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LAST CLASS

We discussed how the DBMS will divide up tasks
among its workers to execute a query.

The DBMS needs to be aware of the location of data
to avoid non-local memory access.
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TODAY’S AGENDA

Background
Implementation Approaches

SIMD Fundamentals
Vectorized DBMS Algorithms
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VECTORIZATION

The process of converting an algorithm's scalar
implementation that processes a single pair of
operands at a time, to a vector implementation that
processes one operation on multiple pairs of
operands at once.
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WHY THIS MATTERS

Say we can parallelize our algorithm over 32 cores.
Assume each core has a 4-wide SIMD registers.

Potential Speed-up: 32x x 4x = 128x
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SINGLE INSTRUCTION, MULTIPLE DATA

A class of CPU instructions that allow the processor
to perform the same operation on multiple data
points simultaneously.

All major ISAs have microarchitecture support

SIMD operations.

— x86: MMX, SSE, SSE2, SSE3, SSE4, AVX, AVX2, AVX512
— PowerPC: Altivec

— ARM: NEON, SVE

— RISC-V: RVV
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for (i=0; i<n; i++) {
Z[i] = X[1] + Y[il;
}
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for (i=0; i<n; i++) {
Z[i] = X[i]l + Y[il;
}
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VECTORIZATION

Approach #1: Horizontal

— Perform operation on all elements
together within a single vector.

Approach #2: Vertical

— Perform operation in an elementwise
manner on elements of each vector.

Source: Przemystaw Karpinski
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SIMD INSTRUCTIONS (1)

Data Movement
— Moving data in and out of vector registers

Arithmetic Operations

— Apply operation on multiple data items (e.g., 2 doubles, 4
floats, 16 bytes)
— Example: ADD, SUB, MUL, DIV, SQRT, MAX, MIN

Logical Instructions

— Logical operations on multiple data items
— Example: AND, OR, XOR, ANDN, ANDPS, ANDNPS
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SIMD INSTRUCTIONS (2)

Comparison Instructions
— Comparing multiple data items (==,<,<=,>,>=,1=)

Shuffle instructions
— Move data between SIMD registers

Miscellaneous

— Conversion: Transform data between x86 and SIMD
registers.

— Cache Control: Move data directly from SIMD registers to
memory (bypassing CPU cache).
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INTEL SIMD EXTENSIONS

Width Integers Single-P Double-P
1997 MMX 64 bits v
1999 SSE 128 bits v v (x4)
2001 SSE2 128 bits v v v (x2)
2004 SSE3 128 bits v v v
2006 SSSE 3 128 bits v v v
2006 SSE 4.1 128 bits v v v
2008 SSE 4.2 128 bits v v v
2011 AVX 256 bits v v (x8) v (x4)
2013 AVX2 256 bits v v v
2017 AVX-512 512 bits v v (x16) Vv (x8)

Source: James Reinders
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SIMD TRADE-OFFS

Advantages:

— Significant performance gains and resource utilization if an
algorithm can be vectorized.

Disadvantages:

— Implementing an algorithm using SIMD is still mostly a
manual process.

— SIMD may have restrictions on data alignment.

— Gathering data into SIMD registers and scattering it to the
correct locations is tricky and/or inefficient.
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AVX-512

Intel's 512-bit extensions to the AV X2 instructions.
— Provides new operations to support data conversions,
scatter, and permutations.

Unlike previous SIMD extensions, Intel split AVX-
512 into groups that CPUs can selectively provide
(except for "foundation" extension AVX-512F).
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Intel's 512-bit extensions to the AVX2 instructions.
— Provides new operations to support data conversions,
scatter, and permutations.

AVX-512

Subset
Knights Landing (Xeon Phi x200, 2016)
Knights Mill (Xeon Phi x205, 2017)
Skylake-SP, Skylake-X (2017)
Cannon Lake (2018)
Cascade Lake (2019)
Cooper Lake (2020)
Ice Lake (2019)
Tiger Lake (2020)
Rocket Lake (2021)
Alder Lake (2021)
Zen 4 (2022)
Sapphire Rapids (2023)
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IMPLEMENTATION

Choice #1: Automatic Vectorization Ease of Use
Choice #2: Compiler Hints

Choice #3: Explicit Vectorization
Programmer

Control

Source: James Reinders
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AUTOMATIC VECTORIZATION

The compiler can identify when instructions inside
of a loop can be rewritten as a vectorized operation.

Works for simple loops only and is rare in database
operators. Requires hardware support for SIMD
instructions.
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AUTOMATIC VECTORIZATION

void add(int *X,
int *Y,
int *7) {e—— *7=%X+1
for (int i=0; i<MAX; i++) {
Z[1] = X[1] + Y[il;

NN/
N
These might point to
the same address!
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This loop is not legal to
automatically vectorize.

The code is written such that the
addition is described sequentially.
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COMPILER HINTS

Provide the compiler with additional information
about the code to let it know that is safe to
vectorize.

Two approaches:
— Give explicit information about memory locations.
— Tell the compiler to ignore vector dependencies.
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COMPILER HINTS

The restrict keyword in C++
void add(int *restrict X, tells the compiler that the arrays

int *restrict Y, are distinct locations in memory.
int *restrict Z) {

for (int i=0; i<MAX; i++) {
Z[i] = X[i] + Y[il;
3
3
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COMPILER HINTS

void add(int *X,
int *Y,
int *Z) {
#pragma ivdep
for (int i=0; i<MAX; i++) {
Z[i] = X[i] + Y[il;
3
3
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This pragma tells the compiler to
ignore loop dependencies for the
vectors.

[t is up to the DBMS developer to
make sure that this is correct.
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EXPLICIT VECTORIZATION

Use CPU intrinsics to manually marshal data
between SIMD registers and execute vectorized

Instructions.
— Not portable across CPUs (ISAs / versions).

There are libraries that hide the underlying calls to

SIMD intrinsics.

— Google Highway

— Simd

— Expressive Vector Engine (EVE)
— std::simd (Experimental)
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EXPLICIT VECTORIZATION

void add(int *X,
int *Y,
int *Z) {

__mm128i *vecX = (__m128i*)X;
__mm128i *vecY = (__m128ix*)Y;
__mm128i *vecZ = (__m128ix*)Z;
for (int i=0; i<MAX/4; i++) {

_mm_store_sil128(vecZ++,

Y _mm_add_epi32(*vecX++,
Y *vecY++));
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Store the vectors in 128-bit SIMD
registers.

Then invoke the intrinsic to add
together the vectors and write
them to the output location.
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VECTORIZATION FUNDAMENTALS

There are fundamental SIMD operations that the

DBMS will use to build more complex functionality:
— Masking

— Permute

— Selective Load/Store

— Compress/Expand

— Selective Gather/Scatter

= | MAKE THE MOST OUT OF YOUR SIMD INVESTMENTS: COUNTER
CONTROL FLOW DIVERGENCE IN COMPILED QUERY PIPELINES
VLDB JOURNAL 2020
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SIMD MASKING

Almost all AVX-512 operations support
predication variants whereby the CPU only
performs operations on lanes specified by an input
bitmask.

Merge Source | 9 (9[99

Vector1 | 313|313

Maskéi(.ai

Vector2| 2121212
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SIMD MASKING

Almost all AVX-512 operations support
predication variants whereby the CPU only
performs operations on lanes specified by an input
bitmask.

Merge Source | 9 (9[99

Vector1 | 3131313

Output 5 5

Mask | 9

Vector2 | 2
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SIMD MASKING

Almost all AVX-512 operations support
predication variants whereby the CPU only
performs operations on lanes specified by an input
bitmask.

Merge Source | 919|919

Vector1 [ 313|313 \\
Mask |0111011 n—>0utput9595

Vector2| 2121212
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PERMUTE

For each lane, copy values in the
input vector specified by the offset
in the index vector into the
destination vector.

Prior to AVX-512, the DBMS had to
write data from the SIMD register to

memory then back to the SIMD
register.
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Permute

Value Vector

Index Vector

Input Vector
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PERMUTE

For each lane, copy values in the
input vector specified by the offset
in the index vector into the
destination vector.

Prior to AVX-512, the DBMS had to

write data from the SIMD register to
memory then back to the SIMD
register.
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PERMUTE

For each lane, copy values in the
input vector specified by the offset
in the index vector into the
destination vector.

Prior to AVX-512, the DBMS had to

write data from the SIMD register to
memory then back to the SIMD
register.
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SELECTIVE LOAD/STORE

Selective Load

Vector | A

|
ar

Mask | g
Memory |y|VIWIX|Y|Z]|ooe
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SELECTIVE LOAD/STORE

Selective Load

Vector | AlU|C|V

Mask |9 |1]0]1

Memory [y|VIWIX|Y|Z]|ooe
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SELECTIVE LOAD/STORE

Selective Load Selective Store
Vector | AlU|C|V Memory |y|V|W|[X|Y|Z|oeoe
Mask 19111011 Mask @ 1 @ 1
Memory |y|VIW|X|Y|Z|ooe Vector | A[BICID
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SELECTIVE LOAD/STORE

Selective Load Selective Store
Vector | AlU|C|V Memory |B|V|W|X|Y|Z|oee
Mask (g 1|01 Mask (pl1|0]|1
Memory |y|VIW|X|Y|Z|ooe Vector | AIBICID
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SELECTIVE LOAD/STORE

Selective Load Selective Store
Vector | AlU|C|V Memory |BID|W|[X|Y|Z|ooe
Mask (g 1|01 Mask (p|1|0]1
Memory |y|VIW|X|Y|Z|ooe Vector | A[BICID
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Compress

Value Vector

Index Vector

Input Vector
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COMPRESS / EXPAND



https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

Compress

Value Vector

Index Vector

Input Vector
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Compress

Value Vector

Index Vector

Input Vector
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Compress

Value Vector

Index Vector
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Compress

Value Vector

Index Vector

Input Vector
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COMPRESS / EXPAND

Compress Expand

Value Vector

DIo|o Value Vector | A | B

Index Vector IndexVector [p|1|0|1

S
.
s

O f—p] —

Input Vector Input Vector | A |B|CID
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COMPRESS / EXPAND

Compress Expand

Value Vector

DIo|o Value Vector | AIB| 0|0

Index Vector IndexVector [p|1|0|1

S
.
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Input Vector Input Vector | A |B|CID
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SELECTIVE SCATTER/GATHER

Selective Gather

Value Vector | A|B|A|D

Index Vector 2 1 5 3

Memory |

-|<
o=
w|><
<
n|N
[ ]
[ ]
[ ]

£=CMU-DB

15-721 (Spring 2023 )


https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

Selective Gather

Value Vector

Index Vector

Memory
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SELECTIVE SCATTER/GATHER

Selective Gather

Value Vector
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SELECTIVE SCATTER/GATHER

Selective Gather Selective Scatter

0 1 2 3
Memory | )|V [W][X

<IN
N | o
°
°
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Value Vector |
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Index Vector
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SELECTIVE SCATTER/GATHER

Selective Gather Selective Scatter

0 1 2 3
Memory ||V |W][X

/

2{1[5]3
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SELECTIVE SCATTER/GATHER

Selective Gather Selective Scatter

0o 1 2
Memory | J|BI|W

it

Value Vector |

— —{<
O [r—1 N

/
=

Index Vector | 9 IndexVector | 21513
Memory |y|V|W|[X|Y|Z|ooe Value Vector | A [BlcCID
o1 2 3 4 5
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VECTORIZED DBMS ALGORITHMS

Principles for efficient vectorization by using
fundamental vector operations to construct more

advanced functionality.

— Favor vertical vectorization by processing different input
data per lane.

— Maximize lane utilization by executing unique data items
per lane subset (i.e., no useless computations).

— | RETHINKING SIMD VECTORIZATION FOR
IN-MEMORY DATABASES
SIGMOD 2015

$2CMU-DB
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VECTORIZED OPERATORS

Selection Scans
Hash Tables
Partitioning / Histograms

~— |RETHINKING SIMD VECTORIZATION FOR
IN-MEMORY DATABASES
SIGMOD 2015
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SELECTION SCANS

Scalar (Branchless)

i=20
for t in table:
copy(t, outputl[il)
key = t.key
m = (keyzlow ? 1 : 0) &
Y (keyshigh ? 1 : 0)
1=1+m

SELECT * FROM table
WHERE key >= $low AND key <= $high

££CMU-DB
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SELECTION SCANS

Vectorized

ID @ KEY Key Vector

i=20
for v, in table:
simdLoad(v,.key, v,)
v, = (vy2low 7 1 : 0) &
% (vshigh 2 1 : 0)
simdStore(v,, v,, output[i])
i=1i+ |v#false| All Offsets

Mask

X|ICnNIK|O |—

(o2} (G2 EiNg [GUR SN E

SELECT * FROM table
WHERE key >= "0" AND key <= "U" Matched Offsets | 1| 3| 4

$2CMU-DB
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@ Scalar (Branching)
@ Scalar (Branchless)
MIC (Xeon Phi7120P - 61 Cores + 4xHT)

Yoottt COPIOKRSS

Source: Orestis Polychroniou
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SELECTION SCANS

@ Scalar (Branching)

@ Scalar (Branchless)

MIC (Xeon Phi 7120P - 61 Cores + 4xHT)
48

Throughput
(billion tuples / sec)

O I I I I I I I

7 57 56 53 49 43 28 13

o 1 2 5 10 20 50 100

Source: Orestis Polychroniou Selectivity (%)
£CMU-DB
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A Vectorized (Early Mat)
B Vectorized (Late Mat)

Multi-Core (Xeon E3-1275v3 — 4 Cores + 2xHT)
6.0

=
o

Throughput
(billion tuples / sec)
[\
o

0.0 I I I I I I
o 1 2 5 10 20 5

Selectivity (%)

]
0 100



https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://www.cs.columbia.edu/~orestis

SELECTION SCANS

@ Scalar (Branching)
@ Scalar (Branchless)

MIC (Xeon Phi 7120P - 61 Cores + 4xHT)
48

(O8]
(\®)
|

J—
(O)
|

a

Throughput
(billion tuples / sec)

O

1 2 5 10 20 50 100
Selectivity (%)

o

Source: Orestis Polychroniou
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Memory
idth

A Vectorized (Early Mat)
B Vectorized (Late Mat)

Multi-Core (Xeon E3-1275v3 — 4 Cores + 2xHT)

6.0
Q
3
£ 40
S o» 40
= =
0
S 3 Memory
S 8 Bandwidth
ﬁ RS 2.0
=
N
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OBSERVATION

For each batch, the SIMD vectors may contain
tuples that are no longer valid (they were
disqualified by some previous check).

Emit SELECT COUNT(*) FROM table
WHERE age > 20
GROUP BY city;
Agg .
agg = dict()
1 for t in table:
. if t.age > 20:
Filter agglt.city]['count' J++
1 for t in agg:
emit(t)

Scan
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OBSERVATION

For each batch, the SIMD vectors may contain
tuples that are no longer valid (they were
disqualified by some previous check).

SELECT COUNT(*) FROM table
WHERE age > 20
GROUP BY city;

--------------------------

t

| i |
Pipeline #1 : . 1er

= dict

for t in agg:
emit(t)

£2CMU-DB ! Scan
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OBSERVATION

For each batch, the SIMD vectors may contain
tuples that are no longer valid (they were
disqualified by some previous check).

o . SELECT COUNT(*) FROM table
Pipeline #2 : E WHERE age > 20
s i GROUP BY city;

Agg

1 = dict

 Filter |
Pipeline #1 : . 1er

£2CMU-DB ! Scan
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VLDB 2017
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RELAXED OPERATOR FUSION

Vectorized processing model designed for query
compilation execution engines.

Decompose pipelines into stages that operate on

vectors of tuples.

— Each stage may contain multiple operators.

— Communicate through cache-resident buffers.
— Stages are granularity of vectorization + fusion.

=== | RELAXED OPERATOR FUSION FOR IN-MEMORY DATABASES: MAKING
COMPILATION, VECTORIZATION, AND PREFETCHING WORK TOGETHER AT LAST
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ROF EXAMPLE

SELECT COUNT(*) FROM table
WHERE age > 20 GROUP BY city;

Vectomzatwn
Candidate |

££CMU-DB
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ROF EXAMPLE

SELECT COUNT(*) FROM table
WHERE age > 20 GROUP BY city;

Emit
agg - dlCt() ?‘.‘.'.'.'.'.'.'.'.'.'.'.'t'.'.'.'.'.'.'.'.'.'.é
for v, in table step 1024: . Agg S 2
buffer = simd_cmp_gt(v,, 20, 1024) f lage #
if |buffer| >= MAX:
for t in buffer: s Stage Buffer
agglt.city]['count'J++ v ......
for t in agg: : f :
it(t I
LIPS t Filter i
: f . Stage #1
Scan
SCMUOB. o TEEVTN
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ROF EXAMPLE

SELECT COUNT(*) FROM table
WHERE age > 20 GROUP BY city;

for v, in table step 1024: s
buffer = simd_cmp_gt(v,, 20, 1024);
...... T BT el T —
for t in buffer:
aggl[t.city]['count'J++
for t in agg:

emit(t)

$2CMU-DB
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ROF EXAMPLE

SELECT COUNT(*) FROM table
WHERE age > 20 GROUP BY city;

Emit
:Agg.
E "_ . Stage #2
if |buffer| >= MAX: S

for t in agg:
emit(t)

E‘E CMU.DB --------------------------

15-721 (Spring 2023)
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ROF EXAMPLE

SELECT COUNT(*) FROM table
WHERE age > 20 GROUP BY city;

£CMU-DB
15-721 (Spring 2023,

agg = dict()

if |buffer| >= MAX:

)

..........................
..........................
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ROF SOFTWARE PREFETCHING

The DBMS can tell the CPU to grab the next vector

while it works on the current batch.

— Prefetch-enabled operators define start of new stage.
— Hides the cache miss latency.

Any prefetching technique is suitable
— Group prefetching, software pipelining, AMAC.
— Group prefetching works and is simple to implement.

$2CMU-DB
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ROF EVALUATION

Dual Socket Intel Xeon E5-2630v4 @ 2.20GHz

TPC-H 10 GB Database
HLLVM B LLVM + ROF
-~ 3000
£
S 2000 T
.§ . 901 892 Does Help
e ¢ -
Q1 Q3 Q13 Q14 Q19

Source: Prashanth Menon
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ROF EVALUATION - TPC-H Q189

100000

10000

1000

100

10

Execution Time (ms)

1

Source: Prashanth Menon

£=CMU-DB
111111 (Spring 2023)

Dual Socket Intel Xeon E5-2630v4 @ 2.20GHz
TPC-H 10 GB Database

21475

Interpreted Compiled ROF +SIMD ROF + SIMD +
Pretching
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VECTORIZED OPERATORS

Seleetiapeese
Hash Tables
Partitioning / Histograms

~— |RETHINKING SIMD VECTORIZATION FOR
IN-MEMORY DATABASES
SIGMOD 2015
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HASH TABLES - PROBING

Scalar
Linear Probing

Input Key hash(key)  Hash Index Hash Table

KEY § PAYLOAD
k1 + hi \ Kev] paviom |

k1l

k9
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HASH TABLES - PROBING

Scalar
Linear Probing

Input Key hash(key)  Hash Index Hash Table

KEY | PAYLOAD
k1 + hi ey | PaYLOAD |

\ N
=] k9
=1 k3
\4
=| k8
ki | = k1
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HASH TABLES - PROBING

Scalar
Linear Probing

Input Key hash(key)  Hash Index Bucketized Hash Table

KEYS
a —f—{n L KEYS ]

Vectorized (Horizontal)

Input Key  hash(key) Hash Index

Four Keys Four Values
f—?CMU-DB
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HASH TABLES - PROBING

Scalar
Linear Probing

Input Key hash(key)  Hash Index Bucketized Hash Table

KEYS
a —f—{n L KEYS ]

k1l | =|k9|k3]|k8|k1
Vectorized (Horizontal)
Input Key  hash(key) Hash Index

k1+h1 0|0|0|1

Matched Mask

Four Keys Four Values
$CMU-DB
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Vectorized (Vertical)

Input Key
Vector

hash(key)

3

k1

HASH TABLES - PROBING

Hash Index
Vector

k2

hl

Linear Probing
Hash Table

ke[ pavion

k99

-

k3

h2

\,a/v

k4

h3

k1l
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h4

k6

\ﬂ/’

k4

k5

k88
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HASH TABLES - PROBING

Vectorized (Vertical) Linenr B
mnmear I'ro mg

Input Key Hash Index Hash Table
Vector hash(key)

Vector SIMD Gather m
/ﬂ\ <
7 E 7(

k2 /’a\& h2 ki| = | k1
c — ) — k2 | = [k99 <
k4 h4 k3 | = | k88 k6

k5

k88
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111111 (Spring 2023)


https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

Input Key
Vector

HASH TABLES - PROBING

Vectorized (Vertical)

Hash Index
Vector

hash(key)

3

k1l

k2

hl

Linear Probing
Hash Table

e[ pavion

k99

-

k3

h2

\,a/»

k4

h3

k1l
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h4

k6

\B/

ki | = | k1 1
k2 | = [k99 %)
k3 | = k88 (9]
kd | = | k4 1

SIMD Compare

k4

k5

k88



https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

HASH TABLES - PROBING

Vectorized (Vertical)

I Linear Probing
Input Key Hash Index Hash Table
Vector haSh(key ) Vector m
k99
k5 /ﬂ\ h5
k2 /’a\*hZH k1 [=[k1l =1 —
ké h6 k3 | = |k88p—» © k6
B ] - [laf={1] |g

SIMD Compare =

k88
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HASH TABLES - PROBING

Vectorized (Vertical) Linenr B
inear Probing

Input Key Hash Index Hash Table
Vector hash(key)

Vector v paviono)
/ﬂ\ k99
k5 h5 —>
k2 /’a\*hZH
k1
k3 \,a/vh%l
\: :

k4

k5

k88
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HASH TABLES - PROBING

@ Scalar A Vectorized (Horizontal) B Vectorized (Vertical)

MIC (Xeon Phi 7120P - 61 Cores + 4xHT) Multi-Core (Xeon E3-1275v3 — 4 Cores + 2xHT)
~ 12 ~ 2
S >
‘g\ 9 ‘g\ 1.5
[ 1)
= = X
P56 1
C = S =
S 8 S e
-~ -
~= 3 ~ .05
= S
i O [ [ [ [ [ T ~ O [ [ [ [ [ [ 1
DO ® D PP ®
SECETASEN N SO NN

Hash Table Size Hash Table Size

Source: Orestis Polychroniou
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HASH TABLES - PROBING

@ Scalar A Vectorized (Horizontal) Bl Vectorized (Vertical)

MIC (Xeon Phi 7120P - 61 Cores + 4xHT)
12

Throughput

Out of Cache

(billion tuples / sec)
(@)

O [ [ [
m@\g{& 6&26&9 \g& b§®\ @X‘bb b§®

Hash Table Size

Source: Orestis Polychroniou
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Multi-Core (Xeon E3-1275v3 - 4 Cores + 2xHT)
2

Throughput
(billion tuples / sec)

0.5
Out of Cache
O [ [ [ [ [
&%\ngb&%&b && @&\ &‘bb b§®
Hash Table Size
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PARTITIONING - HISTOGRAM

Use scatter and gathers to increment counts.
Replicate the histogram to handle collisions.

Input Key Hash Index

Vector Vector Histogram
k1 » hl
k2 » h2 % +1
k3 » h3 +1
k4 » h4
+1

SIMD Radix SIMD Add

$2CMU-DB
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PARTITIONING - HISTOGRAM

Use scatter and gathers to increment counts.
Replicate the histogram to handle collisions.

Input Key Hash Index

Vector Vector Histogram
k1 » hl
k2 » h2 }: +1
k3 > h3 +1 |Missing Update
k4 » h4
+1

SIMD Radix SIMD Add
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PARTITIONING - HISTOGRAM

Use scatter and gathers to increment counts.
Replicate the histogram to handle collisions.

In‘gg:tﬁey Ha‘s/zézg e Replicated Histogram
k1 » hil
k2 » h2 % +1
k3 > h3 —> +1_L—> +1
k4 » h4a \§
T +1

SIMD Radix SIMD Scatter KN /

g
# of Vector Lanes

$2CMU-DB
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PARTITIONING - HISTOGRAM

Use scatter and gathers to increment counts.
Replicate the histogram to handle collisions.

I""}tht,l,ffy Ha‘s/zézg “* Replicated Histogram Histogram
k1l » hl >
k2 > h2 % +1 > +1
k3 > h3 —>| +1 L —| +1 > +2
k4 > h4 \§ >
T +1 » +1

SIMD Radix SIMD Scatter gN N SIMD Add

g
# of Vector Lanes
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CAVEAT EMPTOR

AVX-512 is not always faster than AVX2.

$2CMU-DB
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CAVEAT E

AVX-512 is not always faste

764

cant underut;
this

ing operators. W
Ssue, among other things, in the folkrwmg section.

5.3 Discussion and implications

The two strategies are not mutually exclusive. Within a single
pipeline, both strategies can be applied to individual opera-
tors as long as buffering operators are aware of protected
lanes (mixed strategy). Moreover, the query compiler might
decide to nor apply any refill strategy to certain operators,
Especially, when 2 sequence of operators is quite cheap,
divergence might be acceptable s long as the costs for refill
operations are not amortized. Naturally, this is a physical
query optimization problem that we will leave for future
work. Nevertheless, we briefly discuss the advantages and
tages, as this is the firsg work in which we present
sic principles of vector-processing in compiled query
pipelines,

As mentioned above, consume everything requires addj-
tional registers, which i the regi.

H.Lang etal

Table 1 Hardware platforms

Intel Intel

Knights landing Skylake-X

(KNL) (SKX)
Model Phi 7210 19-7900X
Cores (SMT) 64 (x 4) 10(x 2)
SIMD [bit] 2x512 2x512
Max. clock rate [GHz) 1.5 45
L1 cache 64 KiB 32KiB
L2 cache I MiB 1 MiB

L3 cache - 14 MiB

table scan and (ij) a hash join. Additionally, we experiment
with a more complex operator, an approximate geospatial
Join. The experiments were conducted on an Inte] Skylake-X
(SKX) and an Inte] Knights Landing (KNL) processor (cf,,
Table 1). The experimenys were ! 1in C++ and
at optimization level three (-03)
F set 1o knl. If not stated other-
nts in paralle] using two threads
€ work in batches to the indj vidual

tively.

Ftween 216 and 220 wples, On the
the data in high-bandwidth mem-
F experiments would have been

[for at least three seconds, possi-
fa multiple times.

1 - ded eX eriment87 We did JIs. To measure the throughputs,
2 Please note that throughout our (Igl;lllsil:;ls tglrf;ugh )dognclocking- Both
any performance pen c-
i (e):ts)sgi:eK NE zlijnd SKX run stable at 1.4 GHz and 4.0 GHz, respe
proc

divergence handling in table
algorithms into the AVX-512
lery | of Gubner et al, [6]. Addi-
H integrated the materialization
flon et al. in [16).

ltive, TPC-H Query 1 (or short
query that operates on a sin-
With a single scan predicate.

T oo ~several fixed-point arithmetic operations in the
reconT Sters.

The greater the number of buffers, the greater the number
of permute instructions that need to be executed, whereas

$CMU-DB
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the number of required buffers depends on (i) the number of
i assed along the pipeline and optionally on (ii) the
number of registers required to save the internal state of the
operator (e.g., a pointer to the current tree node).

aggregation based on the group by clause. In total, five addi-
tional attributes are accessed to compute eight aggregated
values per group, Almost all tuples survive the selection (ie.,
selectivity ~(0.98). Therefore, in its original form, QI does
not suffer from control flow divergence. To simulate control
flow divergence and the resulting underutilization of SIMD

6 Evaluation

We evaluate our approach with two major sources of con-|
trol flow divergence, (i) predicate evaluation as part of a

€) Springer

SE——
* Please note that throughout our (multi-threaded) experiments, we did
not observe any performance penalies through downclocking. Both
processors KNL and SKX run stable at 1.4GHz ang 4.0GHz, respec-
tively.
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CAVEAT EMPTOR

AVX-512 is not always faster than AVX2.

Some CPUs downgrade their clockspeed when

switching to AVX-512 mode.
— Compilers will prefer 256-bit SIMD operations.

[f only a small portion of the process uses AVX-512,
then it is not worth the downclock penalty.
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The frequency impact depends on the width of the operation and the specific instruction used.

There are three frequency levels, so-called licenses. from fastest 10 slowest: LO, L1 and L2.L0is
the “nominal” speed you'll see written on the pox; when the chip says 3.5 GHz turbo” they are
referring to the single-core L0 turbo. L1is @ jower speed sometimes called AVX turbo of AVX2
turbo®, originally associated with AVX and AVX2 instruciionsl. L2 is a lower speed than L1,
sometimes called "AVX-512 turbo”.

The exact speeds for each license also depend on the number of active cores. FOT up to date
tables, you can usually consult WikiChip. For example, the table for the Xeon Gold 5120 is here:

Turbe Frequency/ Active Cotes
Mode Base
1 2 3 4 5 [} 7 [ 9 1 1 12 13 %
Normal 2,200 MHZ 3000MHz 3000 Wz 2900 Mz 2000 Mz 2,900 M2 2000 M 2700 Mz 2700 Wz 2700 MHz 2700 MHZ 2,600 MHz 2,600 MHZ
VX2 1,800 MHZ

avxsiz 1,200 MHz | 2,900 MHZ 2900 Mz 2,500 MHz 2,500 MHZ

2000 MHz 2900 MHz 2700 MHz 2700 Mz 2700 M2 2,700 Mz 2300 Mkz 2300 MHz 2300 MHz 2300 WHZ 2200 Mz 2.200 Ntz

The Normal, AvX2 and AVXB12 rows correspond t0 the LO, L1 and L2 licenses respectively. Note
that the relative slowdown for L1 and L2 licenses generally gets worse as the number of cores
increase: for 1 of 2 active cores the L1 and L2 speeds are 97% and 91% of LO, but for 13 0r 14
cores they are 85% and 62% respectively. This varies by chip, but the general trend is usually the
same.

Those preliminaries out of the way, let's get 1o what | think you aré asking: which instructions cause
which licenses 0 pe activated?

Here's a table, showing the implied license for instructions pased on their width and their
categorization as light or heavy"

scalar
128-bit Lo 10
256-bit Lo

512-bit Li

*soft transition (see below)

So we immediately see that all scalar (non—SiMD) instructions and all 128-bit wide ins.tructiuns2
always run at full speed in the LO license.

EMPTOR

ster than AVX2.

eir clockspeed when
de.

SIMD operations.

e process uses AVX-512
nclock penalty. |
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PARTING THOUGHTS

Vectorization is essential for OLAP queries.

We can combine all the intra-query parallelism

optimizations we've talked about in a DBMS.
— Multiple threads processing the same query.

— Each thread can execute a compiled plan.

— The compiled plan can invoke vectorized operations.
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NEXT CLASS

Query Compilation
Project #3 Topics
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