
ADVANCED DATABASE SYSTEMS

Andy Pavlo // 15-721 // Spring 2023

Vectorization vs.
Compilation

L
e

c
tu

re
 #

1
0

https://15721.courses.cs.cmu.edu/spring2023
http://db.cs.cmu.edu/

15-721 (Spring 2023)

ADMINISTRIVIA

Project #1: Sunday February 26th

Project #2: Sunday April 30th

Project #3
→ Proposals: Wednesday March 1st

→ Updates: Monday April 3rd

→ Final Presentations: TBA

2

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

OBSERVATION

Vectorization can speed up query performance.

Compilation can speed up query performance.

We have not discussed which approach is better and
under what conditions.

Switching an existing DBMS is difficult, so one
must make this design decision early.

3

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

VECTORWISE – PRECOMPILED PRIMITIVES

Pre-compiles thousands of "primitives" that
perform basic operations on typed data.
→ Using simple kernels for each primitive means that they

are easier to vectorize.

The DBMS then executes a query plan that invokes
these primitives at runtime.
→ Function calls are amortized over multiple tuples.
→ The output of a primitive are the offsets of tuples that

satisfy the predicate that the primitive represents.

4

MICRO ADAPTIVITY IN VECTORWISE
SIGMOD 2013

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://dl.acm.org/citation.cfm?id=2465292
http://dl.acm.org/citation.cfm?id=2465292

15-721 (Spring 2023)

VECTORWISE – PRECOMPILED PRIMITIVES

5

SELECT * FROM foo
WHERE str_col = 'abc'
AND int_col = 4;

foo

str_col='abc' AND
int_col=4s

vec<offset> sel_eq_str(vec<string> batch, string val) {
vec<offset> res;
for (offset i = 0; i < batch.size(); i++)
if (batch[i] == val) res.append(i);

return (res);
}

vec<offset> sel_eq_int(vec<int> batch, int val,
vec<offset> positions) {

vec<offset> res;
for (offset i : positions)
if (batch[i] == val) res.append(i);

return (res);
}

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

HYPER – HOLISTIC QUERY COMPILATION

Compile queries in-memory into native code using
the LLVM toolkit.

Organizes query processing in a way to keep a tuple
in CPU registers for as long as possible.
→ Bottom-to-top / push-based query processing model.
→ Not vectorizable (as originally described).

6

EFFICIENTLY COMPILING EFFICIENT QUERY PLANS
FOR MODERN HARDWARE
VLDB 2011

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://15721.courses.cs.cmu.edu/spring2019/papers/19-compilation/p539-neumann.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/19-compilation/p539-neumann.pdf

15-721 (Spring 2023)

HYPER – HOLISTIC QUERY COMPILATION

7

SELECT * FROM foo
WHERE str_col = 'abc'
AND int_col = 4;

foo

str_col='abc' AND
int_col=4s

vec<offset> scan_row(vec<string> str_col, string val0,
vec<int> int_col, int val1) {

vec<offset> res;
for (offset i = 0; i < str_col.size(); i++)

if (str_col[i] == val0 && int_col[i] == val1)
res.append(i);

return (res);
}

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

TODAY’S AGENDA

Vectorization vs. Compilation

Project #2

Project #3

8

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

VECTORIZATION VS. COMPILATION

Test-bed system to analyze the trade-offs between
vectorized execution and query compilation.

Implemented high-level algorithms the same in
each system but varied the implementation details
based on system architecture.
→ Example: Hash join algorithm is the same, but the systems

use different hash functions (Murmur2 vs. CRC32×2)

9

EVERYTHING YOU ALWAYS WANTED TO KNOW ABOUT COMPILED
AND VECTORIZED QUERIES BUT WERE AFRAID TO ASK
VLDB 2018

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/doi/abs/10.14778/3275366.3284966
https://dl.acm.org/doi/abs/10.14778/3275366.3284966

15-721 (Spring 2023)

IMPLEMENTATIONS

Approach #1: Tectorwise
→ Break operations into pre-compiled primitives.
→ Must materialize the output of primitives at each step.

Approach #2: Typer
→ Push-based processing model with JIT compilation.
→ Process a single tuple up entire pipeline without

materializing the intermediate results.

10

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

TPC-H WORKLOAD

Q1: Fixed-point arithmetic, 4-group aggregation

Q6: Selective filters. Computationally inexpensive.

Q3: Join (build: 147k tuples / probe: 3.2m tuples)

Q9: Join (build: 320k tuples / probe: 1.5M tuples)

Q18: High-cardinality aggregation (1.5m groups)

11

TPC-H ANALYZED: HIDDEN MESSAGES AND LESSONS LEARNED
FROM AN INFLUENTIAL BENCHMARK
TPCTC 2013

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://doi.org/10.1007/978-3-319-04936-6_5
https://doi.org/10.1007/978-3-319-04936-6_5

15-721 (Spring 2023)

TPC-H WORKLOAD

Q1: Fixed-point arithmetic, 4-group aggregation

Q6: Selective filters. Computationally inexpensive.

Q3: Join (build: 147k tuples / probe: 3.2m tuples)

Q9: Join (build: 320k tuples / probe: 1.5M tuples)

Q18: High-cardinality aggregation (1.5m groups)

11

TPC-H ANALYZED: HIDDEN MESSAGES AND LESSONS LEARNED
FROM AN INFLUENTIAL BENCHMARK
TPCTC 2013

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://doi.org/10.1007/978-3-319-04936-6_5
https://doi.org/10.1007/978-3-319-04936-6_5
https://github.com/cmu-db/benchbase/tree/main/src/main/java/com/oltpbenchmark/benchmarks/tpch/procedures

15-721 (Spring 2023)

SINGLE-THREADED PERFORMANCE

13

Source: Timo Kersten

85

15

45

111

152

49

16

48

147

99

0

50

100

150

Q1 Q6 Q3 Q9 Q18

R
un

ti
m

e
(m

s)

Tectorwise Typer

Intel Core i9-7900X (10 cores × 2HT)
TPC-H Queries (Scalefactor=1)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://db.in.tum.de/~kersten/index.shtml?lang=en

15-721 (Spring 2023)

SINGLE-THREADED PERFORMANCE

13

Source: Timo Kersten

85

15

45

111

152

49

16

48

147

99

0

50

100

150

Q1 Q6 Q3 Q9 Q18

R
un

ti
m

e
(m

s)

Tectorwise Typer

Intel Core i9-7900X (10 cores × 2HT)
TPC-H Queries (Scalefactor=1)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://db.in.tum.de/~kersten/index.shtml?lang=en

15-721 (Spring 2023)

SINGLE-THREADED PERFORMANCE

Runtime Cycles IPC Instr. L1 Miss LLC Miss Br. Miss

TWise 85 59 2.8 162 2.0 0.57 0.03

Typer 48 34 2.0 68 0.6 0.57 0.01

TWise 15 11 1.4 15 0.2 0.29 0.01

Typer 16 11 1.8 20 0.3 0.35 0.06

TWise 45 24 1.8 42 0.9 0.16 0.08

Typer 48 25 0.8 21 0.5 0.16 0.27

TWise 111 56 1.3 76 2.1 0.47 0.39

Typer 147 74 0.6 42 1.7 0.46 0.34

TWise 152 48 2.1 102 1.9 0.18 0.37

Typer 99 30 1.6 46 0.8 0.19 0.16

Q1

Q6

Q3

Q9

Q18

14

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

SINGLE-THREADED PERFORMANCE

Runtime Cycles IPC Instr. L1 Miss LLC Miss Br. Miss

TWise 85 59 2.8 162 2.0 0.57 0.03

Typer 48 34 2.0 68 0.6 0.57 0.01

TWise 15 11 1.4 15 0.2 0.29 0.01

Typer 16 11 1.8 20 0.3 0.35 0.06

TWise 45 24 1.8 42 0.9 0.16 0.08

Typer 48 25 0.8 21 0.5 0.16 0.27

TWise 111 56 1.3 76 2.1 0.47 0.39

Typer 147 74 0.6 42 1.7 0.46 0.34

TWise 152 48 2.1 102 1.9 0.18 0.37

Typer 99 30 1.6 46 0.8 0.19 0.16

Q1

Q6

Q3

Q9

Q18

14

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

SINGLE-THREADED PERFORMANCE

Runtime Cycles IPC Instr. L1 Miss LLC Miss Br. Miss

TWise 85 59 2.8 162 2.0 0.57 0.03

Typer 48 34 2.0 68 0.6 0.57 0.01

TWise 15 11 1.4 15 0.2 0.29 0.01

Typer 16 11 1.8 20 0.3 0.35 0.06

TWise 45 24 1.8 42 0.9 0.16 0.08

Typer 48 25 0.8 21 0.5 0.16 0.27

TWise 111 56 1.3 76 2.1 0.47 0.39

Typer 147 74 0.6 42 1.7 0.46 0.34

TWise 152 48 2.1 102 1.9 0.18 0.37

Typer 99 30 1.6 46 0.8 0.19 0.16

Q1

Q6

Q3

Q9

Q18

14

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

SINGLE-THREADED PERFORMANCE

Runtime Cycles IPC Instr. L1 Miss LLC Miss Br. Miss

TWise 85 59 2.8 162 2.0 0.57 0.03

Typer 48 34 2.0 68 0.6 0.57 0.01

TWise 15 11 1.4 15 0.2 0.29 0.01

Typer 16 11 1.8 20 0.3 0.35 0.06

TWise 45 24 1.8 42 0.9 0.16 0.08

Typer 48 25 0.8 21 0.5 0.16 0.27

TWise 111 56 1.3 76 2.1 0.47 0.39

Typer 147 74 0.6 42 1.7 0.46 0.34

TWise 152 48 2.1 102 1.9 0.18 0.37

Typer 99 30 1.6 46 0.8 0.19 0.16

Q1

Q6

Q3

Q9

Q18

14

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

SINGLE-THREADED PERFORMANCE

Runtime Cycles IPC Instr. L1 Miss LLC Miss Br. Miss

TWise 85 59 2.8 162 2.0 0.57 0.03

Typer 48 34 2.0 68 0.6 0.57 0.01

TWise 15 11 1.4 15 0.2 0.29 0.01

Typer 16 11 1.8 20 0.3 0.35 0.06

TWise 45 24 1.8 42 0.9 0.16 0.08

Typer 48 25 0.8 21 0.5 0.16 0.27

TWise 111 56 1.3 76 2.1 0.47 0.39

Typer 147 74 0.6 42 1.7 0.46 0.34

TWise 152 48 2.1 102 1.9 0.18 0.37

Typer 99 30 1.6 46 0.8 0.19 0.16

Q1

Q6

Q3

Q9

Q18

14

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

SINGLE-THREADED PERFORMANCE

Runtime Cycles IPC Instr. L1 Miss LLC Miss Br. Miss

TWise 85 59 2.8 162 2.0 0.57 0.03

Typer 48 34 2.0 68 0.6 0.57 0.01

TWise 15 11 1.4 15 0.2 0.29 0.01

Typer 16 11 1.8 20 0.3 0.35 0.06

TWise 45 24 1.8 42 0.9 0.16 0.08

Typer 48 25 0.8 21 0.5 0.16 0.27

TWise 111 56 1.3 76 2.1 0.47 0.39

Typer 147 74 0.6 42 1.7 0.46 0.34

TWise 152 48 2.1 102 1.9 0.18 0.37

Typer 99 30 1.6 46 0.8 0.19 0.16

Q1

Q6

Q3

Q9

Q18

14

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

SINGLE-THREADED PERFORMANCE

Runtime Cycles IPC Instr. L1 Miss LLC Miss Br. Miss

TWise 85 59 2.8 162 2.0 0.57 0.03

Typer 48 34 2.0 68 0.6 0.57 0.01

TWise 15 11 1.4 15 0.2 0.29 0.01

Typer 16 11 1.8 20 0.3 0.35 0.06

TWise 45 24 1.8 42 0.9 0.16 0.08

Typer 48 25 0.8 21 0.5 0.16 0.27

TWise 111 56 1.3 76 2.1 0.47 0.39

Typer 147 74 0.6 42 1.7 0.46 0.34

TWise 152 48 2.1 102 1.9 0.18 0.37

Typer 99 30 1.6 46 0.8 0.19 0.16

Q1

Q6

Q3

Q9

Q18

14

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

SINGLE-THREADED PERFORMANCE

Runtime Cycles IPC Instr. L1 Miss LLC Miss Br. Miss

TWise 85 59 2.8 162 2.0 0.57 0.03

Typer 48 34 2.0 68 0.6 0.57 0.01

TWise 15 11 1.4 15 0.2 0.29 0.01

Typer 16 11 1.8 20 0.3 0.35 0.06

TWise 45 24 1.8 42 0.9 0.16 0.08

Typer 48 25 0.8 21 0.5 0.16 0.27

TWise 111 56 1.3 76 2.1 0.47 0.39

Typer 147 74 0.6 42 1.7 0.46 0.34

TWise 152 48 2.1 102 1.9 0.18 0.37

Typer 99 30 1.6 46 0.8 0.19 0.16

Q1

Q6

Q3

Q9

Q18

14

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

MAIN FINDINGS

Both models are efficient and achieve roughly the
same performance.
→ 100x faster than row-oriented DBMSs!

Data-centric is better for "calculation-heavy"
queries with few cache misses.

Vectorization is slightly better at hiding cache miss
latencies.

23

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

SIMD PERFORMANCE

Evaluate vectorized branchless selection and hash
probe in Tectorwise.

Use AVX-512 because it includes instructions to
make it easier to implement algorithms using
vertical vectorization.
→ Selective operations using bitmask registers.

24

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

SIMD EVALUATION`

25

Source: Timo Kersten

5.4

1.9

12.3

2.4
1.8

8.6

0

5

10

15

Hashing Gather Join

C
yc

le
s

/
E

le
m

en
t

Intel Core i9-7900X (10 cores × 2HT)
TPC-H Queries (Scalefactor=1)

2.3x 1.1x

1.4x

Scalar SIMD

41

106

36

93

0

40

80

120

Q3 Q9

R
un

ti
m

e
(m

s)

1.1x

1.1x

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://db.in.tum.de/~kersten/index.shtml?lang=en

15-721 (Spring 2023)

AUTO-VECTORIZATION

Evaluate how well the compiler can automatically
vectorize the Vectorwise primitives.
→ Targets: GCC v7.2, Clang v5.0, ICC v18

ICC was able to vectorize the most primitives using
AVX-512:
→ Vectorized: Hashing, Selection, Projection
→ Not Vectorized: Hash Table Probing, Aggregation

26

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

AUTO-VECTORIZATION

27

29.0

15.4

27.2

62.5

42.0

12.0

31.5

82.6

60.1

35.0

15.4

46.6

82.9

61.2

0

20

40

60

80

100

Q1 Q6 Q3 Q9 Q18R
ed

u
ct

io
n

 o
f

In
st

r.
 (

%
)

Auto Manual Auto+Manual

Intel Core i9-7900X (10 cores × 2HT)
Compiler: ICC v18

Source: Timo Kersten

-1.01

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://db.in.tum.de/~kersten/index.shtml?lang=en

15-721 (Spring 2023)

AUTO-VECTORIZATION

28

3.5
1.1

-1.6

-14.6

-6.0

8.5

0.3

16.4

21.6 21.4

5.4

-0.3

11.0

15.7
12.6

-20

-10

0

10

20

30

Q1 Q6 Q3 Q9 Q18

R
ed

u
ct

io
n

 o
f

T
im

e
(%

)

Auto Manual Auto+Manual

Source: Timo Kersten

Intel Core i9-7900X (10 cores × 2HT)
Compiler: ICC v18

↑Better Performance

↓Worse Performance

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://db.in.tum.de/~kersten/index.shtml?lang=en

15-721 (Spring 2023)

VECTORIZATION VS. COMPILATION

30

Source: Timo Kersten

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://db.in.tum.de/~kersten/index.shtml?lang=en

15-721 (Spring 2023)

PARTING THOUGHTS

No major performance difference between the
Vectorwise and HyPer approaches for all queries.

31

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

NEXT CLASS

Hash Join Implementations

32

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

PROJECT #2 – DATABASE SYSTEM REPORT

Each student will write an
encyclopedia article about the
internals of a real-world DBMS.
→ We will target OLAP systems that

implement topics from this semester.

Andy will post a sign-up sheet for you
to pick what DBMS you want.

Feedback Due Date: April 1st

Final Due Date: May 1st

33

https://15721.courses.cs.cmu.edu/spring2023/project2.html

Prompt: An aerial photograph of Carnegie Mellon
University but with all the buildings replaced with
giant database drums.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://15721.courses.cs.cmu.edu/spring2023/project2.html

15-721 (Spring 2023)

DBDB.IO

Students will write their articles on CMU's online
Database of Databases encyclopedia.

Each article will use a standard taxonomy.
→ For each feature category, you select pre-defined options

for your DBMS.
→ You will then need to provide a summary paragraph with

citations for that category.

34

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dbdb.io/

15-721 (Spring 2023)

DBDB.IO

Students will write their articles on CMU's online
Database of Databases encyclopedia.

Each article will use a standard taxonomy.
→ For each feature category, you select pre-defined options

for your DBMS.
→ You will then need to provide a summary paragraph with

citations for that category.

34

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dbdb.io/
https://dbdb.io/
https://dbdb.io/browse?derived=postgresql
https://dbdb.io/db/mongodb

15-721 (Spring 2023)

PLAGIARISM WARNING

This article must be your own writing with your
own images. You may not copy text/images directly
from papers or other sources that you find on the
web.
→ This includes both your submission for review and

submission for your grade.

Plagiarism will not be tolerated.
See CMU's Policy on Academic Integrity for
additional information.

35

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://www.cmu.edu/policies/student-and-student-life/academic-integrity.html

15-721 (Spring 2023)

PROJECT #3 – FINAL PROJECT

Group project to implement some
substantial component or feature in a
DBMS.

Projects should incorporate topics
discussed in this course as well as
from your own interests.

Each group must pick a project that is
unique from their classmates.

36

https://15721.courses.cs.cmu.edu/spring2023/project3.html

Prompt: "A woman with a database drum for a
head" by Johannes Vermeer

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://15721.courses.cs.cmu.edu/spring2023/project3.html

15-721 (Spring 2023)

PROJECT #3 – DELIVERABLES

Proposal Presentation: March 1st

Status Update Presentation: April 3rd

Design Document: TBA

Final Presentation: TBA

37

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

PROJECT #3 – PROPOSAL

Five-minute presentation to the class that
discusses the high-level topic.

Each proposal must discuss:
→ Architecture and implementation overview of the project.
→ How you will test whether your implementation is correct.
→ What workloads you will use for your project.

38

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

PROJECT #3 – STATUS UPDATE

Five-minute presentation to update the class about
the current status of your project.

Each presentation should include:
→ Current development status.
→ Whether your plan has changed and why.
→ Anything that surprised you during coding.

39

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

PROJECT #3 – DESIGN DOCUMENT

As part of the status update, you must provide a
design document that describes your project
implementation:
→ Architectural Design
→ Design Rationale
→ Testing Plan
→ Trade-offs and Potential Problems
→ Future Work

40

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

PROJECT #3 – FINAL PRESENTATION

10-minute presentation on the final status of your
project during the scheduled final exam.

You should include any performance measurements
or benchmarking numbers for your
implementation.

Demos are always hot too…

42

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

PROJECT TOPICS

Fast Fixed-Point Decimals (Standalone)

Database Proxy Acceleration (PostgreSQL)

Adaptive Query Opt. (PostgreSQL)

UDF Inlining (DuckDB)

44

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

FAST FIXED-POINT DECIMALS

The Germans claim that fixed-point decimals are
faster than floating point decimals.

Project: Complete our implementation and
integrate into PostgreSQL as UDT.
→ Verify that the calculations are correct.
→ Add support for vertical vectorization.
→ Benchmark against PostgreSQL's built-in NUMERIC.

45

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

FAST FIXED-POINT DECIMALS

The Germans claim that fixed-point decimals are
faster than floating point decimals.

Project: Complete our implementation and
integrate into PostgreSQL as UDT.
→ Verify that the calculations are correct.
→ Add support for vertical vectorization.
→ Benchmark against PostgreSQL's built-in NUMERIC.

45

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://github.com/cmu-db/libfixeypointy

15-721 (Spring 2023)

DATABASE PROXY ACCELERATION

We have been working on optimizing network
operations in PostgreSQL proxies.

Project: Extend pgCat (Rust) to support user-
bypass and/or kernel-bypass.
→ User-bypass: eBPF
→ Kernel-bypass: io_uring
→ Matt has existing benchmark scripts to compare against his

proxy and Odyssey.

46

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://github.com/levkk/pgcat
https://ebpf.io/
https://en.wikipedia.org/wiki/Io_uring
https://github.com/yandex/odyssey

15-721 (Spring 2023)

ADAPTIVE QUERY OPTIMIZATION

We want to be able to change a query plan during
execution without stopping the query.

Project: Create a PostgreSQL extension that swaps
a plan node in the tree with a "dummy" node.
→ New node can either halt execution or generate fake data.
→ An easier approach might be to wrap nodes with "control"

nodes that determine whether to call inner node.

47

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

UDF INLINING

We want to compare methods for compiling UDFs
into machine code versus UDF inlining.
→ We will cover this in Lecture #14

Project: Add support for PL/pgSQL UDF inlining
in DuckDB.
→ PostgreSQL's query optimizer is too primitive.
→ DuckDB supports nested query decorrelation, which is

needed for the Microsoft Froid technique.
→ Potentially in collaboration with (different) Germans.

48

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://15721.courses.cs.cmu.edu/spring2023/schedule.html#mar-20-2023

15-721 (Spring 2023)

HOW TO START

Form a team. Sign-up on class spreadsheet.

Meet with your team and discuss potential topics.

Look over source code and determine what you will
need to implement.

I am able during Spring Break for additional
discussion and clarification of the project idea.

49

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

	Introduction
	Slide 1: Vectorization vs. Compilation
	Slide 2: ADMINISTRIVIA
	Slide 3: OBSERVATION
	Slide 4: VECTORWISE – PRECOMPILED PRIMITIVES
	Slide 5: VECTORWISE – PRECOMPILED PRIMITIVES
	Slide 6: HYPER – HOLISTIC QUERY COMPILATION
	Slide 7: HYPER – HOLISTIC QUERY COMPILATION
	Slide 8: TODAY’S AGENDA

	Vectorization vs. Compilation
	Slide 9: VECTORIZATION VS. COMPILATION
	Slide 10: IMPLEMENTATIONS
	Slide 11: TPC-H WORKLOAD
	Slide 12: TPC-H WORKLOAD

	Single-Threaded
	Slide 13: SINGLE-THREADED PERFORMANCE
	Slide 14: SINGLE-THREADED PERFORMANCE
	Slide 15: SINGLE-THREADED PERFORMANCE
	Slide 16: SINGLE-THREADED PERFORMANCE
	Slide 17: SINGLE-THREADED PERFORMANCE
	Slide 18: SINGLE-THREADED PERFORMANCE
	Slide 19: SINGLE-THREADED PERFORMANCE
	Slide 20: SINGLE-THREADED PERFORMANCE
	Slide 21: SINGLE-THREADED PERFORMANCE
	Slide 22: SINGLE-THREADED PERFORMANCE
	Slide 23: MAIN FINDINGS

	SIMD Evaluation
	Slide 24: SIMD PERFORMANCE
	Slide 25: SIMD EVALUATION`
	Slide 26: AUTO-VECTORIZATION
	Slide 27: AUTO-VECTORIZATION
	Slide 28: AUTO-VECTORIZATION
	Slide 30: VECTORIZATION VS. COMPILATION

	Conclusion
	Slide 31: PARTING THOUGHTS
	Slide 32: NEXT CLASS

	Project #2
	Slide 33: PROJECT #2 – DATABASE SYSTEM REPORT
	Slide 34: DBDB.IO
	Slide 35: DBDB.IO
	Slide 36: PLAGIARISM WARNING

	Project #3
	Slide 37: PROJECT #3 – FINAL PROJECT
	Slide 38: PROJECT #3 – DELIVERABLES
	Slide 39: PROJECT #3 – PROPOSAL
	Slide 40: PROJECT #3 – STATUS UPDATE
	Slide 41: PROJECT #3 – DESIGN DOCUMENT
	Slide 43: PROJECT #3 – FINAL PRESENTATION
	Slide 45: PROJECT TOPICS
	Slide 46: FAST FIXED-POINT DECIMALS
	Slide 47: FAST FIXED-POINT DECIMALS
	Slide 48: DATABASE PROXY ACCELERATION
	Slide 49: ADAPTIVE QUERY OPTIMIZATION
	Slide 50: UDF INLINING
	Slide 51: HOW TO START

