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15-721 (Spring 2023)

ADMINISTRIVIA

Project #1: Sunday February 26th

Project #2: Sunday April 30th

Project #3
→ Proposals: Wednesday March 1st

→ Updates: Monday April 3rd

→ Final Presentations: TBA
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15-721 (Spring 2023)

OBSERVATION

Vectorization can speed up query performance.

Compilation can speed up query performance.

We have not discussed which approach is better and 
under what conditions.

Switching an existing DBMS is difficult, so one 
must make this design decision early.
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VECTORWISE – PRECOMPILED PRIMITIVES

Pre-compiles thousands of "primitives" that 
perform basic operations on typed data.
→ Using simple kernels for each primitive means that they 

are easier to vectorize.

The DBMS then executes a query plan that invokes 
these primitives at runtime.
→ Function calls are amortized over multiple tuples.
→ The output of a primitive are the offsets of tuples that 

satisfy the predicate that the primitive represents.
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MICRO ADAPTIVITY IN VECTORWISE
SIGMOD 2013
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VECTORWISE – PRECOMPILED PRIMITIVES
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SELECT * FROM foo
WHERE str_col = 'abc'
AND int_col = 4;

foo

str_col='abc' AND
int_col=4s

vec<offset> sel_eq_str(vec<string> batch, string val) {
vec<offset> res;   
for (offset i = 0; i < batch.size(); i++)
if (batch[i] == val) res.append(i);

return (res);
}

vec<offset> sel_eq_int(vec<int> batch, int val,
vec<offset> positions) {

vec<offset> res;   
for (offset i : positions)
if (batch[i] == val) res.append(i);

return (res);
}

https://db.cs.cmu.edu/
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HYPER – HOLISTIC QUERY COMPILATION

Compile queries in-memory into native code using 
the LLVM toolkit.

Organizes query processing in a way to keep a tuple 
in CPU registers for as long as possible.
→ Bottom-to-top / push-based query processing model.
→ Not vectorizable (as originally described).
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EFFICIENTLY COMPILING EFFICIENT QUERY PLANS 
FOR MODERN HARDWARE
VLDB 2011
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HYPER – HOLISTIC QUERY COMPILATION
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SELECT * FROM foo
WHERE str_col = 'abc'
AND int_col = 4;

foo

str_col='abc' AND
int_col=4s

vec<offset> scan_row(vec<string> str_col, string val0,
vec<int> int_col, int val1) {

vec<offset> res;   
for (offset i = 0; i < str_col.size(); i++)

if (str_col[i] == val0 && int_col[i] == val1)
res.append(i);

return (res);
}
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TODAY’S AGENDA

Vectorization vs. Compilation

Project #2

Project #3
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VECTORIZATION VS. COMPILATION

Test-bed system to analyze the trade-offs between 
vectorized execution and query compilation.

Implemented high-level algorithms the same in 
each system but varied the implementation details 
based on system architecture.
→ Example: Hash join algorithm is the same, but the systems 

use different hash functions (Murmur2 vs. CRC32×2)
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EVERYTHING YOU ALWAYS WANTED TO KNOW ABOUT COMPILED 
AND VECTORIZED QUERIES BUT WERE AFRAID TO ASK
VLDB 2018
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IMPLEMENTATIONS

Approach #1: Tectorwise
→ Break operations into pre-compiled primitives.
→ Must materialize the output of primitives at each step. 

Approach #2: Typer
→ Push-based processing model with JIT compilation.
→ Process a single tuple up entire pipeline without 

materializing the intermediate results.
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TPC-H WORKLOAD

Q1: Fixed-point arithmetic, 4-group aggregation

Q6: Selective filters. Computationally inexpensive.

Q3: Join (build: 147k tuples / probe: 3.2m tuples)

Q9: Join (build: 320k tuples / probe: 1.5M tuples)

Q18: High-cardinality aggregation (1.5m groups)
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TPC-H ANALYZED: HIDDEN MESSAGES AND LESSONS LEARNED 
FROM AN INFLUENTIAL BENCHMARK
TPCTC 2013
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SINGLE-THREADED PERFORMANCE
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Source: Timo Kersten
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SINGLE-THREADED PERFORMANCE

Runtime Cycles IPC Instr. L1 Miss LLC Miss Br. Miss

TWise 85 59 2.8 162 2.0 0.57 0.03

Typer 48 34 2.0 68 0.6 0.57 0.01

TWise 15 11 1.4 15 0.2 0.29 0.01

Typer 16 11 1.8 20 0.3 0.35 0.06

TWise 45 24 1.8 42 0.9 0.16 0.08

Typer 48 25 0.8 21 0.5 0.16 0.27

TWise 111 56 1.3 76 2.1 0.47 0.39

Typer 147 74 0.6 42 1.7 0.46 0.34

TWise 152 48 2.1 102 1.9 0.18 0.37

Typer 99 30 1.6 46 0.8 0.19 0.16

Q1

Q6

Q3

Q9

Q18
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MAIN FINDINGS

Both models are efficient and achieve roughly the 
same performance.
→ 100x faster than row-oriented DBMSs!

Data-centric is better for "calculation-heavy" 
queries with few cache misses.

Vectorization is slightly better at hiding cache miss 
latencies.
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SIMD PERFORMANCE

Evaluate vectorized branchless selection and hash 
probe in Tectorwise.

Use AVX-512 because it includes instructions to 
make it easier to implement algorithms using 
vertical vectorization. 
→ Selective operations using bitmask registers.

24
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SIMD EVALUATION`
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AUTO-VECTORIZATION

Evaluate how well the compiler can automatically 
vectorize the Vectorwise primitives.
→ Targets: GCC v7.2, Clang v5.0, ICC v18

ICC was able to vectorize the most primitives using 
AVX-512:
→ Vectorized: Hashing, Selection, Projection
→ Not Vectorized: Hash Table Probing, Aggregation
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AUTO-VECTORIZATION
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AUTO-VECTORIZATION
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VECTORIZATION VS. COMPILATION
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PARTING THOUGHTS

No major performance difference between the 
Vectorwise and HyPer approaches for all queries.
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NEXT CLASS

Hash Join Implementations
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PROJECT #2 – DATABASE SYSTEM REPORT

Each student will write an 
encyclopedia article about the 
internals of a real-world DBMS.
→ We will target OLAP systems that 

implement topics from this semester.

Andy will post a sign-up sheet for you 
to pick what DBMS you want.

Feedback Due Date: April 1st

Final Due Date: May 1st

33

https://15721.courses.cs.cmu.edu/spring2023/project2.html

Prompt: An aerial photograph of Carnegie Mellon 
University but with all the buildings replaced with 
giant database drums.
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DBDB.IO

Students will write their articles on CMU's online 
Database of Databases encyclopedia.

Each article will use a standard taxonomy.
→ For each feature category, you select pre-defined options 

for your DBMS.
→ You will then need to provide a summary paragraph with 

citations for that category.

34
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PLAGIARISM WARNING

This article must be your own writing with your 
own images. You may not copy text/images directly 
from papers or other sources that you find on the 
web.
→ This includes both your submission for review and 

submission for your grade.

Plagiarism will not be tolerated.
See CMU's Policy on Academic Integrity for 
additional information. 
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PROJECT #3 – FINAL PROJECT 

Group project to implement some 
substantial component or feature in a 
DBMS.

Projects should incorporate topics 
discussed in this course as well as 
from your own interests.

Each group must pick a project that is 
unique from their classmates.

36

https://15721.courses.cs.cmu.edu/spring2023/project3.html

Prompt: "A woman with a database drum for a 
head" by Johannes Vermeer

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://15721.courses.cs.cmu.edu/spring2023/project3.html


15-721 (Spring 2023)

PROJECT #3 – DELIVERABLES

Proposal Presentation: March 1st

Status Update Presentation: April 3rd

Design Document: TBA

Final Presentation: TBA
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PROJECT #3 – PROPOSAL

Five-minute presentation to the class that 
discusses the high-level topic.

Each proposal must discuss:
→ Architecture and implementation overview of the project.
→ How you will test whether your implementation is correct.
→ What workloads you will use for your project.

38
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PROJECT #3 – STATUS UPDATE

Five-minute presentation to update the class about 
the current status of your project.

Each presentation should include:
→ Current development status.
→ Whether your plan has changed and why.
→ Anything that surprised you during coding.

39
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PROJECT #3 – DESIGN DOCUMENT

As part of the status update, you must provide a 
design document that describes your project 
implementation:
→ Architectural Design
→ Design Rationale
→ Testing Plan
→ Trade-offs and Potential Problems
→ Future Work

40
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PROJECT #3 – FINAL PRESENTATION

10-minute presentation on the final status of your 
project during the scheduled final exam.

You should include any performance measurements 
or benchmarking numbers for your 
implementation.

Demos are always hot too…

42
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PROJECT TOPICS

Fast Fixed-Point Decimals (Standalone)

Database Proxy Acceleration (PostgreSQL)

Adaptive Query Opt. (PostgreSQL)

UDF Inlining (DuckDB)

44
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FAST FIXED-POINT DECIMALS

The Germans claim that fixed-point decimals are 
faster than floating point decimals.

Project: Complete our implementation and 
integrate into PostgreSQL as UDT.
→ Verify that the calculations are correct.
→ Add support for vertical vectorization.
→ Benchmark against PostgreSQL's built-in NUMERIC.

45
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DATABASE PROXY ACCELERATION

We have been working on optimizing network 
operations in PostgreSQL proxies.

Project: Extend pgCat (Rust) to support user-
bypass and/or kernel-bypass.
→ User-bypass: eBPF
→ Kernel-bypass: io_uring
→ Matt has existing benchmark scripts to compare against his 

proxy and Odyssey.
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15-721 (Spring 2023)

ADAPTIVE QUERY OPTIMIZATION

We want to be able to change a query plan during 
execution without stopping the query.

Project: Create a PostgreSQL extension that swaps 
a plan node in the tree with a "dummy" node.
→ New node can either halt execution or generate fake data.
→ An easier approach might be to wrap nodes with "control" 

nodes that determine whether to call inner node.
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15-721 (Spring 2023)

UDF INLINING

We want to compare methods for compiling UDFs
into machine code versus UDF inlining.
→ We will cover this in Lecture #14

Project: Add support for PL/pgSQL UDF inlining
in DuckDB.
→ PostgreSQL's query optimizer is too primitive.
→ DuckDB supports nested query decorrelation, which is 

needed for the Microsoft Froid technique.
→ Potentially in collaboration with (different) Germans.
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15-721 (Spring 2023)

HOW TO START

Form a team. Sign-up on class spreadsheet.

Meet with your team and discuss potential topics.

Look over source code and determine what you will 
need to implement.

I am able during Spring Break for additional 
discussion and clarification of the project idea.
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