buffer

2

Morsels

Buffer

3

Morsels

BufferA B

⨝
s

p

s

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

Global Task Queue

HYPER – EXECUTION EXAMPLE

24

SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id
AND A.value < 99
AND B.value > 100

1

Morsels

Buffer

2

Morsels

Buffer

3

Morsels

BufferA B

⨝
s

p

s

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

Global Task Queue

HYPER – EXECUTION EXAMPLE

24

SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id
AND A.value < 99
AND B.value > 100

1

Morsels

Buffer

2

Morsels

Buffer

3

Morsels

BufferA B

⨝
s

p

s

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

Global Task Queue

HYPER – EXECUTION EXAMPLE

24

SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id
AND A.value < 99
AND B.value > 100

1

Morsels

Buffer

2

Morsels

Buffer

3

Morsels

BufferA B

⨝
s

p

s

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

Global Task Queue

HYPER – EXECUTION EXAMPLE

24

SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id
AND A.value < 99
AND B.value > 100

1

Morsels

Buffer

2

Morsels

Buffer

3

Morsels

BufferA B

⨝
s

p

s

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

MORSEL-DRIVEN SCHEDULING

Because there is only one worker per core and one
morsel per task, HyPer must use work stealing
because otherwise threads could sit idle waiting for
stragglers.

The DBMS uses a lock-free hash table to maintain
the global work queues.

25

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

OBSERVATION

Tasks can have different execution costs per tuple.
→ Example: Simple Selection vs. String Matching

HyPer also has no notion of execution priorities.
→ All query tasks are executed with the same
→ Short-running queries get blocked behind long-running

queries.

26

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

UMBRA – MORSEL SCHEDULING 2.0

Tasks are not created statically at runtime.

Each task may contain multiple morsels.

Modern implementation of stride scheduling.

Priority decay.

27

SELF-TUNING QUERY SCHEDULING FOR
ANALYTICAL WORKLOADS
SIGMOD 2021

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/doi/10.1145/3448016.3457260
https://dl.acm.org/doi/10.1145/3448016.3457260

15-721 (Spring 2023)

UMBRA – MORSEL SCHEDULING 2.0

Tasks are not created statically at runtime.

Each task may contain multiple morsels.

Modern implementation of stride scheduling.

Priority decay.

27

SELF-TUNING QUERY SCHEDULING FOR
ANALYTICAL WORKLOADS
SIGMOD 2021

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/doi/10.1145/3448016.3457260
https://dl.acm.org/doi/10.1145/3448016.3457260
https://youtu.be/9rW9uEJ15tU

15-721 (Spring 2023)

UMBRA – STRIDE SCHEDULING

Each worker maintains its own
thread-local meta-data about the
available tasks to execute.
→ Active Slots: Which entries in the global

slot array have active task sets available.
→ Change Mask: Indicates when a new task

set is added to the global slot array.
→ Return Mask: Indicates when a worker

completes a task set.

Workers perform CaS updates to TLS
meta-data to broadcast changes.

28

Q1TS1 Q2TS1

Global Task Set Slots

Worker #1

Q1TS1

Running

0 1 0 1

Active Slots

0 0 0 0

Change Mask

0 0 0 0

Return Mask

Worker #2

Q2TS1

Running

0 1 0 1

Active Slots

0 0 0 0

Change Mask

0 0 0 0

Return Mask

Task Sets
Q1TS1 Q1TS2Query1

Q2TS1Query2

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

UMBRA – STRIDE SCHEDULING

When a worker completes the last
morsel for a query's active task set, it
inserts the next task set into the global
slot array and updates the return mask
for all workers.

29

Q1TS1 Q2TS1

Global Task Set Slots Task Sets
Q1TS1 Q1TS2Query1

Q2TS1Query2

Worker #1

Q1TS1

Running

0 1 0 1

Active Slots

0 0 0 0

Change Mask

0 0 0 0

Return Mask

Worker #2

Q2TS1

Running

0 1 0 1

Active Slots

0 0 0 0

Change Mask

0 0 0 0

Return Mask

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

UMBRA – STRIDE SCHEDULING

When a worker completes the last
morsel for a query's active task set, it
inserts the next task set into the global
slot array and updates the return mask
for all workers.

29

Q1TS1 Q2TS1

Global Task Set Slots Task Sets
Q1TS1 Q1TS2Query1

Q2TS1Query2

Worker #1

Q1TS1

Running

0 1 0 1

Active Slots

0 0 0 0

Change Mask

0 0 0 0

Return Mask

Worker #2

Q2TS1

Running

0 1 0 1

Active Slots

0 0 0 0

Change Mask

0 0 0 0

Return Mask

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

UMBRA – STRIDE SCHEDULING

When a worker completes the last
morsel for a query's active task set, it
inserts the next task set into the global
slot array and updates the return mask
for all workers.

29

Q1TS1 Q2TS1

Global Task Set Slots Task Sets
Q1TS1 Q1TS2Query1

Q2TS1Query2

Worker #1

Q1TS1

Running

0 1 0 1

Active Slots

0 0 0 0

Change Mask

0 0 0 0

Return Mask

Worker #2

Q2TS1

Running

0 1 0 1

Active Slots

0 0 0 0

Change Mask

0 0 0 0

Return Mask

Q1TS2

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

UMBRA – STRIDE SCHEDULING

When a worker completes the last
morsel for a query's active task set, it
inserts the next task set into the global
slot array and updates the return mask
for all workers.

29

Q1TS1 Q2TS1

Global Task Set Slots Task Sets
Q1TS1 Q1TS2Query1

Q2TS1Query2

Worker #1

Q1TS1

Running

0 1 0 1

Active Slots

0 0 0 0

Change Mask

0 0 0 0

Return Mask

Worker #2

Q2TS1

Running

0 1 0 1

Active Slots

0 0 0 0

Change Mask

0 0 0 0

Return Mask
1 1

Q1TS2

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

SAP HANA – NUMA-AWARE SCHEDULER

Pull-based scheduling with multiple worker threads
that are organized into groups (pools).
→ Each CPU can have multiple groups.
→ Each group has a soft and hard priority queue.

Uses a separate "watchdog" thread to check whether
groups are saturated and can reassign tasks
dynamically.

31

SCALING UP CONCURRENT MAIN-MEMORY COLUMN-STORE SCANS:
TOWARDS ADAPTIVE NUMA-AWARE DATA AND TASK PLACEMENT
VLDB 2015

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://dl.acm.org/citation.cfm?id=2824043
http://dl.acm.org/citation.cfm?id=2824043

15-721 (Spring 2023)

SAP HANA – THREAD GROUPS

DBMS maintains soft and hard priority task
queues for each thread group.
→ Threads can steal tasks from other groups’ soft queues.

Four different pools of thread per group:
→ Working: Actively executing a task.
→ Inactive: Blocked inside of the kernel due to a latch.
→ Free: Sleeps for a little, wake up to see whether there is a

new task to execute.
→ Parked: Waiting for a task (like a free thread) but blocked

in the kernel until the watchdog thread wakes it up.

32

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

SAP HANA – NUMA-AWARE SCHEDULER

Dynamically adjust thread pinning based on
whether a task is CPU or memory bound.
→ Allow more cross-region stealing if DBMS is CPU-bound.

SAP found that work stealing was not as beneficial
for systems with a larger number of sockets.
→ HyPer (2-4 sockets) vs. HANA (64 sockets)

Using thread groups allows cores to execute other
tasks instead of just only queries.

33

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

Tasks

SAP HANA – NUMA-AWARE SCHEDULER

34

Thread Group
Soft
Queue

Hard
Queue Working Inactive Free Parked

SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id
AND A.value < 99
AND B.value > 100

A B

⨝
s

p

s

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

Tasks

SAP HANA – NUMA-AWARE SCHEDULER

34

Thread Group
Soft
Queue

Hard
Queue Working Inactive Free Parked

SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id
AND A.value < 99
AND B.value > 100

A B

⨝
s

p

s

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

Tasks

SAP HANA – NUMA-AWARE SCHEDULER

34

Thread Group
Soft
Queue

Hard
Queue Working Inactive Free Parked

SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id
AND A.value < 99
AND B.value > 100

A B

⨝
s

p

s

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

Tasks

SAP HANA – NUMA-AWARE SCHEDULER

34

Thread Group
Soft
Queue

Hard
Queue Working Inactive Free Parked

SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id
AND A.value < 99
AND B.value > 100

A B

⨝
s

p

s

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

Tasks

SAP HANA – NUMA-AWARE SCHEDULER

34

Thread Group
Soft
Queue

Hard
Queue Working Inactive Free Parked

SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id
AND A.value < 99
AND B.value > 100

A B

⨝
s

p

s

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

Tasks

SAP HANA – NUMA-AWARE SCHEDULER

34

Thread Group
Soft
Queue

Hard
Queue Working Inactive Free Parked

SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id
AND A.value < 99
AND B.value > 100

A B

⨝
s

p

s

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

SQL SERVER – SQLOS

SQLOS is a user-mode NUMA-aware OS layer that
runs inside of the DBMS and manages provisioned
hardware resources.
→ Determines which tasks are scheduled onto which threads.
→ Also manages I/O scheduling and higher-level concepts

like logical database locks.

Non-preemptive thread scheduling through
instrumented DBMS code.

35

MICROSOFT SQL SERVER 2012 INTERNALS
PEARSON 2013

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://www.microsoftpressstore.com/store/microsoft-sql-server-2012-internals-9780735658561
https://www.microsoftpressstore.com/store/microsoft-sql-server-2012-internals-9780735658561

15-721 (Spring 2023)

SQL SERVER – SQLOS

SQLOS is a user-mode NUMA-aware OS layer that
runs inside of the DBMS and manages provisioned
hardware resources.
→ Determines which tasks are scheduled onto which threads.
→ Also manages I/O scheduling and higher-level concepts

like logical database locks.

Non-preemptive thread scheduling through
instrumented DBMS code.

35

MICROSOFT SQL SERVER 2012 INTERNALS
PEARSON 2013

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://www.microsoftpressstore.com/store/microsoft-sql-server-2012-internals-9780735658561
https://www.microsoftpressstore.com/store/microsoft-sql-server-2012-internals-9780735658561
https://techcrunch.com/2017/07/17/how-microsoft-brought-sql-server-to-linux/

15-721 (Spring 2023)

SQL SERVER – SQLOS

SQLOS quantum is 4 ms but the
scheduler cannot enforce that.

DBMS developers must add
explicit yield calls in various
locations in the source code.

Other Examples:
→ ScyllaDB
→ FaunaDB
→ CoroBase

36

SELECT * FROM R WHERE R.val = ?

for t in R:
if eval(predicate, tuple, params):
emit(tuple)

Approximate Plan

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://github.com/sfu-dis/corobase

15-721 (Spring 2023)

SQL SERVER – SQLOS

SQLOS quantum is 4 ms but the
scheduler cannot enforce that.

DBMS developers must add
explicit yield calls in various
locations in the source code.

Other Examples:
→ ScyllaDB
→ FaunaDB
→ CoroBase

36

SELECT * FROM R WHERE R.val = ?

last = now()
for tuple in R:

if now() – last > 4ms:
yield
last = now()

if eval(predicate, tuple, params):
emit(tuple)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://github.com/sfu-dis/corobase

15-721 (Spring 2023)

SQL SERVER – SQLOS

SQLOS quantum is 4 ms but the
scheduler cannot enforce that.

DBMS developers must add
explicit yield calls in various
locations in the source code.

Other Examples:
→ ScyllaDB
→ FaunaDB
→ CoroBase

36

SELECT * FROM R WHERE R.val = ?

last = now()
for tuple in R:

if now() – last > 4ms:
yield
last = now()

if eval(predicate, tuple, params):
emit(tuple)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://github.com/sfu-dis/corobase
https://youtu.be/0S6i9BmuF8U

15-721 (Spring 2023)

OBSERVATION

If requests arrive at the DBMS faster than it can
execute them, then the system becomes overloaded.

The OS cannot help us here because it does not
know what threads are doing:
→ CPU Bound: Do nothing
→ Memory Bound: OOM

Easiest DBMS Solution: Crash

37

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

FLOW CONTROL

Approach #1: Admission Control
→ Abort new requests when the system believes that it will

not have enough resources to execute that request.

Approach #2: Throttling
→ Delay the responses to clients to increase the amount of

time between requests.
→ This assumes a synchronous submission scheme.

38

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

PARTING THOUGHTS

We ignored disk I/O scheduling.

A DBMS is a beautiful, strong-willed independent
software. But it must use hardware correctly.
→ Data location is an important aspect of this.
→ Tracking memory location in a single-node DBMS is the

same as tracking shards in a distributed DBMS

Do not let the OS ruin your life.

39

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

NEXT CLASS

Vectorized Query Execution

40

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

	Introduction
	Slide 1: Query Scheduling
	Slide 2: LAST CLASS
	Slide 3: QUERY EXECUTION
	Slide 4: QUERY EXECUTION
	Slide 5: SCHEDULING
	Slide 6: SCHEDULING GOALS
	Slide 7: TODAY’S AGENDA

	Worker Allocation
	Slide 8: PROCESS MODEL
	Slide 9: WORKER ALLOCATION
	Slide 10: TASK ASSIGNMENT

	Data Placement
	Slide 11: OBSERVATION
	Slide 12: UNIFORM MEMORY ACCESS
	Slide 13: NON-UNIFORM MEMORY ACCESS
	Slide 14: DATA PLACEMENT
	Slide 15: MEMORY ALLOCATION
	Slide 16: MEMORY ALLOCATION LOCATION
	Slide 17: DATA PLACEMENT – OLAP
	Slide 18: PARTITIONING VS. PLACEMENT

	HyPer Scheduling
	Slide 19: OBSERVATION
	Slide 20: STATIC SCHEDULING
	Slide 21: MORSEL-DRIVEN SCHEDULING
	Slide 22: HYPER – ARCHITECTURE
	Slide 23: HYPER – DATA PARTITIONING
	Slide 24: HYPER – EXECUTION EXAMPLE
	Slide 25: HYPER – EXECUTION EXAMPLE
	Slide 26: HYPER – EXECUTION EXAMPLE
	Slide 27: HYPER – EXECUTION EXAMPLE
	Slide 28: HYPER – EXECUTION EXAMPLE
	Slide 29: HYPER – EXECUTION EXAMPLE
	Slide 30: HYPER – EXECUTION EXAMPLE
	Slide 31: MORSEL-DRIVEN SCHEDULING

	Umbra Scheduling
	Slide 32: OBSERVATION
	Slide 33: UMBRA – MORSEL SCHEDULING 2.0
	Slide 34: UMBRA – MORSEL SCHEDULING 2.0
	Slide 35: UMBRA – STRIDE SCHEDULING
	Slide 36: UMBRA – STRIDE SCHEDULING
	Slide 37: UMBRA – STRIDE SCHEDULING
	Slide 38: UMBRA – STRIDE SCHEDULING
	Slide 39: UMBRA – STRIDE SCHEDULING

	HANA Scheduling
	Slide 40: SAP HANA – NUMA-AWARE SCHEDULER
	Slide 41: SAP HANA – THREAD GROUPS
	Slide 42: SAP HANA – NUMA-AWARE SCHEDULER
	Slide 43: SAP HANA – NUMA-AWARE SCHEDULER
	Slide 44: SAP HANA – NUMA-AWARE SCHEDULER
	Slide 45: SAP HANA – NUMA-AWARE SCHEDULER
	Slide 46: SAP HANA – NUMA-AWARE SCHEDULER
	Slide 47: SAP HANA – NUMA-AWARE SCHEDULER
	Slide 48: SAP HANA – NUMA-AWARE SCHEDULER

	SQL OS
	Slide 49: SQL SERVER – SQLOS
	Slide 50: SQL SERVER – SQLOS
	Slide 51: SQL SERVER – SQLOS
	Slide 52: SQL SERVER – SQLOS
	Slide 53: SQL SERVER – SQLOS

	Flow Control
	Slide 54: OBSERVATION
	Slide 55: FLOW CONTROL

	Conclusion
	Slide 56: PARTING THOUGHTS
	Slide 57: NEXT CLASS

