Lecture #08

Carnegie Mellon University

ADVANCED DATABASE SYSTEMS

Vectorized
Execution

Andy Pavlo // 15-721 // Spring 2023

https://15721.courses.cs.cmu.edu/spring2023
http://db.cs.cmu.edu/

LAST CLASS

We discussed how the DBMS will divide up tasks
among its workers to execute a query.

The DBMS needs to be aware of the location of data
to avoid non-local memory access.

£=CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

TODAY’S AGENDA

Background
Implementation Approaches

SIMD Fundamentals
Vectorized DBMS Algorithms

£=CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

$2CMU-DB

15-721 (Spring 2023)

VECTORIZATION

The process of converting an algorithm's scalar
implementation that processes a single pair of
operands at a time, to a vector implementation that
processes one operation on multiple pairs of
operands at once.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

WHY THIS MATTERS

Say we can parallelize our algorithm over 32 cores.
Assume each core has a 4-wide SIMD registers.

Potential Speed-up: 32x x 4x = 128x

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

SINGLE INSTRUCTION, MULTIPLE DATA

A class of CPU instructions that allow the processor
to perform the same operation on multiple data
points simultaneously.

All major ISAs have microarchitecture support

SIMD operations.

— x86: MMX, SSE, SSE2, SSE3, SSE4, AVX, AVX2, AVX512
— PowerPC: Altivec

— ARM: NEON, SVE

— RISC-V: RVV

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://developer.arm.com/docs/100891/0606/sve-overview/introducing-sve
https://github.com/riscv/riscv-v-spec

X1 Yi X1ty
Y, X,t+Y,

Xn Yn L Xn+Yn i

for (i=0; i<n; i++) {
Z[i] = X[i] + Y[il;
}

£=CMU-DB

15-721 (Spring 2023)

SIMD EXAMPLE

—__m el _m e — el L) (VS ErN (S [(o)) BN [0e)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

X1 Yi X1ty
Y, X,t+Y,

Xn Yn L Xn+Yn i

for (i=0; i<n; i++) {
Z[i] = X[i] + Y[il;
}

£=CMU-DB

15-721 (Spring 2023)

SIMD EXAMPLE

—__m el _m e — el L) (VS ErN (S [(o)) BN [0e)

SISD
+

Z

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

X1 Yi X1ty
X5 i Y, X,t+Y,

Xn Yn L Xn+Yn i

for (i=0; i<n; i++) {
Z[i] = X[i] + Y[il;
}

£=CMU-DB

15-721 (Spring 2023)

SIMD EXAMPLE

—__m el _m e — el L) (VS ErN (S [(o)) BN [0e)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

X1 Yi X1ty
Y, X,t+Y,

Xn Yn L Xn+Yn i

for (i=0; i<n; i++) {
Z[i] = X[i] + Y[il;
}

£=CMU-DB

15-721 (Spring 2023)

SIMD EXAMPLE

—__m el _m e — el L) (VS ErN (S [(o)) BN [0e)

SISD
-

Z

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

X+Y=27
RARRARESS2
X Y2 o] X2Y2

Xy | | Va) [X0tVn

for (i=0; i<n; i++) {
Z[i] = X[1] + Y[il;
}

£=CMU-DB
111111 (Spring 2023)

SIMD EXAMPLE

—__m el _m e — el L) (VS ErN (S [(o)) BN [0e)

}

128-bit SIMD Register
871615

T

128-bit SIMD Register

I} 9[8[716

Z

128-bit SIMD Register

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

X Y1 Xty
Y, X,t+Y,

= IN|w[h OO | |00

Xo| | Vo] [ZatVn

for (i=0; i<n; i++) {
Z[i] = X[i]l + Y[il;
}

$CMU-DB

15-721 (Spring 2023)

SIMD EXAMPLE

—) [[e e [)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

VECTORIZATION

Approach #1: Horizontal

— Perform operation on all elements
together within a single vector.

Approach #2: Vertical

— Perform operation in an elementwise
manner on elements of each vector.

Source: Przemystaw Karpinski

$CMU-DB

15-721 (Spring 2023)

DIRECTION

0

]

2

3

),

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://gain-performance.com/2017/05/01/umesimd-tutorial-2-calculation/

SIMD INSTRUCTIONS (1)

Data Movement
— Moving data in and out of vector registers

Arithmetic Operations

— Apply operation on multiple data items (e.g., 2 doubles, 4
floats, 16 bytes)
— Example: ADD, SUB, MUL, DIV, SQRT, MAX, MIN

Logical Instructions

— Logical operations on multiple data items
— Example: AND, OR, XOR, ANDN, ANDPS, ANDNPS

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

SIMD INSTRUCTIONS (2)

Comparison Instructions
— Comparing multiple data items (==,<,<=,>,>=,1=)

Shuffle instructions
— Move data between SIMD registers

Miscellaneous

— Conversion: Transform data between x86 and SIMD
registers.

— Cache Control: Move data directly from SIMD registers to
memory (bypassing CPU cache).

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

INTEL SIMD EXTENSIONS

Width Integers Single-P Double-P
1997 MMX 64 bits v
1999 SSE 128 bits v v (x4)
2001 SSE2 128 bits v v v (x2)
2004 SSE3 128 bits v v v
2006 SSSE 3 128 bits v v v
2006 SSE 4.1 128 bits v v v
2008 SSE 4.2 128 bits v v v
2011 AVX 256 bits v v (x8) v (x4)
2013 AVX2 256 bits v v v
2017 AVX-512 512 bits v v (x16) Vv (x8)

Source: James Reinders

$CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://www.youtube.com/watch?v=_OJmxi4-twY

SIMD TRADE-OFFS

Advantages:

— Significant performance gains and resource utilization if an
algorithm can be vectorized.

Disadvantages:

— Implementing an algorithm using SIMD is still mostly a
manual process.

— SIMD may have restrictions on data alignment.

— Gathering data into SIMD registers and scattering it to the
correct locations is tricky and/or inefficient.

$2CMU-DB

15-721 (Spring 2023)

No Longer True in AVX-512!

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

$2CMU-DB

15-721 (Spring 2023)

AVX-512

Intel's 512-bit extensions to the AV X2 instructions.
— Provides new operations to support data conversions,
scatter, and permutations.

Unlike previous SIMD extensions, Intel split AVX-
512 into groups that CPUs can selectively provide
(except for "foundation" extension AVX-512F).

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

Intel's 512-bit extensions to the AVX2 instructions.
— Provides new operations to support data conversions,
scatter, and permutations.

AVX-512

Subset
Knights Landing (Xeon Phi x200, 2016)
Knights Mill (Xeon Phi x205, 2017)
Skylake-SP, Skylake-X (2017)
Cannon Lake (2018)
Cascade Lake (2019)
Cooper Lake (2020)
Ice Lake (2019)
Tiger Lake (2020)
Rocket Lake (2021)
Alder Lake (2021)
Zen 4 (2022)
Sapphire Rapids (2023)

F CD

Yes

PartiajNote 1

Yes

ER PF 4FMAPS 4VNNIW VPOPCNTDQ (VL DQ BW IFMA VBMI VNNI BF16 VBMI2 BITALG VPCLMULQDQ GFNI VAES VP2INTERSECT FP16

Yes

No

Yes

No

No

Yes
Yes

No Yes
Yes

Yes No

Yes

PartialNote 1

No

No

Yes

No

No

No

Yes

No

No

No

No

Yes

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://en.wikipedia.org/wiki/AVX-512#CPUs_with_AVX-512

Knights Mill (Xe
Skylake-SP, Skyl

Cascade Lake (2
Cooper Lake (20
Ilce Lake (2019)
Tiger Lake (2020)

Rocket Lake (2021

Alder Lake (2021)
Zen 4 (2022)

‘ Sapphire Rapids (2!

$CMU-DB

15-721 (Spring 2023)

Westmere (2010):

| Sandy Bridge (2012): \‘ Haswell (2014):

“, Intel Xeon
\l Processor
| E3/ES family

|
|
1
1
1
|
|
i
1
1
|
1
|

“‘ Tvy Bridge (2013):
| Intel Xeon

| Processor

| E3 v2/E5 V2/ET V2
| Family

1
|
|
i
1
1
|
|
|

|
1
1
|
|
1
1
|
1
1
|
1
|
1
!
|
1
1
|

Intel Xeon
Processor

E3 v3/E5 V3/ETV3
Family

Broadwell (2015):
Intel Xeon
Processor

E3 v4/E5 VA/ET v4
! Family

@ — primary instruction set

AVX-512

Knights Corner
(2012):

Intel Xeon Phi
Coprocessor X1 00
Family

Knights Landing
I (2016):

| Intel Xeon Phi
Processor X200

| Family

. s512-bit

AVX-512PF

| Skylake (2017):
Intel Xeon Scalable

\
1
! R
‘l‘ Processor Family

512-bit

‘ AVX-512CD

AVX-512CD

instructions.
bnversions,

BMi2 BITALG Q
P Fi Al P TER T FP16

SSE*

——

S
No
AVX-512F

S ‘ AVX-512F

S
AVX2 e
AVX

s
No
e
No

No

jg/Note 1

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://en.wikipedia.org/wiki/AVX-512#CPUs_with_AVX-512
https://www.extremetech.com/computing/312673-linus-torvalds-i-hope-avx512-dies-a-painful-death

IMPLEMENTATION

Choice #1: Automatic Vectorization Ease of Use
Choice #2: Compiler Hints

Choice #3: Explicit Vectorization
Programmer

Control

Source: James Reinders

£=CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://www.youtube.com/watch?v=_OJmxi4-twY

AUTOMATIC VECTORIZATION

The compiler can identify when instructions inside
of a loop can be rewritten as a vectorized operation.

Works for simple loops only and is rare in database
operators. Requires hardware support for SIMD
instructions.

£=CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

AUTOMATIC VECTORIZATION

void add(int *X,
int *Y,
int *7) {e—— *7=%X+1
for (int i=0; i<MAX; i++) {
Z[1] = X[1] + Y[il;

NN/
N
These might point to
the same address!

$CMU-DB

15-721 (Spring 2023)

This loop is not legal to
automatically vectorize.

The code is written such that the
addition is described sequentially.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

COMPILER HINTS

Provide the compiler with additional information
about the code to let it know that is safe to
vectorize.

Two approaches:
— Give explicit information about memory locations.
— Tell the compiler to ignore vector dependencies.

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

COMPILER HINTS

The restrict keyword in C++
void add(int *restrict X, tells the compiler that the arrays

int *restrict Y, are distinct locations in memory.
int *restrict Z) {

for (int i=0; i<MAX; i++) {
Z[i] = X[i] + Y[il;
3
3

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

COMPILER HINTS

void add(int *X,
int *Y,
int *Z) {
#pragma ivdep
for (int i=0; i<MAX; i++) {
Z[i] = X[i] + Y[il;
3
3

$CMU-DB

15-721 (Spring 2023)

This pragma tells the compiler to
ignore loop dependencies for the
vectors.

[t is up to the DBMS developer to
make sure that this is correct.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

EXPLICIT VECTORIZATION

Use CPU intrinsics to manually marshal data
between SIMD registers and execute vectorized

Instructions.
— Not portable across CPUs (ISAs / versions).

There are libraries that hide the underlying calls to

SIMD intrinsics.

— Google Highway

— Simd

— Expressive Vector Engine (EVE)
— std::simd (Experimental)

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://github.com/google/highway
https://ermig1979.github.io/Simd/
https://jfalcou.github.io/eve/
https://doc.rust-lang.org/std/simd/index.html

EXPLICIT VECTORIZATION

void add(int *X,
int *Y,
int *Z) {

__mm128i *vecX = (__m128i*)X;
__mm128i *vecY = (__m128ix*)Y;
__mm128i *vecZ = (__m128ix*)Z;
for (int i=0; i<MAX/4; i++) {

_mm_store_sil128(vecZ++,

Y _mm_add_epi32(*vecX++,
Y *vecY++));

$2CMU-DB

15-721 (Spring 2023)

Store the vectors in 128-bit SIMD
registers.

Then invoke the intrinsic to add
together the vectors and write
them to the output location.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

VECTORIZATION FUNDAMENTALS

There are fundamental SIMD operations that the

DBMS will use to build more complex functionality:
— Masking

— Permute

— Selective Load/Store

— Compress/Expand

— Selective Gather/Scatter

= | MAKE THE MOST OUT OF YOUR SIMD INVESTMENTS: COUNTER
CONTROL FLOW DIVERGENCE IN COMPILED QUERY PIPELINES
VLDB JOURNAL 2020

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/doi/10.1145/3211922.3211928
https://dl.acm.org/doi/10.1145/3211922.3211928

SIMD MASKING

Almost all AVX-512 operations support
predication variants whereby the CPU only
performs operations on lanes specified by an input
bitmask.

Merge Source | 9 (9[99

Vector1 | 313|313

Maskéi(.ai

Vector2| 2121212

$CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

SIMD MASKING

Almost all AVX-512 operations support
predication variants whereby the CPU only
performs operations on lanes specified by an input
bitmask.

Merge Source | 9 (9[99

Vector1 | 3131313

Output 5 5

Mask | 9

Vector2 | 2

$CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

SIMD MASKING

Almost all AVX-512 operations support
predication variants whereby the CPU only
performs operations on lanes specified by an input
bitmask.

Merge Source | 919|919

Vector1 [313|313 \\
Mask |0111011 n—>0utput9595

Vector2| 2121212

$CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

PERMUTE

For each lane, copy values in the
input vector specified by the offset
in the index vector into the
destination vector.

Prior to AVX-512, the DBMS had to
write data from the SIMD register to

memory then back to the SIMD
register.

$CMU-DB

15-721 (Spring 2023)

Permute

Value Vector

Index Vector

Input Vector

o>

O

w| O

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

PERMUTE

For each lane, copy values in the
input vector specified by the offset
in the index vector into the
destination vector.

Prior to AVX-512, the DBMS had to

write data from the SIMD register to
memory then back to the SIMD
register.

$CMU-DB

15-721 (Spring 2023)

Permute

Value Vector

Index Vector

Input Vector

w

o>

O

w| O

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

PERMUTE

For each lane, copy values in the
input vector specified by the offset
in the index vector into the
destination vector.

Prior to AVX-512, the DBMS had to

write data from the SIMD register to
memory then back to the SIMD
register.

$CMU-DB

15-721 (Spring 2023)

Permute

Value Vector

Index Vector

)

Input Vector

0]

o>

.

O

w| O

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

SELECTIVE LOAD/STORE

Selective Load

Vector | A

|
ar

Mask | g
Memory |y|VIWIX|Y|Z]|ooe

£=CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

SELECTIVE LOAD/STORE

Selective Load

Vector | AlU|C|V

Mask |9 |1]0]1

Memory [y|VIWIX|Y|Z]|ooe

£=CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

SELECTIVE LOAD/STORE

Selective Load Selective Store
Vector | AlU|C|V Memory |y|V|W|[X|Y|Z|oeoe
Mask 19111011 Mask @ 1 @ 1
Memory |y|VIW|X|Y|Z|ooe Vector | A[BICID

£CMU-DB
111111 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

SELECTIVE LOAD/STORE

Selective Load Selective Store
Vector | AlU|C|V Memory |B|V|W|X|Y|Z|oee
Mask (g 1|01 Mask (pl1|0]|1
Memory |y|VIW|X|Y|Z|ooe Vector | AIBICID

£CMU-DB
111111 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

SELECTIVE LOAD/STORE

Selective Load Selective Store
Vector | AlU|C|V Memory |BID|W|[X|Y|Z|ooe
Mask (g 1|01 Mask (p|1|0]1
Memory |y|VIW|X|Y|Z|ooe Vector | A[BICID

£CMU-DB
111111 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

Compress

Value Vector

Index Vector

Input Vector

£=CMU-DB

15-721 (Spring 2023)

COMPRESS / EXPAND

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

Compress

Value Vector

Index Vector

Input Vector

£=CMU-DB

15-721 (Spring 2023)

COMPRESS / EXPAND

\

Dﬁ_\

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

Compress

Value Vector

Index Vector

Input Vector

£=CMU-DB

15-721 (Spring 2023)

COMPRESS / EXPAND

Dﬁ_\

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

Compress

Value Vector

Index Vector

Input Vector

£CMU-DB
111111 (Spring 2023)

> b= f—>|>

Dﬁ_\

COMPRESS / EXPAND

Expand

Value Vector

Index Vector

Input Vector

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

Compress

Value Vector

Index Vector

Input Vector

£=CMU-DB

15-721 (Spring 2023)

> f—p| =] >

Dﬁ_\

Expand

Value Vector

Index Vector

Input Vector

COMPRESS / EXPAND

(&)
—_

N

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

COMPRESS / EXPAND

Compress Expand

Value Vector

DIo|o Value Vector | A | B

Index Vector IndexVector [p|1|0|1

S
.
s

O f—p] —

Input Vector Input Vector | A |B|CID

£=CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

COMPRESS / EXPAND

Compress Expand

Value Vector

DIo|o Value Vector | AIB| 0|0

Index Vector IndexVector [p|1|0|1

S
.
s

O f—p] —

Input Vector Input Vector | A |B|CID

£=CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

SELECTIVE SCATTER/GATHER

Selective Gather

Value Vector | A|B|A|D

Index Vector 2 1 5 3

Memory |

-|<
o=
w|><
<
n|N
[]
[]
[]

£=CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

Selective Gather

Value Vector

Index Vector

Memory

£=CMU-DB

15-721 (Spring 2023)

B

N

=) (e

=<

W | X<

<

oI N

SELECTIVE SCATTER/GATHER

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

SELECTIVE SCATTER/GATHER

Selective Gather

Value Vector

/
=

Index Vector

Memory

o|lc
-|<
o=
w|><
<
| N
[]
o
o

£=CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

SELECTIVE SCATTER/GATHER

Selective Gather Selective Scatter

0 1 2 3
Memory |)|V [W][X

<IN
N | o
°
°
°

Value Vector |

— —{<
O [r—1 N

/
=

Index Vector

N

IndexVector | 21513

Memory

7 |eoe Value Vector A B C D
5

o|1C
-|<
o=
w|><
<

£=CMU-DB

111111 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

SELECTIVE SCATTER/GATHER

Selective Gather Selective Scatter

0 1 2 3
Memory ||V |W][X

/

2{1[5]3
[
A

<|s
N | o
°
°
°

Value Vector |

A —<
O [r—1 N

/
=

Index Vector Index Vector

N

Memory

o|1C
-|<
o=
w|><
<

Z|eoe Value Vector
5

£=CMU-DB
111111 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

SELECTIVE SCATTER/GATHER

Selective Gather Selective Scatter

0o 1 2
Memory | J|BI|W

it

Value Vector |

— —{<
O [r—1 N

/
=

Index Vector | 9 IndexVector | 21513
Memory |y|V|W|[X|Y|Z|ooe Value Vector | A [BlcCID
o1 2 3 4 5

£=CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

VECTORIZED DBMS ALGORITHMS

Principles for efficient vectorization by using
fundamental vector operations to construct more

advanced functionality.

— Favor vertical vectorization by processing different input
data per lane.

— Maximize lane utilization by executing unique data items
per lane subset (i.e., no useless computations).

— | RETHINKING SIMD VECTORIZATION FOR
IN-MEMORY DATABASES
SIGMOD 2015

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/doi/10.1145/2723372.2747645
https://dl.acm.org/doi/10.1145/2723372.2747645

VECTORIZED OPERATORS

Selection Scans
Hash Tables
Partitioning / Histograms

~— |RETHINKING SIMD VECTORIZATION FOR
IN-MEMORY DATABASES
SIGMOD 2015

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/doi/10.1145/2723372.2747645
https://dl.acm.org/doi/10.1145/2723372.2747645

SELECTION SCANS

Scalar (Branchless)

i=20
for t in table:
copy(t, outputl[il)
key = t.key
m = (keyzlow ? 1 : 0) &
Y (keyshigh ? 1 : 0)
1=1+m

SELECT * FROM table
WHERE key >= $low AND key <= $high

££CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

SELECTION SCANS

Vectorized

ID @ KEY Key Vector

i=20
for v, in table:
simdLoad(v,.key, v,)
v, = (vy2low 7 1 : 0) &
% (vshigh 2 1 : 0)
simdStore(v,, v,, output[i])
i=1i+ |v#false| All Offsets

Mask

X|ICnNIK|O |—

(o2} (G2 EiNg [GUR SN E

SELECT * FROM table
WHERE key >= "0" AND key <= "U" Matched Offsets | 1| 3| 4

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

@ Scalar (Branching)
@ Scalar (Branchless)
MIC (Xeon Phi7120P - 61 Cores + 4xHT)

Yoottt COPIOKRSS

Source: Orestis Polychroniou

$CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://www.cs.columbia.edu/~orestis

SELECTION SCANS

@ Scalar (Branching)

@ Scalar (Branchless)

MIC (Xeon Phi 7120P - 61 Cores + 4xHT)
48

Throughput
(billion tuples / sec)

O I I I I I I I

7 57 56 53 49 43 28 13

o 1 2 5 10 20 50 100

Source: Orestis Polychroniou Selectivity (%)
£CMU-DB

15-721 (Spring 2023)

A Vectorized (Early Mat)
B Vectorized (Late Mat)

Multi-Core (Xeon E3-1275v3 — 4 Cores + 2xHT)
6.0

=
o

Throughput
(billion tuples / sec)
[\
o

0.0 I I I I I I
o 1 2 5 10 20 5

Selectivity (%)

]
0 100

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://www.cs.columbia.edu/~orestis

SELECTION SCANS

@ Scalar (Branching)
@ Scalar (Branchless)

MIC (Xeon Phi 7120P - 61 Cores + 4xHT)
48

(O8]
(\®)
|

J—
(O)
|

a

Throughput
(billion tuples / sec)

O

1 2 5 10 20 50 100
Selectivity (%)

o

Source: Orestis Polychroniou

££CMU-DB

15-721 (Spring 2023)

Memory
idth

A Vectorized (Early Mat)
B Vectorized (Late Mat)

Multi-Core (Xeon E3-1275v3 — 4 Cores + 2xHT)

6.0
Q
3
£ 40
S o» 40
= =
0
S 3 Memory
S 8 Bandwidth
ﬁ RS 2.0
=
N
0.0 I I I I I I I]
o 1 2 5 10 20 50 100

Selectivity (%)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://www.cs.columbia.edu/~orestis

$2CMU-DB

15-721 (Spring 2023)

OBSERVATION

For each batch, the SIMD vectors may contain
tuples that are no longer valid (they were
disqualified by some previous check).

Emit SELECT COUNT(*) FROM table
WHERE age > 20
GROUP BY city;
Agg .
agg = dict()
1 for t in table:
. if t.age > 20:
Filter agglt.city]['count' J++
1 for t in agg:
emit(t)

Scan

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

OBSERVATION

For each batch, the SIMD vectors may contain
tuples that are no longer valid (they were
disqualified by some previous check).

SELECT COUNT(*) FROM table
WHERE age > 20
GROUP BY city;

t

| i |
Pipeline #1 : . 1er

= dict

for t in agg:
emit(t)

£2CMU-DB ! Scan

15-721 (Spring 2023) eesesesseseseeseseeeees

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

OBSERVATION

For each batch, the SIMD vectors may contain
tuples that are no longer valid (they were
disqualified by some previous check).

o . SELECT COUNT(*) FROM table
Pipeline #2 : E WHERE age > 20
s i GROUP BY city;

Agg

1 = dict

 Filter |
Pipeline #1 : . 1er

£2CMU-DB ! Scan

15-721 (Spring 12023) H I e

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

VLDB 2017

$2CMU-DB

15-721 (Spring 2023)

RELAXED OPERATOR FUSION

Vectorized processing model designed for query
compilation execution engines.

Decompose pipelines into stages that operate on

vectors of tuples.

— Each stage may contain multiple operators.

— Communicate through cache-resident buffers.
— Stages are granularity of vectorization + fusion.

=== | RELAXED OPERATOR FUSION FOR IN-MEMORY DATABASES: MAKING
COMPILATION, VECTORIZATION, AND PREFETCHING WORK TOGETHER AT LAST

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/doi/10.14778/3151113.3151114
https://dl.acm.org/doi/10.14778/3151113.3151114

ROF EXAMPLE

SELECT COUNT(*) FROM table
WHERE age > 20 GROUP BY city;

Vectomzatwn
Candidate |

££CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

ROF EXAMPLE

SELECT COUNT(*) FROM table
WHERE age > 20 GROUP BY city;

Emit
agg - dlCt() ?‘.‘.'.'.'.'.'.'.'.'.'.'.'t'.'.'.'.'.'.'.'.'.'.é
for v, in table step 1024: . Agg S 2
buffer = simd_cmp_gt(v,, 20, 1024) f lage #
if |buffer| >= MAX:
for t in buffer: s Stage Buffer
agglt.city]['count'J++ v
for t in agg: : f :
it(t I
LIPS t Filter i
: f . Stage #1
Scan
SCMUOB. o TEEVTN

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

ROF EXAMPLE

SELECT COUNT(*) FROM table
WHERE age > 20 GROUP BY city;

for v, in table step 1024: s
buffer = simd_cmp_gt(v,, 20, 1024);
...... T BT el T —
for t in buffer:
aggl[t.city]['count'J++
for t in agg:

emit(t)

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

ROF EXAMPLE

SELECT COUNT(*) FROM table
WHERE age > 20 GROUP BY city;

Emit
:Agg.
E "_ . Stage #2
if |buffer| >= MAX: S

for t in agg:
emit(t)

E‘E CMU.DB --------------------------

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

ROF EXAMPLE

SELECT COUNT(*) FROM table
WHERE age > 20 GROUP BY city;

£CMU-DB
15-721 (Spring 2023,

agg = dict()

if |buffer| >= MAX:

)

..........................
..........................

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

ROF SOFTWARE PREFETCHING

The DBMS can tell the CPU to grab the next vector

while it works on the current batch.

— Prefetch-enabled operators define start of new stage.
— Hides the cache miss latency.

Any prefetching technique is suitable
— Group prefetching, software pipelining, AMAC.
— Group prefetching works and is simple to implement.

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

ROF EVALUATION

Dual Socket Intel Xeon E5-2630v4 @ 2.20GHz

TPC-H 10 GB Database
HLLVM B LLVM + ROF
-~ 3000
£
S 2000 T
.§ . 901 892 Does Help
e ¢ -
Q1 Q3 Q13 Q14 Q19

Source: Prashanth Menon

££CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://www.youtube.com/watch?v=HjMQbzBhTb4

ROF EVALUATION - TPC-H Q189

100000

10000

1000

100

10

Execution Time (ms)

1

Source: Prashanth Menon

£=CMU-DB
111111 (Spring 2023)

Dual Socket Intel Xeon E5-2630v4 @ 2.20GHz
TPC-H 10 GB Database

21475

Interpreted Compiled ROF +SIMD ROF + SIMD +
Pretching

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://www.youtube.com/watch?v=HjMQbzBhTb4

VECTORIZED OPERATORS

Seleetiapeese
Hash Tables
Partitioning / Histograms

~— |RETHINKING SIMD VECTORIZATION FOR
IN-MEMORY DATABASES
SIGMOD 2015

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/doi/10.1145/2723372.2747645
https://dl.acm.org/doi/10.1145/2723372.2747645

HASH TABLES - PROBING

Scalar
Linear Probing

Input Key hash(key) Hash Index Hash Table

KEY § PAYLOAD
k1 + hi \ Kev] paviom |

k1l

k9

£=CMU-DB

15-721 (Spring 2023,)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

HASH TABLES - PROBING

Scalar
Linear Probing

Input Key hash(key) Hash Index Hash Table

KEY | PAYLOAD
k1 + hi ey | PaYLOAD |

\ N
=] k9
=1 k3
\4
=| k8
ki | = k1

£=CMU-DB

15-721 (Spring 2023,)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

HASH TABLES - PROBING

Scalar
Linear Probing

Input Key hash(key) Hash Index Bucketized Hash Table

KEYS
a —f—{n L KEYS]

Vectorized (Horizontal)

Input Key hash(key) Hash Index

Four Keys Four Values
f—?CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

HASH TABLES - PROBING

Scalar
Linear Probing

Input Key hash(key) Hash Index Bucketized Hash Table

KEYS
a —f—{n L KEYS]

k1l | =|k9|k3]|k8|k1
Vectorized (Horizontal)
Input Key hash(key) Hash Index

k1+h1 0|0|0|1

Matched Mask

Four Keys Four Values
$CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

Vectorized (Vertical)

Input Key
Vector

hash(key)

3

k1

HASH TABLES - PROBING

Hash Index
Vector

k2

hl

Linear Probing
Hash Table

ke[pavion

k99

-

k3

h2

\,a/v

k4

h3

k1l

£=CMU-DB

15-721 (Spring 2023)

h4

k6

\ﬂ/’

k4

k5

k88

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

HASH TABLES - PROBING

Vectorized (Vertical) Linenr B
mnmear I'ro mg

Input Key Hash Index Hash Table
Vector hash(key)

Vector SIMD Gather m
/ﬂ\ <
7 E 7(

k2 /’a\& h2 ki| = | k1
c —) — k2 | = [k99 <
k4 h4 k3 | = | k88 k6

k5

k88

£CMU-DB
111111 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

Input Key
Vector

HASH TABLES - PROBING

Vectorized (Vertical)

Hash Index
Vector

hash(key)

3

k1l

k2

hl

Linear Probing
Hash Table

e[pavion

k99

-

k3

h2

\,a/»

k4

h3

k1l

£=CMU-DB
111111 (Spring 2023)

h4

k6

\B/

ki | = | k1 1
k2 | = [k99 %)
k3 | = k88 (9]
kd | = | k4 1

SIMD Compare

k4

k5

k88

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

HASH TABLES - PROBING

Vectorized (Vertical)

I Linear Probing
Input Key Hash Index Hash Table
Vector haSh(key) Vector m
k99
k5 /ﬂ\ h5
k2 /’a*hZH k1 [=[k1l =1 —
ké h6 k3 | = |k88p—» © k6
B] - [laf={1] |g

SIMD Compare =

k88

$CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

HASH TABLES - PROBING

Vectorized (Vertical) Linenr B
inear Probing

Input Key Hash Index Hash Table
Vector hash(key)

Vector v paviono)
/ﬂ\ k99
k5 h5 —>
k2 /’a*hZH
k1
k3 \,a/vh%l
\: :

k4

k5

k88

£=CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

HASH TABLES - PROBING

@ Scalar A Vectorized (Horizontal) B Vectorized (Vertical)

MIC (Xeon Phi 7120P - 61 Cores + 4xHT) Multi-Core (Xeon E3-1275v3 — 4 Cores + 2xHT)
~ 12 ~ 2
S >
‘g\ 9 ‘g\ 1.5
[1)
= = X
P56 1
C = S =
S 8 S e
-~ -
~= 3 ~ .05
= S
i O [[[[[T ~ O [[[[[[1
DO ® D PP ®
SECETASEN N SO NN

Hash Table Size Hash Table Size

Source: Orestis Polychroniou

££CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://www.cs.columbia.edu/~orestis

HASH TABLES - PROBING

@ Scalar A Vectorized (Horizontal) Bl Vectorized (Vertical)

MIC (Xeon Phi 7120P - 61 Cores + 4xHT)
12

Throughput

Out of Cache

(billion tuples / sec)
(@)

O [[[
m@\g{& 6&26&9 \g& b§®\ @X‘bb b§®

Hash Table Size

Source: Orestis Polychroniou

££CMU-DB

15-721 (Spring 2023)

Multi-Core (Xeon E3-1275v3 - 4 Cores + 2xHT)
2

Throughput
(billion tuples / sec)

0.5
Out of Cache
O [[[[[
&%\ngb&%&b && @&\ &‘bb b§®
Hash Table Size

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://www.cs.columbia.edu/~orestis

PARTITIONING - HISTOGRAM

Use scatter and gathers to increment counts.
Replicate the histogram to handle collisions.

Input Key Hash Index

Vector Vector Histogram
k1 » hl
k2 » h2 % +1
k3 » h3 +1
k4 » h4
+1

SIMD Radix SIMD Add

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

PARTITIONING - HISTOGRAM

Use scatter and gathers to increment counts.
Replicate the histogram to handle collisions.

Input Key Hash Index

Vector Vector Histogram
k1 » hl
k2 » h2 }: +1
k3 > h3 +1 |Missing Update
k4 » h4
+1

SIMD Radix SIMD Add

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

PARTITIONING - HISTOGRAM

Use scatter and gathers to increment counts.
Replicate the histogram to handle collisions.

In‘gg:tﬁey Ha‘s/zézg e Replicated Histogram
k1 » hil
k2 » h2 % +1
k3 > h3 —> +1_L—> +1
k4 » h4a \§
T +1

SIMD Radix SIMD Scatter KN /

g
of Vector Lanes

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

PARTITIONING - HISTOGRAM

Use scatter and gathers to increment counts.
Replicate the histogram to handle collisions.

I""}tht,l,ffy Ha‘s/zézg “* Replicated Histogram Histogram
k1l » hl >
k2 > h2 % +1 > +1
k3 > h3 —>| +1 L —| +1 > +2
k4 > h4 \§ >
T +1 » +1

SIMD Radix SIMD Scatter gN N SIMD Add

g
of Vector Lanes

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

CAVEAT EMPTOR

AVX-512 is not always faster than AVX2.

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

CAVEAT E

AVX-512 is not always faste

764

cant underut;
this

ing operators. W
Ssue, among other things, in the folkrwmg section.

5.3 Discussion and implications

The two strategies are not mutually exclusive. Within a single
pipeline, both strategies can be applied to individual opera-
tors as long as buffering operators are aware of protected
lanes (mixed strategy). Moreover, the query compiler might
decide to nor apply any refill strategy to certain operators,
Especially, when 2 sequence of operators is quite cheap,
divergence might be acceptable s long as the costs for refill
operations are not amortized. Naturally, this is a physical
query optimization problem that we will leave for future
work. Nevertheless, we briefly discuss the advantages and
tages, as this is the firsg work in which we present
sic principles of vector-processing in compiled query
pipelines,

As mentioned above, consume everything requires addj-
tional registers, which i the regi.

H.Lang etal

Table 1 Hardware platforms

Intel Intel

Knights landing Skylake-X

(KNL) (SKX)
Model Phi 7210 19-7900X
Cores (SMT) 64 (x 4) 10(x 2)
SIMD [bit] 2x512 2x512
Max. clock rate [GHz) 1.5 45
L1 cache 64 KiB 32KiB
L2 cache I MiB 1 MiB

L3 cache - 14 MiB

table scan and (ij) a hash join. Additionally, we experiment
with a more complex operator, an approximate geospatial
Join. The experiments were conducted on an Inte] Skylake-X
(SKX) and an Inte] Knights Landing (KNL) processor (cf,,
Table 1). The experimenys were ! 1in C++ and
at optimization level three (-03)
F set 1o knl. If not stated other-
nts in paralle] using two threads
€ work in batches to the indj vidual

tively.

Ftween 216 and 220 wples, On the
the data in high-bandwidth mem-
F experiments would have been

[for at least three seconds, possi-
fa multiple times.

1 - ded eX eriment87 We did JIs. To measure the throughputs,
2 Please note that throughout our (Igl;lllsil:;ls tglrf;ugh)dognclocking- Both
any performance pen c-
i (e):ts)sgi:eK NE zlijnd SKX run stable at 1.4 GHz and 4.0 GHz, respe
proc

divergence handling in table
algorithms into the AVX-512
lery | of Gubner et al, [6]. Addi-
H integrated the materialization
flon et al. in [16).

ltive, TPC-H Query 1 (or short
query that operates on a sin-
With a single scan predicate.

T oo ~several fixed-point arithmetic operations in the
reconT Sters.

The greater the number of buffers, the greater the number
of permute instructions that need to be executed, whereas

$CMU-DB

15-721 (Spring 2023)

the number of required buffers depends on (i) the number of
i assed along the pipeline and optionally on (ii) the
number of registers required to save the internal state of the
operator (e.g., a pointer to the current tree node).

aggregation based on the group by clause. In total, five addi-
tional attributes are accessed to compute eight aggregated
values per group, Almost all tuples survive the selection (ie.,
selectivity ~(0.98). Therefore, in its original form, QI does
not suffer from control flow divergence. To simulate control
flow divergence and the resulting underutilization of SIMD

6 Evaluation

We evaluate our approach with two major sources of con-|
trol flow divergence, (i) predicate evaluation as part of a

€) Springer

SE——
* Please note that throughout our (multi-threaded) experiments, we did
not observe any performance penalies through downclocking. Both
processors KNL and SKX run stable at 1.4GHz ang 4.0GHz, respec-
tively.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

£CMU-DB
15-721 (Spring 2023

)

CAVEAT EMPTOR

AVX-512 is not always faster than AVX2.

Some CPUs downgrade their clockspeed when

switching to AVX-512 mode.
— Compilers will prefer 256-bit SIMD operations.

[f only a small portion of the process uses AVX-512,
then it is not worth the downclock penalty.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

$2CMU-D

15-721 (Spring 202\

71

The frequency impact depends on the width of the operation and the specific instruction used.

There are three frequency levels, so-called licenses. from fastest 10 slowest: LO, L1 and L2.L0is
the “nominal” speed you'll see written on the pox; when the chip says 3.5 GHz turbo” they are
referring to the single-core L0 turbo. L1is @ jower speed sometimes called AVX turbo of AVX2
turbo®, originally associated with AVX and AVX2 instruciionsl. L2 is a lower speed than L1,
sometimes called "AVX-512 turbo”.

The exact speeds for each license also depend on the number of active cores. FOT up to date
tables, you can usually consult WikiChip. For example, the table for the Xeon Gold 5120 is here:

Turbe Frequency/ Active Cotes
Mode Base
1 2 3 4 5 [} 7 [9 1 1 12 13 %
Normal 2,200 MHZ 3000MHz 3000 Wz 2900 Mz 2000 Mz 2,900 M2 2000 M 2700 Mz 2700 Wz 2700 MHz 2700 MHZ 2,600 MHz 2,600 MHZ
VX2 1,800 MHZ

avxsiz 1,200 MHz | 2,900 MHZ 2900 Mz 2,500 MHz 2,500 MHZ

2000 MHz 2900 MHz 2700 MHz 2700 Mz 2700 M2 2,700 Mz 2300 Mkz 2300 MHz 2300 MHz 2300 WHZ 2200 Mz 2.200 Ntz

The Normal, AvX2 and AVXB12 rows correspond t0 the LO, L1 and L2 licenses respectively. Note
that the relative slowdown for L1 and L2 licenses generally gets worse as the number of cores
increase: for 1 of 2 active cores the L1 and L2 speeds are 97% and 91% of LO, but for 13 0r 14
cores they are 85% and 62% respectively. This varies by chip, but the general trend is usually the
same.

Those preliminaries out of the way, let's get 1o what | think you aré asking: which instructions cause
which licenses 0 pe activated?

Here's a table, showing the implied license for instructions pased on their width and their
categorization as light or heavy"

scalar
128-bit Lo 10
256-bit Lo

512-bit Li

*soft transition (see below)

So we immediately see that all scalar (non—SiMD) instructions and all 128-bit wide ins.tructiuns2
always run at full speed in the LO license.

EMPTOR

ster than AVX2.

eir clockspeed when
de.

SIMD operations.

e process uses AVX-512
nclock penalty. |

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://stackoverflow.com/a/56861355

$2CMU-DB

15-721 (Spring 2023)

PARTING THOUGHTS

Vectorization is essential for OLAP queries.

We can combine all the intra-query parallelism

optimizations we've talked about in a DBMS.
— Multiple threads processing the same query.

— Each thread can execute a compiled plan.

— The compiled plan can invoke vectorized operations.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

NEXT CLASS

Query Compilation
Project #3 Topics

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

	Introduction
	Slide 1: Vectorized Execution
	Slide 2: LAST CLASS
	Slide 3: TODAY’S AGENDA
	Slide 4: VECTORIZATION
	Slide 5: WHY THIS MATTERS

	SIMD Background
	Slide 6: SINGLE INSTRUCTION, MULTIPLE DATA
	Slide 7: SIMD EXAMPLE
	Slide 8: SIMD EXAMPLE
	Slide 9: SIMD EXAMPLE
	Slide 10: SIMD EXAMPLE
	Slide 11: SIMD EXAMPLE
	Slide 12: SIMD EXAMPLE
	Slide 13: VECTORIZATION DIRECTION
	Slide 14: SIMD INSTRUCTIONS (1)
	Slide 15: SIMD INSTRUCTIONS (2)
	Slide 16: INTEL SIMD EXTENSIONS
	Slide 17: SIMD TRADE-OFFS

	AVX-512
	Slide 18: AVX-512
	Slide 19: AVX-512
	Slide 20: AVX-512

	Implementation
	Slide 22: IMPLEMENTATION
	Slide 23: AUTOMATIC VECTORIZATION
	Slide 24: AUTOMATIC VECTORIZATION
	Slide 25: COMPILER HINTS
	Slide 26: COMPILER HINTS
	Slide 27: COMPILER HINTS
	Slide 28: EXPLICIT VECTORIZATION
	Slide 29: EXPLICIT VECTORIZATION

	SIMD Fundamentals
	Slide 30: VECTORIZATION FUNDAMENTALS
	Slide 31: SIMD MASKING
	Slide 32: SIMD MASKING
	Slide 33: SIMD MASKING
	Slide 34: PERMUTE
	Slide 35: PERMUTE
	Slide 36: PERMUTE
	Slide 37: SELECTIVE LOAD/STORE
	Slide 38: SELECTIVE LOAD/STORE
	Slide 39: SELECTIVE LOAD/STORE
	Slide 40: SELECTIVE LOAD/STORE
	Slide 41: SELECTIVE LOAD/STORE
	Slide 42: COMPRESS / EXPAND
	Slide 43: COMPRESS / EXPAND
	Slide 44: COMPRESS / EXPAND
	Slide 45: COMPRESS / EXPAND
	Slide 46: COMPRESS / EXPAND
	Slide 47: COMPRESS / EXPAND
	Slide 48: COMPRESS / EXPAND
	Slide 49: SELECTIVE SCATTER/GATHER
	Slide 50: SELECTIVE SCATTER/GATHER
	Slide 51: SELECTIVE SCATTER/GATHER
	Slide 52: SELECTIVE SCATTER/GATHER
	Slide 53: SELECTIVE SCATTER/GATHER
	Slide 54: SELECTIVE SCATTER/GATHER

	Vectorized DBMS Algos
	Slide 56: VECTORIZED DBMS ALGORITHMS
	Slide 58: VECTORIZED OPERATORS

	Scans
	Slide 59: SELECTION SCANS
	Slide 60: SELECTION SCANS
	Slide 61: SELECTION SCANS
	Slide 62: SELECTION SCANS
	Slide 63: SELECTION SCANS

	ROF
	Slide 64: OBSERVATION
	Slide 65: OBSERVATION
	Slide 66: OBSERVATION
	Slide 67: RELAXED OPERATOR FUSION
	Slide 68: ROF EXAMPLE
	Slide 69: ROF EXAMPLE
	Slide 70: ROF EXAMPLE
	Slide 71: ROF EXAMPLE
	Slide 72: ROF EXAMPLE
	Slide 73: ROF SOFTWARE PREFETCHING
	Slide 74: ROF EVALUATION
	Slide 75: ROF EVALUATION – TPC-H Q19

	Hash Tables
	Slide 76: VECTORIZED OPERATORS
	Slide 77: HASH TABLES – PROBING
	Slide 78: HASH TABLES – PROBING
	Slide 79: HASH TABLES – PROBING
	Slide 80: HASH TABLES – PROBING
	Slide 81: HASH TABLES – PROBING
	Slide 82: HASH TABLES – PROBING
	Slide 83: HASH TABLES – PROBING
	Slide 84: HASH TABLES – PROBING
	Slide 85: HASH TABLES – PROBING
	Slide 86: HASH TABLES – PROBING
	Slide 87: HASH TABLES – PROBING

	Histograms
	Slide 88: PARTITIONING – HISTOGRAM
	Slide 89: PARTITIONING – HISTOGRAM
	Slide 90: PARTITIONING – HISTOGRAM
	Slide 91: PARTITIONING – HISTOGRAM

	Bad News
	Slide 94: CAVEAT EMPTOR
	Slide 95: CAVEAT EMPTOR
	Slide 96: CAVEAT EMPTOR
	Slide 97: CAVEAT EMPTOR

	Conclusion
	Slide 98: PARTING THOUGHTS
	Slide 99: NEXT CLASS

