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PARALLEL JOIN ALGORITHMS

Perform a join between two relations on multiple

threads simultaneously to speed up operation.
— We will discuss multi-way joins in Lecture #13.

Two main approaches:
— Hash Join
— Sort-Merge Join

We won't discuss nested-loop joins because an
OLAP DBMS almost never wants to use this...
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OBSERVATION

Many OLTP DBMSs do not implement hash join.

But an index nested-loop join is conceptually

equivalent to a hash join.

— Index NL joins typically means using an existing B+Tree.

— Hash join will build a hash table (index) on the fly and then
discard immediately after the operation is complete.
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HASHING VS. SORTING JOINS

1970s — Sorting

1980s — Hashing

1990s — Equivalent

2000s - Hashing

2010s — Hashing (Partitioned vs. Non-Partitioned)
2020s — Non-Partitioned Hashing
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PARALLEL JOIN ALGORITHMS

L D
MODERN MULTI-CORE CPUS ORACLE (intel
VLDB 2009

— Hashing is faster than Sort-Merge.

— Sort-Merge is faster w/ wider SIMD.

— BRSO oL
FOR MULTI-CORE CPUS @Mﬁgﬁﬁﬂl}!
SIGMOD 2011

— Trade-offs between partitioning & non-
partitioning Hash-Join.

=== | MASSIVELY PARALLEL SORT-MERGE
JOINS IN MAIN MEMORY MULTI- H Per
- \(IBLCI)DIEEZ %TABASE SYSTEMS y

— Sort-Merge is already faster than
Hashing, even without SIMD.

— mssal\glcz)l_lYN EARALLEL NUMA-AWARE E
IMDM 2013 Hyper

— Ignore what we said last year.
— You really want to use Hashing!

MULTI-CORE CPUS: TUNING TO THE
UNDERLYING HARDWARE

.. | MAIN-MEMORY HASH JOINS ON

ICDE 2013 Systemse ETHzirich
— New optimizations and results for Radix
Hash Join.

| AN EXPERIMENTAL COMPARISON OF B UnivERSITAT
THIRTEEN RELATIONAL EQUI-JOINS W""'""HH N
L Bt UM SAARLANDES

— Hold up everyone! Let's look at
everything more carefully!

/| TO PARTITION, OR NOT TO

‘| PARTITION, THAT IS THE JOIN
UESTION IN A REAL SYSTEM

SIGMOD 2021
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— Benefits of Radix Hash Join aren't worth
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JOIN ALGORITHM DESIGN GOALS

These goals matter whether the DBMS is using a
hardware-conscious vs. hardware-oblivious
algorithm for joins.

Goal #1: Minimize Synchronization
— Avoid taking latches during execution.

Goal #2: Minimize Memory Access Cost

— Ensure that data is always local to worker thread.
— Reuse data while it exists in CPU cache.
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IMPROVING CACHE BEHAVIOR

Factors that affect cache misses in a DBMS:
— Cache + TLB capacity.
— Locality (temporal and spatial).

Non-Random Access (Scan):

— Clustering data to a cache line.
— Execute more operations per cache line.

Random Access (Lookups):
— Partition data to fit in cache + TLB.

Source: Johannes Gehrke
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PARALLEL HASH JOINS

Hash join is one of the most important operators in
a DBMS for OLAP workloads.

— But it is still not the dominant cost.

[t is important that we speed up our DBMS's join

algorithm by taking advantage of multiple cores.
— We want to keep all cores busy, without becoming
memory bound.
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HASH JOIN (Rp<S)

Phase #1: Partition (optional)

— Divide the tuples of R and S into disjoint subsets using a
hash function on the join key.

Phase #2: Build

— Scan relation R and create a hash table on join key.

Phase #3: Probe

— For each tuple in S, look up its join key in hash table for R.
[f a match is found, output combined tuple.

- | AN EXPERIMENTAL COMPARISON OF THIRTEEN
RELATIONAL EQUI-JOINS IN MAIN MEMORY
SIGMOD 2016
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PARTITIONING PHASE

Approach #1: Implicit Partitioning

— The data was partitioned on the join key when it was
loaded into the database.
— No extra pass over the data is needed.

Approach #2: Explicit Partitioning

— Divide only the outer relation and redistribute among the
different CPU cores.

— Can use the same radix partitioning approach we talked
about last time.
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PARTITION PHASE

Split the input relations into partitioned buffers by
hashing the tuples’ join key(s).
— Ideally the cost of partitioning is less than the cost of cache

misses during build phase.
— Sometimes called Grace Hash Join / Radix Hash Join.

Contents of buffers depends on storage model:
— NSM: Usually the entire tuple.
— DSM: Only the columns needed for the join + offset.
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PARTITION PHASE

Approach #1: Non-Blocking Partitioning

— Only scan the input relation once.

— Produce output incrementally and let other threads build
hash table at the same time.

Approach #2: Blocking Partitioning (Radix)
— Scan the input relation multiple times.

— Only materialize results all at once.

— Sometimes called radix hash join.
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NON-BLOCKING PARTITIONING

Scan the input relation only once and generate the
output on-the-fly.

Approach #1: Shared Partitions

— Single global set of partitions that all threads update.
— Must use a latch to synchronize threads.

Approach #2: Private Partitions

— Each thread has its own set of partitions.
— Must consolidate them after all threads finish.
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SHARED PARTITIONS

Data Table

-

hash(key)

8
8
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SHARED PARTITIONS

Data Table Global Partitions

hash(key)
i m

8
8

$CMU-DB

111111111111111111


https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

SHARED PARTITIONS

Data Table Global Partitions

hash(key)
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SHARED PARTITIONS

Data Table Global Partitions

hash(key)
i m

8
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PRIVATE PARTITIONS

Data Table Local Partitions

hash(key)
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PRIVATE PARTITIONS

Data Table Local Partitions  Global Partitions

hash(key)
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PRIVATE PARTITIONS

Data Table Local Partitions  Global Partitions
hash(key)
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PRIVATE PARTITIONS

Data Table Local Partitions  Global Partitions
hash(key)
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PRIVATE PARTITIONS

Data Table Local Partitions  Global Partitions
hash(key)
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RADIX PARTITIONING

Scan the input relation multiple times to generate
the partitions.

Two-pass algorithm:

— Step #1: Scan R and compute a histogram of the # of tuples
per hash key for the radix at some offset.

— Step #2: Use this histogram to determine per-thread
output offsets by computing the prefix sum.

— Step #3: Scan R again and partition them according to the

hash key.
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RADIX

The radix of a key is the value of an integer at a
position (using its base).
— Efficient to compute with bitshifting + multiplication.

Keys{19]12(23]08]|11(04
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RADIX

The radix of a key is the value of an integer at a
position (using its base).
— Efficient to compute with bitshifting + multiplication.

Keys|1]9]| 1[2[[ 2]3] 0I8]| 1]1]| 0[4

Radix| 9 | 2 [ 3|8 | 1] 4
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RADIX

The radix of a key is the value of an integer at a
position (using its base).
— Efficient to compute with bitshifting + multiplication.

Keys[1[9 |[1]2 [|213 ||o|8 |[1[1 [|0|4

Radix| 1 |1 | 2|0 ]|1]0
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RADIX

The radix of a key is the value of an integer at a
position (using its base).
— Efficient to compute with bitshifting + multiplication.

Compute radix for each key and populate histogram
of counts per radix.

Radix

1

2
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PREFIX SUM

The prefix sum of a sequence of numbers
is a second sequence of numbers

(Yor Y1, s )
that is a running total of the input sequence.

—
N
w
D
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Input

Prefix Sum | 1
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PREFIX SUM

The prefix sum of a sequence of numbers
is a second sequence of numbers

(Yor Y1, s )
that is a running total of the input sequence.
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+
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PREFIX SUM

The prefix sum of a sequence of numbers
is a second sequence of numbers

(Yor Y1, s )
that is a running total of the input sequence.
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PREFIX SUM

The prefix sum of a sequence of numbers
is a second sequence of numbers

(Yor Y1, s )
that is a running total of the input sequence.

Input| 1 [ 2 [3]4]|5]6
7 ¥ 7 1
s Yk 2
PrefixSum| 1 | 3 | 6 [10]15] 21

$2CMU-DB

15-721 (Spring 2023 )


https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

$CMU-DB

15-721 (Spring 2023)

Scan Primitives for Vector Computers*

PREFIX S

Siddhartha Chatterjee Guy E. Blelloch Marco Zagha

School of Computer Science
Camegie Mellon University
Pittsburgh, PA 15213-3890
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Abstract

used to implement the scans is based on an algorithm for par-
allel and is appli with minor modificati to
any register-based vector computer. On the CRAY Y-MP, the
Asymptotic running time of the Plus-scan is about 2.25 times that
©of a vector add, and is within 20% of optimal, An important
aspect of our impl; ion is that a set of versions
of these scans are only marginally more expensive than the un-
segmented versions. These segmented versions can be used to
execute a scan on multiple data sets without having t0 pay the
vector startup cost (1) ;) for each set,

The paper describes aradix sorting routine based on the scans
that is 13 times faster than a Fortran version and within 20% of
a highly optimized library sort routine, three operations on trees
that are between 10 and 20 times faster than the i

[ : /. (clksfelty
Routine Scan version | Scalar version

Plus scan (int) 25 75()
segmented plus scan (in) 37 748 (s)
parallel radix sort (64 bits) 8968 | 117300(s)
branch_sums 122 206.5 (1)
Toot_sums 9.8 208.6 (f)
delete vertices 192 2762 (f)

Table 1: Incremental Processing times per element forprimitives
and applications discussed in this Paper, for both scan and scalar
versions.  All numbers are for 5 single processor of a CRAY
Y-MP. 1 clock tick = 6 ns. Items marked with (+) were written
in Fortran and those marked with (1) were written in C,

create and manipulate more irregular and dynamically varying
data structures such s trees and graphs.

c
3
versions, and a connectionist learning algorithm that is 10 times
faster than the corresponding C version for Sparse and itregular
networks.

1 Introduction

Vector Supercomputers have been used to supply the high com-
Pputing power needed for many applications, However, the per-
formance obtained from these machines critically depends on
the ability to produce code that vectorizes well. Two distinet
approaches have been taken to meet this goal—vectorization of
“dusty decks” [18], and language support for vector intrinsics,
as seen in the proposed Fortran 8x standard [1]. In both cases,
the focus of the work has been in speeding up “scientific” com.

Ppredominantly regular access patterns within these data struc-
tures. These alternatives are not very effective for problems that

a3 supported by the Defense Advanced Rescarch Projocts
Agency (DOD) and monitored by the Avionics Laboratory, Air Force Wright
Acronautical Laborstories, Aeronautical Systems Division (AFSC), Wrigh-
Fatcrson AFB, Ohio 45433-6543 under Contract F33615-87-C-1499, ARPA
Order No. 4976, Amendment 20,

The views and conclusions contained in this document are those of the
author and should not be interproted as Tepresenting the official policies,
cither expressed or implied, of DARPA or the ()5, govemment,

CHESIS-S/QOIOOOOIOGSGMLOO © IEEE

El 3 scan (prefi tobe
extremely powerful primitives in designing parallel algorithms
for manipulating such irregular and dynamically changing data
siructures [3]. This paper shows how the sean operations can

Primitives on the CRAY Y-MP!, and gives performance numbers
for several applicati imil Table 1). The
approach in the design of these algorithms is similar to that of
the Basic Linear Algebra Subprogrlms(BLAS) developed in the
context of linear algebra computations [14] in that the algorithms
are based on a set of Pprimitives whose implementations are op-
timized rather than having a compiler try to Vvectorize existing
code.

‘The remainder of this Paper is organized as follows. Section 2
introduces the scan primitives and reviews previous work on

other primitives used in this paper, and three applications using
these primitives, Finally, future work and conclusions are given
in Section 5.2

!CRAY Y-MP and CFT77 are trademarks of Cray Research, Inc.
Al Fortran code discussd in this paper wae compiled with CFT77 er.
$om 3.1. AllC code was compited with Cray PCC Vi XMP/YMP 418,
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RADIX PARTITIONS

Step #1: Inspect input,
create histograms
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RADIX PARTITIONS

Step #1: Inspect input,
ﬁreate histograms

hash,(key)
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RADIX PARTITIONS

Step #1: Inspect input,

ﬁreate histograms
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RADIX PARTITIONS

Step #2: Compute output

of fsets
> <+— Partition 0, CPU 0
> <+—— Partition 0, CPU 1
T U L
Partition 0: 2+ <— Partition1 ,CPU 0

Partition 1: 2

<«— Partition1, CPU 1

Partition 0: 1"
Partition 1: 3
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RADIX PARTITIONS

Step #2: Compute output

of fsets

<+— Partition 0, CPU 0

<«— Partition 0, CPU 1

Parti.ti.on 0:2 .. N <«— Partition1 , CPU 0
Partition 1: 2"

L <—— Partition 1, CPU 1
Partition 0:1
Partition 1: 3"
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RADIX

Partition 0: 2
Partition 1: 2

1
Partition 0: 1
Partition 1: 3

PARTITIONS

Step #3: Read input
and partition

<+— Partition 0, CPU 0

<«— Partition 0, CPU 1

<«— Partition1 , CPU 0

<«— Partition1, CPU 1
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RADIX

Partition 0: 2
Partition 1: 2

hash,(key)
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PARTITIONS

07

03

Step #3: Read input
and partition

<+— Partition 0, CPU 0

<«— Partition 0, CPU 1

<«— Partition1 , CPU 0

<«— Partition1, CPU 1
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RADIX

Partition 0: 2
Partition 1: 2

1
Partition 0: 1
Partition 1: 3
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PARTITIONS

Step #3: Read input
and partition

<+— Partition 0, CPU 0

<«— Partition 0, CPU 1

<«— Partition1 , CPU 0

<«— Partition1, CPU 1
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RADIX PARTITIONS

Recursively repeat until target number of
partitions have been created

Partition 0: 2
Partition 1: 2

1
Partition 0: 1
Partition 1: 3

<— Partition 0

S |
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<«—— Partition 1
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RADIX PARTITIONS

Recursively repeat until target number of
partitions have

Partition 0: 2
Partition 1: 2

Partmon 0:1
Partition 1: 3

created
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OPTIMIZATIONS

Software Write Combine Buffers:

— Each worker maintains local output buffer to stage writes.

— When buffer full, write changes to global partition.

— Similar to private partitions but without a separate write
phase at the end.

Non-temporal Streaming Writes

— Workers write data to global partition memory using
streaming instructions to bypass CPU caches.

| ON THE SURPRISING DIFFICULTY OF SIMPLE
- \'I/'II_-IDIISICZB&:STHE CASE OF RADIX PARTITIONING
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BUILD PHASE

The threads are then to scan either the tuples (or
partitions) of R.

For each tuple, hash the join key attribute for that

tuple and add it to the appropriate bucket in the
hash table.

— The buckets should only be a few cache lines in size.
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HASH TABLES

Design Decision #1: Hash Function

— How to map a large key space into a smaller domain.
— Trade-off between being fast vs. collision rate.

Design Decision #2: Hashing Scheme

— How to handle key collisions after hashing.

— Trade-off between allocating a large hash table vs.
additional instructions to find/insert keys.
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HASH FUNCTIONS

We do not want to use a cryptographic hash
function for our join algorithm.

We want something that is fast and will have a low

collision rate.

— Best Speed: Always return '1'
— Best Collision Rate: Perfect hashing

See SMHasher for a comprehensive hash function
benchmark suite.
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See SMHasher
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¥ master ~ smhasher / README.md
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= 444 lines (395 sloc) 37.4 KB

SMhasher
wmw

Hash function
donothing32
donothing64
donothing128
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BadHash

sumhash
sumhash32
multiply_shift

pair_muiltiply_shift

1% Pull requests
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15330019.19
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5418.36
3716.95

@ Actions

cycl./hash
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cycl./map
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Go 1o file
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bad seed 0, test NOP
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test NOP
bad seed 0, test FAJL
bad seed 0, test FAJL
UB, test FAIL
bad seeds & OxFffffO, fails most tests

fails most tests
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HASH FUNCTIONS

CRC-64 (1975)

— Used in networking for error detection.

MurmurHash (2008)

— Designed to a fast, general purpose hash function.

Google CityHash (2011)
— Designed to be faster for short keys (<64 bytes).

Facebook XXHash (2012)

— From the creator of zstd compression.

Google FarmHash (2014)

— Newer version of CityHash with better collision rates.
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HASH FUNCTION BENCHMARK

Intel Core i7-8700K @ 3.70GHz

—crc64 =—std::hash =——MurmurHash3 —CityHash —FarmHash —XXHash3

28000 -
~ 128
S 64
X 21000 - 192
= 32 ’
8 14000 - goov,
§.. / / A~ P oV
o0 \I\BRF SR M RN NVAR NRONODE
S 7000 - / ANgN -2
&~ [~
= f=
O | I I I I I I I I I I I I I I I I I I I I I I I [ [
1 51 101 151 201 251

Source: Fredrik Widlund

=£CMUDB Key Size (bytes)
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HASHING SCHEMES

Approach #1: Chained Hashing
Approach #2: Linear Probe Hashing
Approach #3: Robin Hood Hashing
Approach #4: Hopscotch Hashing
Approach #5: Cuckoo Hashing
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CHAINED HASHING

Maintain a linked list of buckets for each slot in the

hash table.

Resolve collisions by placing all elements with the

same hash key into the same bucket.

— To determine whether an element is present, hash to its
bucket and scan for it.

— Insertions and deletions are generalizations of lookups.

$2CMU-DB
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- Buckets
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CHAINED HASHING

hash(B) | B
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CHAINED HASHING

hash(key)

hash(B) | B

\

hash(A)| A

hash(C) | C
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CHAINED HASHING

hash(key)

hash(B) | B

hash(A)| A

hash(C) | C
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CHAINED HASHING

hash(D) | D
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CHAINED HASHING
AHyPer

hash(ke Yy ) hash(B) I B 64-bit Bucket Pointers

I 48-bit Pointer
Y 16-bit Bloom Filter

hash(A)| A hash(D)| D
...... >

hash(C) | C hash(E) | E

hash(F) | F
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LINEAR PROBE HASHING

Single giant table of slots.

Resolve collisions by linearly searching for the next

free slot in the table.

— To determine whether an element is present, hash to a
location in the table and scan for it.

— Must store the key in the table to know when to stop
scanning.

— Insertions and deletions are generalizations of lookups.
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LINEAR PROBE HASHING

hash(key)

hash(A)| A

mmcnj
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LINEAR PROBE HASHING

hash(key

hash(B)| B

g

hash(A)| A

T m OO =] >
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LINEAR PROBE HASHING

hash(key)

hash(B)| B

hash(A)| A

— 1
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LINEAR PROBE HASHING

hash(key)

hash(B)| B

hash(A)| A

— 1

hash(C)| C
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LINEAR PROBE HASHING

hash(key)

hash(B)| B

hash(A) | A

hash(C) | C

)

hash(D)
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LINEAR PROBE HASHING

hash(key)

hash(B)| B

hash(A)

)

hash(D)

OO =] >

A
hash(C)| C
D
E

hash(E)
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LINEAR PROBE HASHING

hash(key)

hash(B)| B

hash(A)

hash(C)

hash(D)
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hash(E)
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OBSERVATION

To reduce the number of wasteful comparisons
during the build/probe phases, it is important to
avoid collisions of hashed keys.

This requires a hash table with ~2% the number of
slots as the number of elements in R.
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ROBIN HOOD HASHING

Variant of linear probe hashing that steals slots

from "rich" keys and give them to "poor" keys.

— Each key tracks the number of positions they are from
where its optimal position in the table.

— On insert, a key takes the slot of another key if the first key

is farther away from its optimal position than the second
key.

ROBIN HOOD HASHING
FOUNDATIONS OF COMPUTER SCIENCE 1985
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ROBIN HOOD HASHING

hash(key)

hash(A) | A [O0] ‘ # of " Jumps" From First Position
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ROBIN HOOD HASHING

hash(key

hash(B)| B [0]

g

hash(A)| A [0]

T m OO =] >
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ROBIN HOOD HASHING

hash(key) hash(B)| B [O]

./ hash(A)| A [9] ) Alo] ==C[0]

hash(C)| C [1]
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ROBIN HOOD HASHING

hash(key)

hash(B)| B [0]

._/—> hash(C)

hash(A)|A [©’

@)
=

hash(D)|D [ 1]
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C[1] > D[o]
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ROBIN HOOD HASHING

hash(key) hash(B)| B [O]

hash(A)| A [@] §| Al0] == E[0]
/ hash(C)|C [ 1] 8C[1]==E[1]
hash(D)| D [ 1] 4] DI1] <El2]

@)
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ROBIN HOOD HASHING

hash(key) hash(B)| B [O]

hash(A)| A [@] §| Al0] == E[0]
/ hash(C)|C [ 1] 8C[1]==E[1]
hash(E) | E [ 2] |4 DI1] <El2]

@)

OO =] >
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ROBIN HOOD HASHING

hash(key) hash(B)| B [@]
A
g hash(A)| A [ O] IA[0]==E[0]
D/ hash(C)|C [ 1] IC[1]==E[1]
E hash(E) | E [ 2] & DI1] <El2]
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ROBIN HOOD HASHING

hash(key)

hash(B)| B [0]

hash(A)|A [©’

hash(C)|C [ 1]

hash(E)|E [ 2]
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HOPSCOTCH HASHING

Variant of linear probe hashing where keys can

move between positions in a neighborhood.

— A neighborhood is contiguous range of slots in the table.

— The size of a neighborhood is a configurable constant
(ideally a single cache-line).

— A key is guaranteed to be in its neighborhood or not exist
in the table.

The goal is to have the cost of accessing a
neighborhood to be the same as finding a key.

HOPSCOTCH HASHING
SYMPOSIUM ON DISTRIBUTED COMPUTING 2008
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HOPSCOTCH HASHING

Neighborhood Size = 3
Neighborhood #1 Neighborhood #6

Neighborhood #2

Neighborhood #3
Neighborhood #4

Neighborhood #6
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HOPSCOTCH HASHING

Neighborhood Size = 3

hash(key)

Neighborhood #3
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HOPSCOTCH HASHING

hash(key)
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hash(A)| A
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Neighborhood Size = 3
Neighborhood #1
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HOPSCOTCH HASHING

hash(key)
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| m OO =] >

hash(A)| A
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Neighborhood Size = 3

Neighborhood #3
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HOPSCOTCH HASHING

hash(key)

hash(B)| B
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hash(A)| A
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Neighborhood Size = 3

Neighborhood #3
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HOPSCOTCH HASHING

hash(key)

hash(B)| B
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hash(A)| A
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Neighborhood Size = 3
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HOPSCOTCH HASHING

hash(key)
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HOPSCOTCH HASHING

hash(key)

Neighborhood Size = 3

hash(B)| B

hash(A)| A

B haiOlC__
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HOPSCOTCH HASHING

Neighborhood Size = 3

hash(B)| B

hash(A) | A
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HOPSCOTCH HASHING

Neighborhood Size = 3
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HOPSCOTCH HASHING

hash(key)
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Neighborhood Size = 3
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hash(A)| A
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HOPSCOTCH HASHING

hash(key)

OO =] >

Neighborhood Size = 3
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hash(A)| A
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HOPSCOTCH HASHING

Neighborhood Size = 3

hash(B)| B

hash(A)| A
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HOPSCOTCH HASHING

hash(key)

hash(B)| B
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hash(A) | A
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HOPSCOTCH HASHING

hash(key)

hash(B)| B

| m OO =] >

hash(A)| A
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HOPSCOTCH HASHING

hash(key)

hash(B)| B

hash(A)| A
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hash(D)| D
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HOPSCOTCH HASHING

hash(key)

hash(B)| B

hash(A)
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HOPSCOTCH HASHING
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HOPSCOTCH HASHING
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HOPSCOTCH HASHING
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HOPSCOTCH HASHING
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CUCKOO HASHING

Use multiple tables with different hash functions.

— On insert, check every table and pick anyone that has a free
slot.

— If no table has a free slot, evict the element from one of
them and then re-hash it find a new location.

Look-ups are always O(1) because only one location
per hash table is checked.

$2CMU-DB
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CUCKOO HASHING

Hash Table #1 Hash Table #2
Insert X

hash(X)  hash,(X)
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CUCKOO HASHING

Hash Table #1 Hash Table #2
Insert X

hash(X)  hash,(X)

hash (X)| X
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CUCKOO HASHING

Hash Table #1 Hash Table #2

Insert X
] hash(X)  hash,(X)
hash(X)| X

InsertY
hash(Y) hash,(Y)
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CUCKOO HASHING

Hash Table #1 Hash Table #2
Insert X

hash(X)  hash,(X) hash,(Y)| Y

hash (X)| X

InsertY
hash(Y) hash,(Y)
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CUCKOO HASHING

Hash Table #1 Hash Table #2
Insert X

| ek hash(X)

hash(X)| X
InsertY
hash(Y) hash,(Y)

Insert Z
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CUCKOO HASHING

Hash Table #1 Hash Table #2
Insert X

hash(X)  hash,(X)

InsertY
hash(Y) hash,(Y)
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PROBE PHASE

For each tuple in S, hash its join key and check to
see whether there is a match for each tuple in
corresponding bucket in the hash table constructed
for R.

— [f inputs were partitioned, then assign each thread a unique
partition.
— Otherwise, synchronize their access to the cursor on S.
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PROBE PHASE - BLOOM FILTER

Create a Bloom Filter during the build phase when

the key is likely to not exist in the hash table.

— Threads check the filter before probing the hash table. This
will be faster since the filter will fit in CPU caches.

— Sometimes called sideways information passing.

“"  MICRO ADAPTIVITY IN VECTORWISE
~ |SIGMOD 2013
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the key is likely to not exist in the hash table.

— Threads check the filter before probing the hash table. This
will be faster since the filter will fit in CPU caches.

— Sometimes called sideways information passing.
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HASH JOIN VARIANTS

No-P Shared-P  Private-P Radix

Partitioning No Yes Yes Yes
Input scans 0 1 1 2
Sync during ~ Spinlock Barrier, Barrier,

partitioning per tuple once atend 4 - #passes

Hash table = Shared Private Private Private

Syn.c during Yes No No No
build phase

Sync during No No No No

probe phase
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BENCHMARKS

Implemented multiple variants of hash join
algorithms based on previous literature and
compare unoptimized vs. optimized versions.

Core approaches:

— No Partitioning Hash Join

— Concise Hash Table Join

— 2-pass Radix Hash Join (Chained vs. Linear)

Special Case: Arrays for monotonic primary keys.

- | AN EXPERIMENTAL COMPARISON OF THIRTEEN
RELATIONAL EQUI-JOINS IN MAIN MEMORY
SIGMOD 2016
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JOIN COMPARISON (Rp<iS)

4% Intel Xeon CPU E7-4870v2 (Only 32 cores)
[R[=128M, [S|=1280 M o
Optimized

I \

1600 1449 1454 1449
1 Better Performance

806
800
556
518 456
400 -
O I T T T 1

Sort-Merge Concise Radix-Part No-Part No-Part Radix-Part Radix-Part Radix-Part
Source: Stefan Schuh Hash (Chained) (Linear) (Array) (Chained) (Linear) (Array)
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TPC-H Q13

4x Intel Xeon CPU E7-487 0v4
Scale Factor 100

B Join Operator M Remaining Query

301 285
- 250 279

. 7

No-Part No-Part Radix Radix
(Linear) (Array) (Linear) (Array)

Runtime (ms)
S
(@)

Source: Stefan Schuh
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PARTING THOUGHTS

Partitioned-based joins outperform no-partitioning
algorithms in most settings, but it is non-trivial to
tune it correctly.

AFAIK, every DBMS vendor picks one hash join
implementation and does not try to be adaptive.
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NEXT CLASS

Parallel Sort-Merge Joins
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