
ADVANCED DATABASE SYSTEMS

Andy Pavlo // 15-721 // Spring 2023

Query
Compilation &
Code Generation

L
e

c
tu

re
 #

0
9

https://15721.courses.cs.cmu.edu/spring2023
http://db.cs.cmu.edu/

15-721 (Spring 2023)

ADMINISTRIVIA

Project #1: Sunday February 26th

Project #2: Sunday April 30th

Project #3
→ Proposals: Wednesday March 1st

→ Updates: Monday April 3rd

→ Final Presentations: TBA

2

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

LAST CLASS

How to use SIMD to vectorize core database
algorithms for sequential scans.
→ Intra-query parallelism

The research literature from 10 years ago can give
the impression that vectorization and JIT
compilation are mutually exclusive.

3

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

OPTIMIZATION GOALS

Approach #1: Reduce Instruction Count
→ Use fewer instructions to do the same amount of work.

Approach #2: Reduce Cycles per Instruction
→ Execute more CPU instructions in fewer cycles.

Approach #3: Parallelize Execution
→ Use multiple threads to compute each query in parallel.

4

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

MICROSOFT REMARK

After minimizing the disk I/O during query
execution, the only way to increase throughput is to
reduce the number of instructions executed.
→ To go 10x faster, the DBMS must execute 90% fewer

instructions.
→ To go 100x faster, the DBMS must execute 99% fewer

instructions.

5

COMPILATION IN THE MICROSOFT SQL SERVER
HEKATON ENGINE
IEEE DATA ENGINEERING BULLETIN 2011

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://sites.computer.org/debull/A14mar/p22.pdf
http://sites.computer.org/debull/A14mar/p22.pdf

15-721 (Spring 2023)

TODAY’S AGENDA

Background

Code Generation / Transpilation

JIT Compilation

Real-world Implementations

Project #3

6

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

OBSERVATION

One way to achieve such a reduction in instructions
is through code specialization.

This means generating code that is specific to a task
in the DBMS (e.g., one query).

Most code is written to make it easy for humans to
understand rather than performance…

7

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

EXAMPLE DATABASE

8

CREATE TABLE A (
id INT PRIMARY KEY,
val INT

);

CREATE TABLE B (
id INT PRIMARY KEY,
val INT

);

CREATE TABLE C (
a_id INT REFERENCES A(id),
b_id INT REFERENCES B(id),
PRIMARY KEY (a_id, b_id)

);

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

QUERY INTERPRETATION

9

⨝A.id=C.a_id

σA.val=123

A

⨝B.id=C.b_id

ΓB.id, COUNT(*)

σB.val=?+1

B C

SELECT *
FROM A, C,
(SELECT B.id, COUNT(*)

FROM B
WHERE B.val = ? + 1
GROUP BY B.id) AS B

WHERE A.val = 123
AND A.id = C.a_id
AND B.id = C.b_id

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

QUERY INTERPRETATION

9

⨝A.id=C.a_id

σA.val=123

A

⨝B.id=C.b_id

ΓB.id, COUNT(*)

σB.val=?+1

B C

⨝
for t1 in left.next():

buildHashTable(t1)
for t2 in right.next():

if probe(t2): emit(t1⨝t2)

for t in child.next():
if evalPred(t): emit(t)σ ⨝

for t1 in left.next():
buildHashTable(t1)

for t2 in right.next():
if probe(t2): emit(t1⨝t2)

for t in A:
emit(t)A

for t in B:
emit(t)B for t in C:

emit(t)C

for t in child.next():
if evalPred(t): emit(t)σ

Γ
for t in child.next():
buildAggregateTable(t)

for t in aggregateTable:
emit(t)

SELECT *
FROM A, C,
(SELECT B.id, COUNT(*)

FROM B
WHERE B.val = ? + 1
GROUP BY B.id) AS B

WHERE A.val = 123
AND A.id = C.a_id
AND B.id = C.b_id

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

1000

999 1

true

1000

Execution Context

PREDICATE INTERPRETATION

11

SELECT *
FROM A, C,
(SELECT B.id, COUNT(*)

FROM B
WHERE B.val = ? + 1
GROUP BY B.id) AS B

WHERE A.val = 123
AND A.id = C.a_id
AND B.id = C.b_id

Current Tuple
(123, 1000)

Query Parameters
(int:999)

Table Schema
B→(int:id, int:val)

Attribute(B.val)

Constant(1)

Op(=)

Op(+)

Parameter(0)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

CODE SPECIALIZATION

The DBMS generates code for any CPU-intensive
task that has a similar execution pattern on different
inputs.
→ Access Methods
→ Stored Procedures
→ Query Operator Execution
→ Predicate Evaluation
→ Logging Operations

12

Constant(1)

Op(=)

Attribute(A.val)

bool check(val) {
return (val == 1);

}

SELECT * FROM A
WHERE val = 1;

Most Common

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

CODE SPECIALIZATION

Approach #1: Transpilation
→ Write code that converts a relational query plan into

imperative language source code and then run it through a
conventional compiler to generate native code.

Approach #2: JIT Compilation
→ Generate an intermediate representation (IR) of the query

that the DBMS then compiles into native code .

14

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

ARCHITECTURE OVERVIEW

15

SQL Query

Parser
Abstract

Syntax
Tree

Physical
Plan

Cost
Estimates

System
Catalog

Binder

Optimizer
Annotated

AST

Native Code

Compiler

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

HIQUE – CODE GENERATION

For a given query plan, create a C/C++ program
that implements that query’s execution.
→ Bake in all the predicates and type conversions.

Use an off-shelf compiler to convert the code into a
shared object, link it to the DBMS process, and then
invoke the exec function.

16

GENERATING CODE FOR HOLISTIC
QUERY EVALUATION
ICDE 2010

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://doi.ieeecomputersociety.org/10.1109/ICDE.2010.5447892
https://doi.ieeecomputersociety.org/10.1109/ICDE.2010.5447892

15-721 (Spring 2023)

HIQUE – OPERATOR TEMPLATES

17

SELECT * FROM A WHERE A.val = ? + 1

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

Interpreted Plan

HIQUE – OPERATOR TEMPLATES

17

for t in range(table.num_tuples):
tuple = get_tuple(table, t)
if eval(predicate, tuple, params):

emit(tuple)

1. Get schema in catalog for table.
2. Calculate offset based on tuple size.
3. Return pointer to tuple.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

Interpreted Plan

HIQUE – OPERATOR TEMPLATES

17

for t in range(table.num_tuples):
tuple = get_tuple(table, t)
if eval(predicate, tuple, params):

emit(tuple)

1. Get schema in catalog for table.
2. Calculate offset based on tuple size.
3. Return pointer to tuple.

1. Traverse predicate tree and pull values up.
2. If tuple value, calculate the offset of the target attribute.
3. Perform casting as needed for comparison operators.
4. Return true / false.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

Templated PlanInterpreted Plan

HIQUE – OPERATOR TEMPLATES

17

tuple_size = ###
predicate_offset = ###
parameter_value = ###

for t in range(table.num_tuples):
tuple = table.data + t ∗ tuple_size
val = (tuple+predicate_offset)
if (val == parameter_value + 1):
emit(tuple)

for t in range(table.num_tuples):
tuple = get_tuple(table, t)
if eval(predicate, tuple, params):

emit(tuple)

1. Get schema in catalog for table.
2. Calculate offset based on tuple size.
3. Return pointer to tuple.

1. Traverse predicate tree and pull values up.
2. If tuple value, calculate the offset of the target attribute.
3. Perform casting as needed for comparison operators.
4. Return true / false.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

Templated PlanInterpreted Plan

HIQUE – OPERATOR TEMPLATES

17

tuple_size = ###
predicate_offset = ###
parameter_value = ###

for t in range(table.num_tuples):
tuple = table.data + t ∗ tuple_size
val = (tuple+predicate_offset)
if (val == parameter_value + 1):
emit(tuple)

for t in range(table.num_tuples):
tuple = get_tuple(table, t)
if eval(predicate, tuple, params):

emit(tuple)

1. Get schema in catalog for table.
2. Calculate offset based on tuple size.
3. Return pointer to tuple.

1. Traverse predicate tree and pull values up.
2. If tuple value, calculate the offset of the target attribute.
3. Perform casting as needed for comparison operators.
4. Return true / false.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

HIQUE – DBMS INTEGRATION

The generated query code can invoke any other
function in the DBMS. This allows it to use all the
same components as interpreted queries.
→ Network Handlers
→ Buffer Pool Manager
→ Concurrency Control
→ Logging / Checkpoints
→ Indexes

Debugging is (relatively) easy because you step
through the generated source code.

22

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

HIQUE – EVALUATION

Generic Iterators
→ Canonical model with generic predicate evaluation.

Optimized Iterators
→ Type-specific iterators with inline predicates.

Generic Hardcoded
→ Handwritten code with generic iterators/predicates.

Optimized Hardcoded
→ Direct tuple access with pointer arithmetic.

HIQUE
→ Query-specific specialized code.

23

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

QUERY COMPILATION EVALUATION

24

0

50

100

150

200

250

Generic
Iterators

Optimized
Iterators

Generic
Hardcoded

Optimized
Hardcoded

HIQUE

E
xe

cu
ti

on
 T

im
e

(m
s)

L2-cache Miss Memory Stall Instruction Exec.

Intel Core 2 Duo 6300 @ 1.86GHz
Join Query: 10k⨝ 10k→10m

Source: Konstantinos Krikellas

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://www.linkedin.com/in/konstantinoskrikellas

15-721 (Spring 2023)

QUERY COMPILATION COST

25

121 160
213

274

403

619

0

200

400

600

800

Q1 Q3 Q10

C
om

pi
la

ti
on

 T
im

e
(m

s)

Compile (-O0) Compile (-O2)

Intel Core 2 Duo 6300 @ 1.86GHz
TPC-H Queries (Scalefactor=1)

Source: Konstantinos Krikellas

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://www.linkedin.com/in/konstantinoskrikellas

15-721 (Spring 2023)

OBSERVATION

Relational operators are a useful way to reason
about a query but are not the most efficient way to
execute it.

It takes a (relatively) long time to compile a C/C++
source file into executable code.

HIQUE also does not support for full pipelining.

26

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

HYPER – JIT QUERY COMPILATION

Compile queries in-memory into native code using
the LLVM toolkit.
→ Instead of emitting C++ code, HyPer emits LLVM IR.

Aggressive operator function within pipelines to
keep a tuple in CPU registers for as long as possible.
→ Push-based vs. Pull-based
→ Data Centric vs. Operator Centric

27

EFFICIENTLY COMPILING EFFICIENT QUERY PLANS
FOR MODERN HARDWARE
VLDB 2011

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://15721.courses.cs.cmu.edu/spring2020/papers/14-compilation/p539-neumann.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/14-compilation/p539-neumann.pdf

15-721 (Spring 2023)

PIPELINED OPERATORS

28

⨝A.id=C.a_id

σ A.val=123

A

⨝B.id=C.b_id

ΓB.id,COUNT(*)

σB.val=?+1

B C

Pipeline Boundaries #1

#4

#2

#3

SELECT *
FROM A, C,
(SELECT B.id, COUNT(*)

FROM B
WHERE B.val = ? + 1
GROUP BY B.id) AS B

WHERE A.val = 123
AND A.id = C.a_id
AND B.id = C.b_id

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

PUSH-BASED EXECUTION

29

Generated Query Plan

#1

#4

#2

#3

SELECT *
FROM A, C,
(SELECT B.id, COUNT(*)

FROM B
WHERE B.val = ? + 1
GROUP BY B.id) AS B

WHERE A.val = 123
AND A.id = C.a_id
AND B.id = C.b_id

for t in A:
if t.val == 123:

Materialize t in HashTable ⨝(A.id=C.a_id)

for t in B:
if t.val == <param> + 1:

Aggregate t in HashTable Γ(B.id)

for t in Γ(B.id):
Materialize t in HashTable ⨝(B.id=C.b_id)

for t3 in C:
for t2 in ⨝(B.id=C.b_id):

for t1 in ⨝(A.id=C.a_id):
emit(t1⨝t2⨝t3)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

QUERY COMPILATION EVALUATION

30

35

125
80 117

1105

142
374

141 203

1416

98
257

436
1107

72

218
112

8168 12028

4221
6555

16410

3830

15212

1

10

100

1000

10000

100000

Q1 Q2 Q3 Q4 Q5

E
xe

cu
ti

on
 T

im
e

(m
s)

HyPer (LLVM) HyPer (C++) VectorWise MonetDB Oracle

Dual Socket Intel Xeon X5770 @ 2.93GHz
TPC-H Queries (Scalefactor=1)

Source: Thomas Neumann

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://sites.computer.org/debull/A14mar/p3.pdf

15-721 (Spring 2023)

QUERY COMPILATION COST

31

274

403

619

13 37 15
0

200

400

600

800

Q1 Q2 Q3

C
om

pi
la

ti
on

 T
im

e
(m

s)

HIQUE HyPer

HIQUE (-O2) vs. HyPer
TPC-H Queries

Source: Konstantinos Krikellas

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://www.linkedin.com/in/konstantinoskrikellas

15-721 (Spring 2023)

QUERY COMPILATION COST

HyPer's query compilation time grows super-
linearly relative to the query size.
→ # of joins
→ # of predicates
→ # of aggregations

Not a big issue with OLTP applications.

Major problem with OLAP workloads.

32

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

HYPER – ADAPTIVE EXECUTION

Generate LLVM IR for the query and immediately
start executing the IR using an interpreter.

Then the DBMS compiles the query in the
background.

When the compiled query is ready, seamlessly
replace the interpretive execution.
→ For each morsel, check to see whether the compiled

version is available.

33

ADAPTIVE EXECUTION OF COMPILED QUERIES
ICDE 2018

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://15721.courses.cs.cmu.edu/spring2020/papers/14-compilation/kohn-icde2018.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/14-compilation/kohn-icde2018.pdf

15-721 (Spring 2023)

HYPER – ADAPTIVE EXECUTION

34

Optimizer
(0.2 ms)

Byte Code

SQL Query

Code Generator
(0.7 ms)

Query Plan

LLVM Passes
(25 ms)

Byte Code
Compiler
(0.4 ms)

Unoptimized
LLVM Compiler

(6 ms)

Optimized
LLVM Compiler

(17 ms)

LLVM IR

LLVM IR

LLVM IR

LLVM IR

x86 Code

x86 Code
Source: Andre Kohn

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://db.in.tum.de/~kohn/index.shtml?lang=en

15-721 (Spring 2023)

HYPER – ADAPTIVE EXECUTION

35

858

94

323 352 362

161

13

104
67 6077

8

80
45 37

1

10

100

1000

Q1 Q2 Q3 Q4 Q5

E
xe

cu
ti

on
 T

im
e

(m
s)

Byte Code Unoptimized LLVM Optimized LLVM

AMD Ryzen 7 1700X @ 3.4GHz (One Thread)
TPC-H Queries

Source: Andre Kohn

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://db.in.tum.de/~kohn/index.shtml?lang=en

15-721 (Spring 2023)

REAL-WORLD IMPLEMENTATIONS

36

JVM-based
Apache Spark

Neo4j

Splice Machine

Presto / Trino

LLVM-based
SingleStore

VitesseDB

PostgreSQL (2018)

CMU Peloton

CMU NoisePage

Custom
IBM System R

Actian Vector

Amazon Redshift

Oracle

Microsoft Hekaton

SQLite

TUM Umbra

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

IBM SYSTEM R

A primitive form of code generation and query
compilation was used by IBM in 1970s.
→ Compiled SQL statements into assembly code by selecting

code templates for each operator.

Technique was abandoned when IBM built SQL/DS
and DB2 in the 1980s:
→ High cost of external function calls
→ Poor portability
→ Software engineer complications

37

A HISTORY AND EVALUATION OF SYSTEM R
COMMUNICATIONS OF THE ACM 1981

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://dl.acm.org/citation.cfm?id=358784
http://dl.acm.org/citation.cfm?id=358784

15-721 (Spring 2023)

IBM SYSTEM R

A primitive form of code generation and query
compilation was used by IBM in 1970s.
→ Compiled SQL statements into assembly code by selecting

code templates for each operator.

Technique was abandoned when IBM built SQL/DS
and DB2 in the 1980s:
→ High cost of external function calls
→ Poor portability
→ Software engineer complications

37

A HISTORY AND EVALUATION OF SYSTEM R
COMMUNICATIONS OF THE ACM 1981

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://dl.acm.org/citation.cfm?id=358784
http://dl.acm.org/citation.cfm?id=358784
http://dl.acm.org/citation.cfm?id=358784

15-721 (Spring 2023)

ACTIAN VECTOR

Pre-compiles thousands of “primitives” that perform
basic operations on typed data.
→ Example: Generate a vector of tuple ids by applying a less

than operator on some column of a particular type.

The DBMS then executes a query plan that invokes
these primitives at runtime.
→ Function calls are amortized over multiple tuples

39

MICRO ADAPTIVITY IN VECTORWISE
SIGMOD 2013

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://dl.acm.org/citation.cfm?id=2465292
http://dl.acm.org/citation.cfm?id=2465292

15-721 (Spring 2023)

ACTIAN VECTOR

Pre-compiles thousands of “primitives” that perform
basic operations on typed data.
→ Example: Generate a vector of tuple ids by applying a less

than operator on some column of a particular type.

The DBMS then executes a query plan that invokes
these primitives at runtime.
→ Function calls are amortized over multiple tuples

39

MICRO ADAPTIVITY IN VECTORWISE
SIGMOD 2013

size_t scan_lessthan_int32(int *res, int32_t *col, int32_t val) {
size_t k = 0;
for (size_t i = 0; i < n; i++)
if (col[i] < val) res[k++] = i;

return (k);
}

size_t scan_lessthan_double(int *res, int32_t *col, double val) {
size_t k = 0;
for (size_t i = 0; i < n; i++)
if (col[i] < val) res[k++] = i;

return (k);
}

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://dl.acm.org/citation.cfm?id=2465292
http://dl.acm.org/citation.cfm?id=2465292

15-721 (Spring 2023)

AMAZON REDSHIFT

Convert query fragments into templated C++ code.
→ Push-based execution with vectorization.

DBMS checks whether there are already exists a
compiled version of each templated fragment in the
customer's local cache.

If fragment does not exist in the local cache, then it
checks a global cache for the entire fleet of Redshift
customers.

41

AMAZON REDSHIFT RE-INVENTED
SIGMOD 2022

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/doi/10.1145/3514221.3526045
https://dl.acm.org/doi/10.1145/3514221.3526045

15-721 (Spring 2023)

ORACLE

Convert PL/SQL stored procedures into Pro*C
code and then compiled into native C/C++ code.

They also put Oracle-specific operations directly in
the SPARC chips as co-processors.
→ Memory Scans
→ Bit-pattern Dictionary Compression
→ Vectorized instructions designed for DBMSs
→ Security/encryption

42

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://en.wikipedia.org/wiki/Pro*C

15-721 (Spring 2023)

MICROSOFT HEKATON

Can compile both procedures and SQL.
→ Non-Hekaton queries can access Hekaton tables through

compiled inter-operators.

Generates C code from an imperative syntax tree,
compiles it into DLL, and links at runtime.

Employs safety measures to prevent somebody from
injecting malicious code in a query.

43

COMPILATION IN THE MICROSOFT SQL SERVER
HEKATON ENGINE
IEEE DATA ENGINEERING BULLETIN 2011

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://sites.computer.org/debull/A14mar/p22.pdf
http://sites.computer.org/debull/A14mar/p22.pdf

15-721 (Spring 2023)

SQLITE

DBMS converts a query plan into opcodes, and then
executes them in a custom VM (bytecode engine).
→ Also known as "Virtual DataBase Engine" (VDBE)
→ Opcode specification can change across versions.

SQLite's VM ensures that queries execute the same
in any possible environment.

44

Source: Richard Hipp

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://www.sqlite.org/opcode.html

15-721 (Spring 2023)

TUM UMBRA

Instead of implementing a separate
bytecode interpreter, Umbra's
"FlyingStart" adaptive execution
framework generates custom IR that
maps to x86 assembly in a single pass.
→ Manually performs dead code elimination.
→ The DBMS is a basically compiler.

45

TIDY TUPLES AND FLYING START: FAST COMPILATION AND
FAST EXECUTION OF RELATIONAL QUERIES IN UMBRA
VLDB JOURNAL 2021

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/doi/10.1007/s00778-020-00643-4
https://dl.acm.org/doi/10.1007/s00778-020-00643-4

15-721 (Spring 2023)

APACHE SPARK

Introduced in the new Tungsten engine in 2015.

The system converts a query's WHERE clause
expression trees into Scala ASTs.

It then compiles these ASTs to generate JVM
bytecode, which is then executed natively.

Databricks abandoned this approach with their new
Photon engine in late 2010s.

47

SPARK SQL: RELATIONAL DATA PROCESSING IN SPARK
SIGMOD 2015

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/citation.cfm?id=2742797
https://dl.acm.org/citation.cfm?id=2742797

15-721 (Spring 2023)

JAVA DATABASES

There are several JVM-based DBMSs that contain
custom code that emits JVM bytecode directly.
→ Neo4j
→ Splice Machine
→ Presto / Trino
→ Derby

This functionally the same as generating LLVM IR.

48

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

SINGLESTORE (PRE–2016)

Performs the same C/C++ code generation as
HIQUE and then invokes gcc.

Converts all queries into a parameterized form and
caches the compiled query plan.

49

SELECT * FROM A
WHERE A.id = ?

SELECT * FROM A
WHERE A.id = 123

SELECT * FROM A
WHERE A.id = 456

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

SINGLESTORE (2016–PRESENT)

A query plan is converted into an imperative plan
expressed in a high-level imperative DSL.
→ MemSQL Programming Language (MPL)
→ Think of this as a C++ dialect.

DBMS then converts DSL into custom opcodes.
→ MemSQL Bit Code (MBC)
→ Think of this as JVM byte code.

Lastly, the DBMS compiles the opcodes into LLVM
IR and then to native code.

50

Source: Drew Paroski

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://docs.singlestore.com/managed-service/en/query-data/code-generation.html
http://highscalability.com/blog/2016/9/7/code-generation-the-inner-sanctum-of-database-performance.html

15-721 (Spring 2023)

POSTGRESQL

Added support in 2018 (v11) for JIT compilation of
predicates and tuple deserialization with LLVM.
→ Relies on optimizer estimates to determine when to

compile expressions.

Automatically compiles Postgres' back-end C code
into LLVM C++ code to remove iterator calls.

51

Source: Dmitry Melnik

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://www.pgcon.org/2017/schedule/attachments/467_PGCon%202017-05-26%2015-00%20ISPRAS%20Dynamic%20Compilation%20of%20SQL%20Queries%20in%20PostgreSQL%20Using%20LLVM%20JIT.pdf

15-721 (Spring 2023)

VITESSEDB

Query accelerator for Postgres/Greenplum that uses
LLVM + intra-query parallelism.
→ JIT predicates
→ Push-based processing model
→ Indirect calls become direct or inlined.
→ Leverages hardware for overflow detection.

Does not support all of Postgres’ types and
functionalities. All DML operations are still
interpreted.

53

Source: CK Tan

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://www.youtube.com/watch?v=PEmVuYjhQFo

15-721 (Spring 2023)

PELOTON (2017)

HyPer-style full compilation of the entire query plan
using the LLVM .

Relax the pipeline breakers create mini-batches for
operators that can be vectorized.

Use software pre-fetching to hide memory stalls.

54

RELAXED OPERATOR FUSION FOR IN-MEMORY DATABASES: MAKING COMPILATION,
VECTORIZATION, AND PREFETCHING WORK TOGETHER AT LAST
VLDB 2017

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://15721.courses.cs.cmu.edu/spring2018/papers/22-vectorization2/menon-vldb2017.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/21-vectorization2/menon-vldb2017.pdf

15-721 (Spring 2023)

CMU PELOTON (2017)

55

88147
26350

87473

9960
21500

901
1396

2641

383 540
892 846

1763

191 220

1

10

100

1000

10000

100000

Q1 Q3 Q13 Q14 Q19

E
xe

cu
ti

on
 T

im
e

(m
s)

Interpreted LLVM LLVM + ROF

Dual Socket Intel Xeon E5-2630v4 @ 2.20GHz
TPC-H 10 GB Database

Source: Prashanth Menon

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://www.youtube.com/watch?v=HjMQbzBhTb4

15-721 (Spring 2023)

CMU NOISEPAGE (2019)

SingleStore-style conversion of query plans into a
database-oriented DSL.

Then compile the DSL into opcodes.

HyPer-style interpretation of opcodes while
compilation occurs in the background with LLVM.

56

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

CMU NOISEPAGE (2019)

57

fun main() -> int {
var ret = 0
for (row in foo) {

if (row.colA >= 50 and
row.colB < 100000) {

ret = ret + 1
}

}
return ret

}

Source: Prashanth Menon

SELECT * FROM foo
WHERE colA >= 50
AND colB < 100000;

Function 0 <main>:
[3/4587]
Frame size 8512 bytes (1 parameter, 20 locals)
param hiddenRv: offset=0 size=8 align=8 type=*int32
local ret: offset=8 size=4 align=4 type=int32
local table_iter: offset=16 size=8312 align=8 type=tpl::sql::TableVectorIterator
local vpi: offset=8328 size=8 align=8 type=*tpl::sql::VectorProjectionIterator
local tmp1: offset=8336 size=1 align=1 type=bool
local row: offset=8344 size=64 align=8 type=struct{Integer,Integer,Integer,Integer}
local tmp2: offset=8408 size=1 align=1 type=bool
local tmp3: offset=8416 size=8 align=8 type=*Integer
local tmp4: offset=8424 size=8 align=8 type=*Integer
local tmp5: offset=8432 size=8 align=8 type=*Integer
local tmp6: offset=8440 size=8 align=8 type=*Integer
local tmp7: offset=8448 size=1 align=1 type=bool
local tmp8: offset=8449 size=2 align=1 type=Boolean
local tmp9: offset=8456 size=16 align=8 type=Integer
local tmp10: offset=8472 size=4 align=4 type=int32
local tmp11: offset=8476 size=2 align=1 type=Boolean
local tmp12: offset=8480 size=8 align=8 type=*Integer
local tmp13: offset=8488 size=16 align=8 type=Integer
local tmp14: offset=8504 size=4 align=4 type=int32
local tmp15: offset=8508 size=4 align=4 type=int32

0x00000000 AssignImm4
0x0000000c TableVectorIteratorInit
0x00000016 TableVectorIteratorGetVPI
0x00000022 TableVectorIteratorNext
0x0000002e JumpIfFalse
0x0000003a VPIHasNext
0x00000046 JumpIfFalse
0x00000052 Lea
0x00000062 VPIGetInteger
0x00000072 Lea
0x00000082 VPIGetInteger
0x00000092 Lea
0x000000a2 VPIGetInteger
0x000000b2 Lea
0x000000c2 VPIGetInteger
0x000000d2 AssignImm4
0x000000de InitInteger
0x000000ea GreaterThanEqualInteger
0x000000fa ForceBoolTruth
0x00000106 JumpIfFalse
0x00000112 Lea

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://www.youtube.com/watch?v=HjMQbzBhTb4

15-721 (Spring 2023)

CMU NOISEPAGE (2019)

57

fun main() -> int {
var ret = 0
for (row in foo) {

if (row.colA >= 50 and
row.colB < 100000) {

ret = ret + 1
}

}
return ret

}

Source: Prashanth Menon

SELECT * FROM foo
WHERE colA >= 50
AND colB < 100000;

Interpreter

Optimized
LLVM Compiler

x86 Code

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://www.youtube.com/watch?v=HjMQbzBhTb4

15-721 (Spring 2023)

PARTING THOUGHTS

Query compilation makes a difference but is non-
trivial to implement.

The 2016 version of MemSQL is the best query
compilation implementation out there.

Any new DBMS that wants to compete has to
implement query compilation.

59

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

NEXT CLASS

Vectorization vs. Compilation

62

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

PROJECT #3

Group project to implement some substantial
component or feature in a DBMS.

Projects should incorporate topics discussed in this
course as well as from your own interests.

Each group must pick a project that is unique from
their classmates.

63

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

PROJECT #3 – DELIVERABLES

Proposal

Status Update

Design Document

Final Presentation

64

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

PROJECT #3 – PROPOSAL

Five-minute presentation to the class that
discusses the high-level topic.

Each proposal must discuss:
→ High-level overview and system archicture of your project.
→ How you will test whether your implementation is correct.
→ What workloads you will use for your project.

65

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

PROJECT #3 – STATUS UPDATE

Five-minute presentation to update the class about
the current status of your project.

Each presentation should include:
→ Current development status.
→ Whether your plan has changed and why.
→ Anything that surprised you during coding.

66

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

PROJECT #3 – DESIGN DOCUMENT

As part of the status update, you must provide a
design document that describes your project
implementation:
→ Architectural Design
→ Design Rationale
→ Testing Plan
→ Trade-offs and Potential Problems
→ Future Work

67

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

PROJECT #3 – FINAL PRESENTATION

10-minute presentation on the final status of your
project during the scheduled final exam.

You should include any performance measurements
or benchmarking numbers for your
implementation.

Demos are always hot too…

69

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

PROJECT TOPICS

Fast Fixed-Point Decimals

Proxy Kernel Bypass

Adaptive Query Opt.

71

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

FAST FIXED-POINT DECIMALS

The Germans claim that fixed-point decimals are
faster than floating point decimals.

Project: Complete our implementation and
integrate into PostgreSQL as UDT.

72

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

FAST FIXED-POINT DECIMALS

The Germans claim that fixed-point decimals are
faster than floating point decimals.

Project: Complete our implementation and
integrate into PostgreSQL as UDT.

72

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://github.com/cmu-db/libfixeypointy

15-721 (Spring 2023)

PROXY KERNEL-BYPASS

We have been working on optimizations for
PostgreSQL proxies.

Project: Modify PgBouncer to use io_uring.
→ Matt has existing benchmark scripts to compare against his

proxy and Odyssey.

74

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://www.pgbouncer.org/
https://en.wikipedia.org/wiki/Io_uring
https://github.com/yandex/odyssey

15-721 (Spring 2023)

ADAPTIVE QUERY OPTIMIZATION

We want to be able to change a query plan during
execution without stopping the query.

Project: Create a PostgreSQL extension that swaps
a plan node in the tree with a "dummy" node.
→ New node can either halt execution or generate fake data.
→ An easier approach might be to wrap nodes with "control"

nodes that determine whether to call inner node.

75

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

HOW TO START

Form a team.

Meet with your team and discuss potential topics.

Look over source code and determine what you will
need to implement.

I am able during Spring Break for additional
discussion and clarification of the project idea.

76

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

	Introduction
	Slide 1: Query Compilation & Code Generation
	Slide 2: ADMINISTRIVIA
	Slide 3: LAST CLASS
	Slide 4: OPTIMIZATION GOALS
	Slide 5: MICROSOFT REMARK
	Slide 6: TODAY’S AGENDA

	Background
	Slide 7: OBSERVATION
	Slide 8: EXAMPLE DATABASE
	Slide 9: QUERY INTERPRETATION
	Slide 10: QUERY INTERPRETATION
	Slide 11: PREDICATE INTERPRETATION

	Specialization
	Slide 12: CODE SPECIALIZATION
	Slide 14: CODE SPECIALIZATION
	Slide 15: ARCHITECTURE OVERVIEW

	Hique
	Slide 16: HIQUE – CODE GENERATION
	Slide 17: HIQUE – OPERATOR TEMPLATES
	Slide 18: HIQUE – OPERATOR TEMPLATES
	Slide 19: HIQUE – OPERATOR TEMPLATES
	Slide 20: HIQUE – OPERATOR TEMPLATES
	Slide 21: HIQUE – OPERATOR TEMPLATES
	Slide 22: HIQUE – DBMS INTEGRATION
	Slide 23: HIQUE – EVALUATION
	Slide 24: QUERY COMPILATION EVALUATION
	Slide 25: QUERY COMPILATION COST

	HyPer
	Slide 26: OBSERVATION
	Slide 27: HYPER – JIT QUERY COMPILATION
	Slide 28: PIPELINED OPERATORS
	Slide 29: PUSH-BASED EXECUTION
	Slide 30: QUERY COMPILATION EVALUATION
	Slide 31: QUERY COMPILATION COST
	Slide 32: QUERY COMPILATION COST

	HyPer Adaptive
	Slide 33: HYPER – ADAPTIVE EXECUTION
	Slide 34: HYPER – ADAPTIVE EXECUTION
	Slide 35: HYPER – ADAPTIVE EXECUTION

	Implementations
	Slide 36: REAL-WORLD IMPLEMENTATIONS
	Slide 37: IBM SYSTEM R
	Slide 38: IBM SYSTEM R
	Slide 39: ACTIAN VECTOR
	Slide 40: ACTIAN VECTOR
	Slide 41: AMAZON REDSHIFT
	Slide 42: ORACLE
	Slide 43: MICROSOFT HEKATON
	Slide 44: SQLITE
	Slide 45: TUM UMBRA
	Slide 47: APACHE SPARK
	Slide 48: JAVA DATABASES
	Slide 49: SINGLESTORE (PRE–2016)
	Slide 50: SINGLESTORE (2016–PRESENT)
	Slide 51: POSTGRESQL
	Slide 53: VITESSEDB
	Slide 54: PELOTON (2017)
	Slide 55: CMU PELOTON (2017)
	Slide 56: CMU NOISEPAGE (2019)
	Slide 57: CMU NOISEPAGE (2019)
	Slide 58: CMU NOISEPAGE (2019)
	Slide 59: PARTING THOUGHTS

	Conclusion
	Slide 62: NEXT CLASS

	Project #2
	Slide 63: PROJECT #3
	Slide 64: PROJECT #3 – DELIVERABLES
	Slide 65: PROJECT #3 – PROPOSAL
	Slide 66: PROJECT #3 – STATUS UPDATE
	Slide 67: PROJECT #3 – DESIGN DOCUMENT
	Slide 69: PROJECT #3 – FINAL PRESENTATION
	Slide 71: PROJECT TOPICS
	Slide 72: FAST FIXED-POINT DECIMALS
	Slide 73: FAST FIXED-POINT DECIMALS
	Slide 74: PROXY KERNEL-BYPASS
	Slide 75: ADAPTIVE QUERY OPTIMIZATION
	Slide 76: HOW TO START

