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ADMINISTRIVIA

Project #1: Sunday February 26th

Project #2: Sunday April 30th

Project #3
→ Proposals: Wednesday March 1st

→ Updates: Monday April 3rd

→ Final Presentations: TBA
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LAST CLASS

How to use SIMD to vectorize core database 
algorithms for sequential scans.
→ Intra-query parallelism

The research literature from 10 years ago can give 
the impression that vectorization and JIT 
compilation are mutually exclusive.
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OPTIMIZATION GOALS

Approach #1: Reduce Instruction Count
→ Use fewer instructions to do the same amount of work.

Approach #2: Reduce Cycles per Instruction
→ Execute more CPU instructions in fewer cycles.

Approach #3: Parallelize Execution
→ Use multiple threads to compute each query in parallel.
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MICROSOFT REMARK

After minimizing the disk I/O during query 
execution, the only way to increase throughput is to 
reduce the number of instructions executed.
→ To go 10x faster, the DBMS must execute 90% fewer 

instructions.
→ To go 100x faster, the DBMS must execute 99% fewer 

instructions.
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COMPILATION IN THE MICROSOFT SQL SERVER 
HEKATON ENGINE
IEEE DATA ENGINEERING BULLETIN 2011
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TODAY’S AGENDA

Background

Code Generation / Transpilation

JIT Compilation

Real-world Implementations

Project #3
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OBSERVATION

One way to achieve such a reduction in instructions 
is through code specialization.

This means generating code that is specific to a task 
in the DBMS (e.g., one query).

Most code is written to make it easy for humans to 
understand rather than performance…
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EXAMPLE DATABASE

8

CREATE TABLE A (
id INT PRIMARY KEY,
val INT

);

CREATE TABLE B (
id INT PRIMARY KEY,
val INT

);

CREATE TABLE C (
a_id INT REFERENCES A(id),
b_id INT REFERENCES B(id),
PRIMARY KEY (a_id, b_id)

);

https://db.cs.cmu.edu/
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QUERY INTERPRETATION

9

⨝A.id=C.a_id

σA.val=123

A

⨝B.id=C.b_id

ΓB.id, COUNT(*)

σB.val=?+1

B C

SELECT *
FROM A, C, 
(SELECT B.id, COUNT(*)

FROM B
WHERE B.val = ? + 1
GROUP BY B.id) AS B

WHERE A.val = 123 
AND A.id = C.a_id
AND B.id = C.b_id

https://db.cs.cmu.edu/
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QUERY INTERPRETATION
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⨝A.id=C.a_id

σA.val=123

A

⨝B.id=C.b_id

ΓB.id, COUNT(*)

σB.val=?+1

B C

⨝
for t1 in left.next():

buildHashTable(t1)
for t2 in right.next():

if probe(t2): emit(t1⨝t2)

for t in child.next():
if evalPred(t): emit(t)σ ⨝

for t1 in left.next():
buildHashTable(t1)

for t2 in right.next():
if probe(t2): emit(t1⨝t2)

for t in A:
emit(t)A

for t in B:
emit(t)B for t in C:

emit(t)C

for t in child.next():
if evalPred(t): emit(t)σ

Γ
for t in child.next():
buildAggregateTable(t)

for t in aggregateTable:
emit(t)

SELECT *
FROM A, C, 
(SELECT B.id, COUNT(*)

FROM B
WHERE B.val = ? + 1
GROUP BY B.id) AS B

WHERE A.val = 123 
AND A.id = C.a_id
AND B.id = C.b_id

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
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1000

999 1

true

1000

Execution Context

PREDICATE INTERPRETATION
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SELECT *
FROM A, C, 
(SELECT B.id, COUNT(*)

FROM B
WHERE B.val = ? + 1
GROUP BY B.id) AS B

WHERE A.val = 123 
AND A.id = C.a_id
AND B.id = C.b_id

Current Tuple
(123, 1000)

Query Parameters
(int:999)

Table Schema
B→(int:id, int:val)

Attribute(B.val)

Constant(1)

Op(=)

Op(+)

Parameter(0)
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CODE SPECIALIZATION

The DBMS generates code for any CPU-intensive 
task that has a similar execution pattern on different 
inputs. 
→ Access Methods
→ Stored Procedures
→ Query Operator Execution
→ Predicate Evaluation
→ Logging Operations

12

Constant(1)

Op(=)

Attribute(A.val)

bool check(val) {
return (val == 1);

}

SELECT * FROM A
WHERE val = 1;

Most Common

https://db.cs.cmu.edu/
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CODE SPECIALIZATION

Approach #1: Transpilation
→ Write code that converts a relational query plan into 

imperative language source code and then run it through a 
conventional compiler to generate native code.

Approach #2: JIT Compilation
→ Generate an intermediate representation (IR) of the query 

that the DBMS then compiles into native code .
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ARCHITECTURE OVERVIEW

15

SQL Query

Parser
Abstract

Syntax
Tree

Physical 
Plan

Cost
Estimates

System
Catalog

Binder

Optimizer
Annotated 

AST

Native Code

Compiler
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HIQUE – CODE GENERATION

For a given query plan, create a C/C++ program 
that implements that query’s execution.
→ Bake in all the predicates and type conversions.

Use an off-shelf compiler to convert the code into a 
shared object, link it to the DBMS process, and then 
invoke the exec function.
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GENERATING CODE FOR HOLISTIC 
QUERY EVALUATION
ICDE 2010

https://db.cs.cmu.edu/
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HIQUE – OPERATOR TEMPLATES

17

SELECT * FROM A WHERE A.val = ? + 1

https://db.cs.cmu.edu/
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Interpreted Plan

HIQUE – OPERATOR TEMPLATES

17

for t in range(table.num_tuples):
tuple = get_tuple(table, t)
if eval(predicate, tuple, params):

emit(tuple)

1. Get schema in catalog for table.
2. Calculate offset based on tuple size.
3. Return pointer to tuple.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
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Interpreted Plan

HIQUE – OPERATOR TEMPLATES

17

for t in range(table.num_tuples):
tuple = get_tuple(table, t)
if eval(predicate, tuple, params):

emit(tuple)

1. Get schema in catalog for table.
2. Calculate offset based on tuple size.
3. Return pointer to tuple.

1. Traverse predicate tree and pull values up.
2. If tuple value, calculate the offset of the target attribute.
3. Perform casting as needed for comparison operators.
4. Return true / false.
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Templated PlanInterpreted Plan

HIQUE – OPERATOR TEMPLATES

17

tuple_size = ###
predicate_offset = ###
parameter_value = ###

for t in range(table.num_tuples):
tuple = table.data + t ∗ tuple_size
val = (tuple+predicate_offset)
if (val == parameter_value + 1):
emit(tuple)

for t in range(table.num_tuples):
tuple = get_tuple(table, t)
if eval(predicate, tuple, params):

emit(tuple)

1. Get schema in catalog for table.
2. Calculate offset based on tuple size.
3. Return pointer to tuple.

1. Traverse predicate tree and pull values up.
2. If tuple value, calculate the offset of the target attribute.
3. Perform casting as needed for comparison operators.
4. Return true / false.
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Templated PlanInterpreted Plan

HIQUE – OPERATOR TEMPLATES
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parameter_value = ###
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HIQUE – DBMS INTEGRATION

The generated query code can invoke any other 
function in the DBMS. This allows it to use all the 
same components as interpreted queries.
→ Network Handlers
→ Buffer Pool Manager
→ Concurrency Control
→ Logging / Checkpoints
→ Indexes

Debugging is (relatively) easy because you step 
through the generated source code.
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HIQUE – EVALUATION

Generic Iterators
→ Canonical model with generic predicate evaluation.

Optimized Iterators
→ Type-specific iterators with inline predicates.

Generic Hardcoded
→ Handwritten code with generic iterators/predicates.

Optimized Hardcoded
→ Direct tuple access with pointer arithmetic.

HIQUE
→ Query-specific specialized code.

23
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QUERY COMPILATION EVALUATION
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QUERY COMPILATION COST
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OBSERVATION

Relational operators are a useful way to reason 
about a query but are not the most efficient way to 
execute it.

It takes a (relatively) long time to compile a C/C++ 
source file into executable code.

HIQUE also does not support for full pipelining.

26
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HYPER – JIT QUERY COMPILATION

Compile queries in-memory into native code using 
the LLVM toolkit.
→ Instead of emitting C++ code, HyPer emits LLVM IR.

Aggressive operator function within pipelines to 
keep a tuple in CPU registers for as long as possible.
→ Push-based vs. Pull-based
→ Data Centric vs. Operator Centric

27

EFFICIENTLY COMPILING EFFICIENT QUERY PLANS 
FOR MODERN HARDWARE
VLDB 2011
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PIPELINED OPERATORS

28

⨝A.id=C.a_id

σ A.val=123

A

⨝B.id=C.b_id

ΓB.id,COUNT(*)

σB.val=?+1

B C

Pipeline Boundaries #1

#4

#2

#3

SELECT *
FROM A, C, 
(SELECT B.id, COUNT(*)

FROM B
WHERE B.val = ? + 1
GROUP BY B.id) AS B

WHERE A.val = 123 
AND A.id = C.a_id
AND B.id = C.b_id

https://db.cs.cmu.edu/
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PUSH-BASED EXECUTION

29

Generated Query Plan

#1

#4

#2

#3

SELECT *
FROM A, C, 
(SELECT B.id, COUNT(*)

FROM B
WHERE B.val = ? + 1
GROUP BY B.id) AS B

WHERE A.val = 123 
AND A.id = C.a_id
AND B.id = C.b_id

for t in A:
if t.val == 123:

Materialize t in HashTable ⨝(A.id=C.a_id)

for t in B:
if t.val == <param> + 1:

Aggregate t in HashTable Γ(B.id)

for t in Γ(B.id):
Materialize t in HashTable ⨝(B.id=C.b_id)

for t3 in C:
for t2 in ⨝(B.id=C.b_id):

for t1 in ⨝(A.id=C.a_id):
emit(t1⨝t2⨝t3)

https://db.cs.cmu.edu/
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QUERY COMPILATION EVALUATION
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QUERY COMPILATION COST
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QUERY COMPILATION COST

HyPer's query compilation time grows super-
linearly relative to the query size.
→ # of joins
→ # of predicates
→ # of aggregations

Not a big issue with OLTP applications.

Major problem with OLAP workloads.

32
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HYPER – ADAPTIVE EXECUTION

Generate LLVM IR for the query and immediately 
start executing the IR using an interpreter.

Then the DBMS compiles the query in the 
background.

When the compiled query is ready, seamlessly 
replace the interpretive execution.
→ For each morsel, check to see whether the compiled 

version is available.

33

ADAPTIVE EXECUTION OF COMPILED QUERIES
ICDE 2018
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HYPER – ADAPTIVE EXECUTION
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HYPER – ADAPTIVE EXECUTION
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REAL-WORLD IMPLEMENTATIONS

36

JVM-based
Apache Spark

Neo4j

Splice Machine

Presto / Trino

LLVM-based
SingleStore

VitesseDB

PostgreSQL (2018)

CMU Peloton

CMU NoisePage

Custom
IBM System R

Actian Vector

Amazon Redshift

Oracle

Microsoft Hekaton

SQLite

TUM Umbra

https://db.cs.cmu.edu/
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IBM SYSTEM R

A primitive form of code generation and query 
compilation was used by IBM in 1970s.
→ Compiled SQL statements into assembly code by selecting 

code templates for each operator.

Technique was abandoned when IBM built SQL/DS 
and DB2 in the 1980s:
→ High cost of external function calls
→ Poor portability
→ Software engineer complications

37

A HISTORY AND EVALUATION OF SYSTEM R
COMMUNICATIONS OF THE ACM 1981
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IBM SYSTEM R
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ACTIAN VECTOR

Pre-compiles thousands of “primitives” that perform 
basic operations on typed data.
→ Example: Generate a vector of tuple ids by applying a less 

than operator on some column of a particular type.

The DBMS then executes a query plan that invokes 
these primitives at runtime.
→ Function calls are amortized over multiple tuples

39

MICRO ADAPTIVITY IN VECTORWISE
SIGMOD 2013
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ACTIAN VECTOR
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39

MICRO ADAPTIVITY IN VECTORWISE
SIGMOD 2013

size_t scan_lessthan_int32(int *res, int32_t *col, int32_t val) {
size_t k = 0;
for (size_t i = 0; i < n; i++)
if (col[i] < val) res[k++] = i;

return (k);
}

size_t scan_lessthan_double(int *res, int32_t *col, double val) {
size_t k = 0;
for (size_t i = 0; i < n; i++)
if (col[i] < val) res[k++] = i;

return (k);
}

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://dl.acm.org/citation.cfm?id=2465292
http://dl.acm.org/citation.cfm?id=2465292
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AMAZON REDSHIFT

Convert query fragments into templated C++ code.
→ Push-based execution with vectorization.

DBMS checks whether there are already exists a 
compiled version of each templated fragment in the 
customer's local cache.

If fragment does not exist in the local cache, then it 
checks a global cache for the entire fleet of Redshift 
customers.

41

AMAZON REDSHIFT RE-INVENTED
SIGMOD 2022

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
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ORACLE

Convert PL/SQL stored procedures into Pro*C
code and then compiled into native C/C++ code.

They also put Oracle-specific operations directly in 
the SPARC chips as co-processors.
→ Memory Scans
→ Bit-pattern Dictionary Compression
→ Vectorized instructions designed for DBMSs
→ Security/encryption

42
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MICROSOFT HEKATON

Can compile both procedures and SQL.
→ Non-Hekaton queries can access Hekaton tables through 

compiled inter-operators.

Generates C code from an imperative syntax tree, 
compiles it into DLL, and links at runtime.

Employs safety measures to prevent somebody from 
injecting malicious code in a query.

43

COMPILATION IN THE MICROSOFT SQL SERVER 
HEKATON ENGINE
IEEE DATA ENGINEERING BULLETIN 2011
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SQLITE

DBMS converts a query plan into opcodes, and then 
executes them in a custom VM (bytecode engine).
→ Also known as "Virtual DataBase Engine" (VDBE)
→ Opcode specification can change across versions.

SQLite's VM ensures that queries execute the same 
in any possible environment.

44

Source: Richard Hipp
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TUM UMBRA

Instead of implementing a separate 
bytecode interpreter, Umbra's 
"FlyingStart" adaptive execution
framework generates custom IR that 
maps to x86 assembly in a single pass.
→ Manually performs dead code elimination.
→ The DBMS is a basically compiler.

45

TIDY TUPLES AND FLYING START: FAST COMPILATION AND 
FAST EXECUTION OF RELATIONAL QUERIES IN UMBRA
VLDB JOURNAL 2021
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APACHE SPARK

Introduced in the new Tungsten engine in 2015.

The system converts a query's WHERE clause 
expression trees into Scala ASTs.

It then compiles these ASTs to generate JVM 
bytecode, which is then executed natively.

Databricks abandoned this approach with their new 
Photon engine in late 2010s.
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SPARK SQL: RELATIONAL DATA PROCESSING IN SPARK
SIGMOD 2015

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/citation.cfm?id=2742797
https://dl.acm.org/citation.cfm?id=2742797
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JAVA DATABASES

There are several JVM-based DBMSs that contain 
custom code that emits JVM bytecode directly.
→ Neo4j
→ Splice Machine
→ Presto / Trino
→ Derby

This functionally the same as generating LLVM IR.
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SINGLESTORE (PRE–2016)

Performs the same C/C++ code generation as 
HIQUE and then invokes gcc.

Converts all queries into a parameterized form and 
caches the compiled query plan.
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SELECT * FROM A 
WHERE A.id = ?

SELECT * FROM A 
WHERE A.id = 123

SELECT * FROM A 
WHERE A.id = 456

https://db.cs.cmu.edu/
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SINGLESTORE (2016–PRESENT)

A query plan is converted into an imperative plan 
expressed in a high-level imperative DSL.
→ MemSQL Programming Language (MPL)
→ Think of this as a C++ dialect.

DBMS then converts DSL into custom opcodes.
→ MemSQL Bit Code (MBC)
→ Think of this as JVM byte code.

Lastly, the DBMS compiles the opcodes into LLVM 
IR and then to native code.
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Source: Drew Paroski

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://docs.singlestore.com/managed-service/en/query-data/code-generation.html
http://highscalability.com/blog/2016/9/7/code-generation-the-inner-sanctum-of-database-performance.html
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POSTGRESQL

Added support in 2018 (v11) for JIT compilation of 
predicates and tuple deserialization with LLVM.
→ Relies on optimizer estimates to determine when to 

compile expressions.

Automatically compiles Postgres' back-end C code 
into LLVM C++ code to remove iterator calls.
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Source: Dmitry Melnik

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://www.pgcon.org/2017/schedule/attachments/467_PGCon%202017-05-26%2015-00%20ISPRAS%20Dynamic%20Compilation%20of%20SQL%20Queries%20in%20PostgreSQL%20Using%20LLVM%20JIT.pdf
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VITESSEDB

Query accelerator for Postgres/Greenplum that uses 
LLVM + intra-query parallelism.
→ JIT predicates
→ Push-based processing model
→ Indirect calls become direct or inlined.
→ Leverages hardware for overflow detection.

Does not support all of Postgres’ types and 
functionalities. All DML operations are still 
interpreted.

53

Source: CK Tan

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://www.youtube.com/watch?v=PEmVuYjhQFo
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PELOTON (2017)

HyPer-style full compilation of the entire query plan 
using the LLVM .

Relax the pipeline breakers create mini-batches for 
operators that can be vectorized.

Use software pre-fetching to hide memory stalls.
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RELAXED OPERATOR FUSION FOR IN-MEMORY DATABASES: MAKING COMPILATION, 
VECTORIZATION, AND PREFETCHING WORK TOGETHER AT LAST
VLDB 2017

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://15721.courses.cs.cmu.edu/spring2018/papers/22-vectorization2/menon-vldb2017.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/21-vectorization2/menon-vldb2017.pdf
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CMU PELOTON (2017)
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CMU NOISEPAGE (2019)

SingleStore-style conversion of query plans into a 
database-oriented DSL.

Then compile the DSL into opcodes.

HyPer-style interpretation of opcodes while 
compilation occurs in the background with LLVM.
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CMU NOISEPAGE (2019)
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fun main() -> int {
var ret = 0
for (row in foo) {   

if (row.colA >= 50 and
row.colB < 100000) {      

ret = ret + 1
}

}
return ret

}

Source: Prashanth Menon

SELECT * FROM foo
WHERE colA >= 50
AND colB < 100000;

Function 0 <main>:                                                                                                           
[3/4587]
Frame size 8512 bytes (1 parameter, 20 locals)                                                                               
param    hiddenRv:  offset=0       size=8       align=8       type=*int32
local         ret:  offset=8       size=4       align=4       type=int32
local  table_iter:  offset=16      size=8312    align=8       type=tpl::sql::TableVectorIterator
local         vpi:  offset=8328    size=8       align=8       type=*tpl::sql::VectorProjectionIterator
local        tmp1:  offset=8336    size=1       align=1       type=bool
local         row:  offset=8344    size=64      align=8       type=struct{Integer,Integer,Integer,Integer}
local        tmp2:  offset=8408    size=1       align=1       type=bool
local        tmp3:  offset=8416    size=8       align=8       type=*Integer
local        tmp4:  offset=8424    size=8       align=8       type=*Integer
local        tmp5:  offset=8432    size=8       align=8       type=*Integer
local        tmp6:  offset=8440    size=8       align=8       type=*Integer
local        tmp7:  offset=8448    size=1       align=1       type=bool
local        tmp8:  offset=8449    size=2       align=1       type=Boolean
local        tmp9:  offset=8456    size=16      align=8       type=Integer
local       tmp10:  offset=8472    size=4       align=4       type=int32
local       tmp11:  offset=8476    size=2       align=1       type=Boolean
local       tmp12:  offset=8480    size=8       align=8       type=*Integer
local       tmp13:  offset=8488    size=16      align=8       type=Integer
local       tmp14:  offset=8504    size=4       align=4       type=int32
local       tmp15:  offset=8508    size=4       align=4       type=int32

0x00000000    AssignImm4
0x0000000c    TableVectorIteratorInit
0x00000016    TableVectorIteratorGetVPI
0x00000022    TableVectorIteratorNext
0x0000002e    JumpIfFalse
0x0000003a    VPIHasNext
0x00000046    JumpIfFalse
0x00000052    Lea
0x00000062    VPIGetInteger
0x00000072    Lea
0x00000082    VPIGetInteger
0x00000092    Lea
0x000000a2    VPIGetInteger
0x000000b2    Lea
0x000000c2    VPIGetInteger
0x000000d2    AssignImm4
0x000000de    InitInteger
0x000000ea    GreaterThanEqualInteger
0x000000fa    ForceBoolTruth
0x00000106    JumpIfFalse
0x00000112    Lea

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://www.youtube.com/watch?v=HjMQbzBhTb4
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CMU NOISEPAGE (2019)
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fun main() -> int {
var ret = 0
for (row in foo) {   

if (row.colA >= 50 and
row.colB < 100000) {      

ret = ret + 1
}

}
return ret

}

Source: Prashanth Menon

SELECT * FROM foo
WHERE colA >= 50
AND colB < 100000;

Interpreter

Optimized 
LLVM Compiler

x86 Code

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://www.youtube.com/watch?v=HjMQbzBhTb4
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PARTING THOUGHTS

Query compilation makes a difference but is non-
trivial to implement.

The 2016 version of MemSQL is the best query 
compilation implementation out there.

Any new DBMS that wants to compete has to
implement query compilation.
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NEXT CLASS

Vectorization vs. Compilation
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PROJECT #3

Group project to implement some substantial 
component or feature in a DBMS.

Projects should incorporate topics discussed in this 
course as well as from your own interests.

Each group must pick a project that is unique from 
their classmates.
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PROJECT #3 – DELIVERABLES

Proposal

Status Update

Design Document

Final Presentation

64
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PROJECT #3 – PROPOSAL

Five-minute presentation to the class that 
discusses the high-level topic.

Each proposal must discuss:
→ High-level overview and system archicture of your project.
→ How you will test whether your implementation is correct.
→ What workloads you will use for your project.
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PROJECT #3 – STATUS UPDATE

Five-minute presentation to update the class about 
the current status of your project.

Each presentation should include:
→ Current development status.
→ Whether your plan has changed and why.
→ Anything that surprised you during coding.
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PROJECT #3 – DESIGN DOCUMENT

As part of the status update, you must provide a 
design document that describes your project 
implementation:
→ Architectural Design
→ Design Rationale
→ Testing Plan
→ Trade-offs and Potential Problems
→ Future Work
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PROJECT #3 – FINAL PRESENTATION

10-minute presentation on the final status of your 
project during the scheduled final exam.

You should include any performance measurements 
or benchmarking numbers for your 
implementation.

Demos are always hot too…
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PROJECT TOPICS

Fast Fixed-Point Decimals

Proxy Kernel Bypass

Adaptive Query Opt.

71
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FAST FIXED-POINT DECIMALS

The Germans claim that fixed-point decimals are 
faster than floating point decimals.

Project: Complete our implementation and 
integrate into PostgreSQL as UDT.
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FAST FIXED-POINT DECIMALS

The Germans claim that fixed-point decimals are 
faster than floating point decimals.

Project: Complete our implementation and 
integrate into PostgreSQL as UDT.
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https://15721.courses.cs.cmu.edu/spring2023
https://github.com/cmu-db/libfixeypointy


15-721 (Spring 2023)

PROXY KERNEL-BYPASS

We have been working on optimizations for 
PostgreSQL proxies.

Project: Modify PgBouncer to use io_uring.
→ Matt has existing benchmark scripts to compare against his 

proxy and Odyssey.
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ADAPTIVE QUERY OPTIMIZATION

We want to be able to change a query plan during 
execution without stopping the query.

Project: Create a PostgreSQL extension that swaps 
a plan node in the tree with a "dummy" node.
→ New node can either halt execution or generate fake data.
→ An easier approach might be to wrap nodes with "control" 

nodes that determine whether to call inner node.
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HOW TO START

Form a team.

Meet with your team and discuss potential topics.

Look over source code and determine what you will 
need to implement.

I am able during Spring Break for additional 
discussion and clarification of the project idea.
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