
ADVANCED DATABASE SYSTEMS

Andy Pavlo // 15-721 // Spring 2023

Parallel Hash
Join Algorithms

L
e

c
tu

re
 #

1
1

https://15721.courses.cs.cmu.edu/spring2023
http://db.cs.cmu.edu/

15-721 (Spring 2023)

ADMINISTRIVIA

Project #2:
→ Feedback Submission: Saturday April 1st

→ Final Submission: Monday May 1st

→ Sign up for a system if you haven't yet!

Project #3
→ Proposal Presentation: Wednesday March 1st

→ Status Update Presentation: Monday April 3rd

→ Final Presentations: TBA

2

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

TODAY’S AGENDA

Background

Parallel Hash Join

Hash Functions

Hashing Schemes

Evaluation

3

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

PARALLEL JOIN ALGORITHMS

Perform a join between two relations on multiple
threads simultaneously to speed up operation.
→ We will discuss multi-way joins in Lecture #13.

Two main approaches:
→ Hash Join
→ Sort-Merge Join

We won't discuss nested-loop joins because an
OLAP DBMS almost never wants to use this…

4

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://15721.courses.cs.cmu.edu/spring2023/schedule.html#mar-15-2023

15-721 (Spring 2023)

OBSERVATION

Many OLTP DBMSs do not implement hash join.

But an index nested-loop join is conceptually
equivalent to a hash join.
→ Index NL joins typically means using an existing B+Tree.
→ Hash join will build a hash table (index) on the fly and then

discard immediately after the operation is complete.

5

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

HASHING VS. SORTING JOINS

1970s – Sorting

1980s – Hashing

1990s – Equivalent

2000s – Hashing

2010s – Hashing (Partitioned vs. Non-Partitioned)

2020s – Non-Partitioned Hashing

6

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

PARALLEL JOIN ALGORITHMS

→ Hashing is faster than Sort-Merge.
→ Sort-Merge is faster w/ wider SIMD.

SORT VS. HASH REVISITED: FAST
JOIN IMPLEMENTATION ON
MODERN MULTI-CORE CPUS
VLDB 2009

→ Sort-Merge is already faster than
Hashing, even without SIMD.

MASSIVELY PARALLEL SORT-MERGE
JOINS IN MAIN MEMORY MULTI-
CORE DATABASE SYSTEMS
VLDB 2012

→ New optimizations and results for Radix
Hash Join.

MAIN-MEMORY HASH JOINS ON
MULTI-CORE CPUS: TUNING TO THE
UNDERLYING HARDWARE
ICDE 2013

→ Trade-offs between partitioning & non-
partitioning Hash-Join.

DESIGN AND EVALUATION OF MAIN
MEMORY HASH JOIN ALGORITHMS
FOR MULTI-CORE CPUS
SIGMOD 2011

→ Ignore what we said last year.
→ You really want to use Hashing!

MASSIVELY PARALLEL NUMA-AWARE
HASH JOINS
IMDM 2013

→ Hold up everyone! Let's look at
everything more carefully!

AN EXPERIMENTAL COMPARISON OF
THIRTEEN RELATIONAL EQUI-JOINS
IN MAIN MEMORY
SIGMOD 2016

→ Benefits of Radix Hash Join aren't worth
engineering costs.

TO PARTITION, OR NOT TO
PARTITION, THAT IS THE JOIN
QUESTION IN A REAL SYSTEM
SIGMOD 2021

7

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://www.vldb.org/pvldb/2/vldb09-257.pdf
http://www.vldb.org/pvldb/2/vldb09-257.pdf
https://dl.acm.org/doi/10.14778/2336664.2336678
https://dl.acm.org/doi/10.14778/2336664.2336678
https://dl.acm.org/doi/10.1109/ICDE.2013.6544839
https://dl.acm.org/doi/10.1109/ICDE.2013.6544839
https://dl.acm.org/doi/10.1145/1989323.1989328
https://dl.acm.org/doi/10.1145/1989323.1989328
http://imdm.ws/2013/papers/Lang.pdf
http://imdm.ws/2013/papers/Lang.pdf
https://dl.acm.org/doi/10.1145/2882903.2882917
https://dl.acm.org/doi/10.1145/2882903.2882917
https://dl.acm.org/doi/10.1145/3448016.3452831
https://dl.acm.org/doi/10.1145/3448016.3452831

15-721 (Spring 2023)

JOIN ALGORITHM DESIGN GOALS

These goals matter whether the DBMS is using a
hardware-conscious vs. hardware-oblivious
algorithm for joins.

Goal #1: Minimize Synchronization
→ Avoid taking latches during execution.

Goal #2: Minimize Memory Access Cost
→ Ensure that data is always local to worker thread.
→ Reuse data while it exists in CPU cache.

8

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

IMPROVING CACHE BEHAVIOR

Factors that affect cache misses in a DBMS:
→ Cache + TLB capacity.
→ Locality (temporal and spatial).

Non-Random Access (Scan):
→ Clustering data to a cache line.
→ Execute more operations per cache line.

Random Access (Lookups):
→ Partition data to fit in cache + TLB.

9

Source: Johannes Gehrke

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://www.cs.cornell.edu/courses/cs632/2001sp/slides/Main-memory%20database%20systems.ppt

15-721 (Spring 2023)

PARALLEL HASH JOINS

Hash join is one of the most important operators in
a DBMS for OLAP workloads.
→ But it is still not the dominant cost.

It is important that we speed up our DBMS's join
algorithm by taking advantage of multiple cores.
→ We want to keep all cores busy, without becoming

memory bound.

10

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

HASH JOIN (R⨝S)

Phase #1: Partition (optional)
→ Divide the tuples of R and S into disjoint subsets using a

hash function on the join key.

Phase #2: Build
→ Scan relation R and create a hash table on join key.

Phase #3: Probe
→ For each tuple in S, look up its join key in hash table for R.

If a match is found, output combined tuple.

11

AN EXPERIMENTAL COMPARISON OF THIRTEEN
RELATIONAL EQUI-JOINS IN MAIN MEMORY
SIGMOD 2016

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/doi/10.1145/2882903.2882917
https://dl.acm.org/doi/10.1145/2882903.2882917

15-721 (Spring 2023)

PARTITIONING PHASE

Approach #1: Implicit Partitioning
→ The data was partitioned on the join key when it was

loaded into the database.
→ No extra pass over the data is needed.

Approach #2: Explicit Partitioning
→ Divide only the outer relation and redistribute among the

different CPU cores.
→ Can use the same radix partitioning approach we talked

about last time.

12

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

PARTITION PHASE

Split the input relations into partitioned buffers by
hashing the tuples’ join key(s).
→ Ideally the cost of partitioning is less than the cost of cache

misses during build phase.
→ Sometimes called Grace Hash Join / Radix Hash Join.

Contents of buffers depends on storage model:
→ NSM: Usually the entire tuple.
→ DSM: Only the columns needed for the join + offset.

13

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

PARTITION PHASE

Approach #1: Non-Blocking Partitioning
→ Only scan the input relation once.
→ Produce output incrementally and let other threads build

hash table at the same time.

Approach #2: Blocking Partitioning (Radix)
→ Scan the input relation multiple times.
→ Only materialize results all at once.
→ Sometimes called radix hash join.

14

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

NON-BLOCKING PARTITIONING

Scan the input relation only once and generate the
output on-the-fly.

Approach #1: Shared Partitions
→ Single global set of partitions that all threads update.
→ Must use a latch to synchronize threads.

Approach #2: Private Partitions
→ Each thread has its own set of partitions.
→ Must consolidate them after all threads finish.

15

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

SHARED PARTITIONS

16

Data Table

A B C
hashP(key)

#p

#p

#p

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

Global Partitions

SHARED PARTITIONS

16

Data Table

A B C
hashP(key)

P1

⋮

P2

Pn

#p

#p

#p

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

Global Partitions

SHARED PARTITIONS

16

Data Table

A B C
hashP(key)

P1

⋮

P2

Pn

#p

#p

#p

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

Global Partitions

SHARED PARTITIONS

16

Data Table

A B C
hashP(key)

P1

⋮

P2

Pn

#p

#p

#p

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

Local Partitions

PRIVATE PARTITIONS

17

Data Table

A B C
hashP(key)

#p

#p

#p

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

Local Partitions

PRIVATE PARTITIONS

17

Data Table

A B C
hashP(key)

#p

#p

#p

Global Partitions

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

Local Partitions

PRIVATE PARTITIONS

17

Data Table

A B C
hashP(key)

#p

#p

#p

Global Partitions

P1

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

Local Partitions

PRIVATE PARTITIONS

17

Data Table

A B C
hashP(key)

#p

#p

#p

Global Partitions

P1

P2

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

Local Partitions

PRIVATE PARTITIONS

17

Data Table

A B C
hashP(key)

#p

#p

#p

Global Partitions

P1

⋮

P2

Pn

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

RADIX PARTITIONING

Scan the input relation multiple times to generate
the partitions.

Two-pass algorithm:
→ Step #1: Scan R and compute a histogram of the # of tuples

per hash key for the radix at some offset.
→ Step #2: Use this histogram to determine per-thread

output offsets by computing the prefix sum.
→ Step #3: Scan R again and partition them according to the

hash key.

25

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

RADIX

The radix of a key is the value of an integer at a
position (using its base).
→ Efficient to compute with bitshifting + multiplication.

26

19 12 23 08 11 04Keys

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

RADIX

The radix of a key is the value of an integer at a
position (using its base).
→ Efficient to compute with bitshifting + multiplication.

26

19 12 23 08 11 04

9 2 3 8 1 4

Keys

Radix

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

RADIX

The radix of a key is the value of an integer at a
position (using its base).
→ Efficient to compute with bitshifting + multiplication.

26

19 12 23 08 11 04Keys

Radix 1 1 2 0 1 0

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

RADIX

The radix of a key is the value of an integer at a
position (using its base).
→ Efficient to compute with bitshifting + multiplication.

Compute radix for each key and populate histogram
of counts per radix.

26

19 12 23 08 11 04Keys

Radix 1 1 2 0 1 0

Histogram
(Key →Count) 0→2 1→3 2→1

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

PREFIX SUM

The prefix sum of a sequence of numbers
(x0, x1, …, xn)

is a second sequence of numbers
(y0, y1, …, yn)

that is a running total of the input sequence.

30

1 2 3 4 5 6

1

Input

Prefix Sum

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

PREFIX SUM

The prefix sum of a sequence of numbers
(x0, x1, …, xn)

is a second sequence of numbers
(y0, y1, …, yn)

that is a running total of the input sequence.

30

+

1 2 3 4 5 6

1

Input

Prefix Sum

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

PREFIX SUM

The prefix sum of a sequence of numbers
(x0, x1, …, xn)

is a second sequence of numbers
(y0, y1, …, yn)

that is a running total of the input sequence.

30

+

1 2 3 4 5 6

1 3

Input

Prefix Sum

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

PREFIX SUM

The prefix sum of a sequence of numbers
(x0, x1, …, xn)

is a second sequence of numbers
(y0, y1, …, yn)

that is a running total of the input sequence.

30

+ + + + +

1 2 3 4 5 6

1 3 6 10 15 21

Input

Prefix Sum

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

PREFIX SUM

The prefix sum of a sequence of numbers
(x0, x1, …, xn)

is a second sequence of numbers
(y0, y1, …, yn)

that is a running total of the input sequence.

30

+ + + + +

1 2 3 4 5 6

1 3 6 10 15 21

Input

Prefix Sum

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/doi/10.5555/110382.110597

15-721 (Spring 2023)

RADIX PARTITIONS

35

Step #1: Inspect input,
create histograms

0 7

1 8

1 9

0 7

0 3

1 1

1 5

1 0

0

1

#p

#p

#p

#p

#p

#p

#p

#p

ha
sh

P
(k

ey
)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

RADIX PARTITIONS

35

Step #1: Inspect input,
create histograms

0 7

1 8

1 9

0 7

0 3

1 1

1 5

1 0

0

1

#p

#p

#p

#p

#p

#p

#p

#p

ha
sh

P
(k

ey
)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

RADIX PARTITIONS

35

Step #1: Inspect input,
create histograms

Partition 0: 2
Partition 1: 2

Partition 0: 1
Partition 1: 3

0 7

1 8

1 9

0 7

0 3

1 1

1 5

1 0

0

1

#p

#p

#p

#p

#p

#p

#p

#p

ha
sh

P
(k

ey
)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

RADIX PARTITIONS

35

Partition 0: 2
Partition 1: 2

Partition 0: 1
Partition 1: 3

Partition 0

Partition 0, CPU 1

Partition 1

Partition 1, CPU 1

Step #2: Compute output
offsets

, CPU 0

, CPU 0

0 7

1 8

1 9

0 7

0 3

1 1

1 5

1 0

0

1

#p

#p

#p

#p

#p

#p

#p

#p

ha
sh

P
(k

ey
)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

RADIX PARTITIONS

35

Partition 0: 2
Partition 1: 2

Partition 0: 1
Partition 1: 3

Partition 0

Partition 0, CPU 1

Partition 1

Partition 1, CPU 1

Step #2: Compute output
offsets

, CPU 0

, CPU 0

0 7

1 8

1 9

0 7

0 3

1 1

1 5

1 0

0

1

#p

#p

#p

#p

#p

#p

#p

#p

ha
sh

P
(k

ey
)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

RADIX PARTITIONS

35

Partition 0: 2
Partition 1: 2

Partition 0: 1
Partition 1: 3

Partition 0

Partition 0, CPU 1

Partition 1

Partition 1, CPU 1

Step #3: Read input
and partition

, CPU 0

, CPU 0

0 7

1 8

1 9

0 7

0 3

1 1

1 5

1 0

0

1

#p

#p

#p

#p

#p

#p

#p

#p

ha
sh

P
(k

ey
)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

RADIX PARTITIONS

35

Partition 0: 2
Partition 1: 2

Partition 0: 1
Partition 1: 3

Partition 0

Partition 0, CPU 1

Partition 1

Partition 1, CPU 1

Step #3: Read input
and partition

0 7

0 3

, CPU 0

, CPU 0

0 7

1 8

1 9

0 7

0 3

1 1

1 5

1 0

0

1

#p

#p

#p

#p

#p

#p

#p

#p

ha
sh

P
(k

ey
)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

RADIX PARTITIONS

35

Partition 0: 2
Partition 1: 2

Partition 0: 1
Partition 1: 3

Partition 0

Partition 0, CPU 1

Partition 1

Partition 1, CPU 1

Step #3: Read input
and partition

0 7

0 7

0 3

1 8

1 9

1 1

1 5

1 0

, CPU 0

, CPU 0

0 7

1 8

1 9

0 7

0 3

1 1

1 5

1 0

0

1

#p

#p

#p

#p

#p

#p

#p

#p

ha
sh

P
(k

ey
)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

RADIX PARTITIONS

35

Partition 0: 2
Partition 1: 2

Partition 0: 1
Partition 1: 3

Partition 0

Partition 1

0 7

0 7

0 3

1 8

1 9

1 1

1 5

1 0

Recursively repeat until target number of
partitions have been created

0 7

1 8

1 9

0 7

0 3

1 1

1 5

1 0

0

1

#p

#p

#p

#p

#p

#p

#p

#p

ha
sh

P
(k

ey
)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

RADIX PARTITIONS

35

Partition 0: 2
Partition 1: 2

Partition 0: 1
Partition 1: 3

0 7

0 7

0 3

1 8

1 9

1 1

1 5

1 0

Recursively repeat until target number of
partitions have been created

0 7

1 8

1 9

0 7

0 3

1 1

1 5

1 0

0

1

0

1

#p

#p

#p

#p

#p

#p

#p

#p

ha
sh

P
(k

ey
)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

OPTIMIZATIONS

Software Write Combine Buffers:
→ Each worker maintains local output buffer to stage writes.
→ When buffer full, write changes to global partition.
→ Similar to private partitions but without a separate write

phase at the end.

Non-temporal Streaming Writes
→ Workers write data to global partition memory using

streaming instructions to bypass CPU caches.

45

ON THE SURPRISING DIFFICULTY OF SIMPLE
THINGS: THE CASE OF RADIX PARTITIONING
VLDB 2015

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/doi/10.14778/2777598.2777602
https://dl.acm.org/doi/10.14778/2777598.2777602

15-721 (Spring 2023)

BUILD PHASE

The threads are then to scan either the tuples (or
partitions) of R.

For each tuple, hash the join key attribute for that
tuple and add it to the appropriate bucket in the
hash table.
→ The buckets should only be a few cache lines in size.

46

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

HASH TABLES

Design Decision #1: Hash Function
→ How to map a large key space into a smaller domain.
→ Trade-off between being fast vs. collision rate.

Design Decision #2: Hashing Scheme
→ How to handle key collisions after hashing.
→ Trade-off between allocating a large hash table vs.

additional instructions to find/insert keys.

47

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

HASH FUNCTIONS

We do not want to use a cryptographic hash
function for our join algorithm.

We want something that is fast and will have a low
collision rate.
→ Best Speed: Always return '1'
→ Best Collision Rate: Perfect hashing

See SMHasher for a comprehensive hash function
benchmark suite.

48

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://github.com/aappleby/smhasher

15-721 (Spring 2023)

HASH FUNCTIONS

We do not want to use a cryptographic hash
function for our join algorithm.

We want something that is fast and will have a low
collision rate.
→ Best Speed: Always return '1'
→ Best Collision Rate: Perfect hashing

See SMHasher for a comprehensive hash function
benchmark suite.

48

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://github.com/aappleby/smhasher
https://github.com/rurban/smhasher

15-721 (Spring 2023)

HASH FUNCTIONS

CRC-64 (1975)
→ Used in networking for error detection.

MurmurHash (2008)
→ Designed to a fast, general purpose hash function.

Google CityHash (2011)
→ Designed to be faster for short keys (<64 bytes).

Facebook XXHash (2012)
→ From the creator of zstd compression.

Google FarmHash (2014)
→ Newer version of CityHash with better collision rates.

50

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://create.stephan-brumme.com/crc32/
https://github.com/aappleby/smhasher
https://github.com/google/cityhash
http://cyan4973.github.io/xxHash/
https://github.com/google/farmhash

15-721 (Spring 2023)

HASH FUNCTION BENCHMARK

51

0

7000

14000

21000

28000

1 51 101 151 201 251

T
hr

ou
gh

pu
t (

M
B

/s
ec

)

Key Size (bytes)

crc64 std::hash MurmurHash3 CityHash FarmHash XXHash3

Source: Fredrik Widlund

Intel Core i7-8700K @ 3.70GHz

32

64
128

192

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://github.com/apavlo/hash-function-benchmark

15-721 (Spring 2023)

HASHING SCHEMES

Approach #1: Chained Hashing

Approach #2: Linear Probe Hashing

Approach #3: Robin Hood Hashing

Approach #4: Hopscotch Hashing

Approach #5: Cuckoo Hashing

52

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

CHAINED HASHING

Maintain a linked list of buckets for each slot in the
hash table.

Resolve collisions by placing all elements with the
same hash key into the same bucket.
→ To determine whether an element is present, hash to its

bucket and scan for it.
→ Insertions and deletions are generalizations of lookups.

53

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

CHAINED HASHING

54

A
B
C
D

hash(key)

E
F

Buckets
Bucket

Pointers

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

CHAINED HASHING

54

A
B
C
D

hash(key)

E
F

| Ahash(A)
Buckets

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

CHAINED HASHING

54

A
B
C
D

hash(key)

E
F

| Ahash(A)

| Bhash(B)

Buckets

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

CHAINED HASHING

54

A
B
C
D

hash(key)

E
F

| Ahash(A)

| Bhash(B)

Buckets
| Chash(C)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

CHAINED HASHING

54

A
B
C
D

hash(key)

E
F

| Ahash(A)

| Bhash(B)

Buckets
| Chash(C)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

CHAINED HASHING

54

A
B
C
D

hash(key)

E
F

| Ahash(A)

| Bhash(B)

| Chash(C)

| Dhash(D)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

CHAINED HASHING

54

A
B
C
D

hash(key)

E
F

| Ahash(A)

| Bhash(B)

| Chash(C)

| Dhash(D)

| Ehash(E)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

CHAINED HASHING

54

A
B
C
D

hash(key)

E
F

| Ahash(A)

| Bhash(B)

| Chash(C)

| Dhash(D)

| Ehash(E)

| Fhash(F)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

CHAINED HASHING

54

A
B
C
D

hash(key)

E
F

| Ahash(A)

| Bhash(B)

| Chash(C)

| Dhash(D)

| Ehash(E)

| Fhash(F)

64-bit Bucket Pointers

16-bit Bloom Filter

48-bit Pointer¤

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

LINEAR PROBE HASHING

Single giant table of slots.

Resolve collisions by linearly searching for the next
free slot in the table.
→ To determine whether an element is present, hash to a

location in the table and scan for it.
→ Must store the key in the table to know when to stop

scanning.
→ Insertions and deletions are generalizations of lookups.

63

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

LINEAR PROBE HASHING

64

A
B
C
D

hash(key)

E
F

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

LINEAR PROBE HASHING

64

A
B
C
D

hash(key)

| Ahash(A)

E
F

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

LINEAR PROBE HASHING

64

A
B
C
D

hash(key)

| Ahash(A)

| Bhash(B)

E
F

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

LINEAR PROBE HASHING

64

A
B
C
D

hash(key)

| Ahash(A)

| Bhash(B)

E
F

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

LINEAR PROBE HASHING

64

A
B
C
D

hash(key)

| Ahash(A)

| Bhash(B)

| Chash(C)

E
F

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

LINEAR PROBE HASHING

64

A
B
C
D

hash(key)

| Ahash(A)

| Bhash(B)

| Chash(C)

| Dhash(D)E
F

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

LINEAR PROBE HASHING

64

A
B
C
D

hash(key)

| Ahash(A)

| Bhash(B)

| Chash(C)

| Dhash(D)E
F

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

LINEAR PROBE HASHING

64

A
B
C
D

hash(key)

| Ahash(A)

| Bhash(B)

| Chash(C)

| Dhash(D)E

| Ehash(E)F

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

LINEAR PROBE HASHING

64

A
B
C
D

hash(key)

| Ahash(A)

| Bhash(B)

| Chash(C)

| Dhash(D)E

| Ehash(E)F

| Fhash(F)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

OBSERVATION

To reduce the number of wasteful comparisons
during the build/probe phases, it is important to
avoid collisions of hashed keys.

This requires a hash table with ~2× the number of
slots as the number of elements in R.

73

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

ROBIN HOOD HASHING

Variant of linear probe hashing that steals slots
from "rich" keys and give them to "poor" keys.
→ Each key tracks the number of positions they are from

where its optimal position in the table.
→ On insert, a key takes the slot of another key if the first key

is farther away from its optimal position than the second
key.

74

ROBIN HOOD HASHING
FOUNDATIONS OF COMPUTER SCIENCE 1985

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://ieeexplore.ieee.org/document/4568152/
http://ieeexplore.ieee.org/document/4568152/

15-721 (Spring 2023)

ROBIN HOOD HASHING

75

A
B
C
D

hash(key)

| A [0]hash(A)

E

of "Jumps" From First Position

F

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

ROBIN HOOD HASHING

75

A
B
C
D

hash(key)

| A [0]hash(A)

| B [0]hash(B)

E
F

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

ROBIN HOOD HASHING

75

A
B
C
D

hash(key)

| A [0]hash(A)

| B [0]hash(B)

| C [1]hash(C)

E
F

A[0] == C[0]

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

ROBIN HOOD HASHING

75

A
B
C
D

hash(key)

| A [0]hash(A)

| B [0]hash(B)

| C [1]hash(C)

| D [1]hash(D)E
F

C[1] > D[0]

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

ROBIN HOOD HASHING

75

A
B
C
D

hash(key)

| A [0]hash(A)

| B [0]hash(B)

| C [1]hash(C)

| D [1]hash(D)E

A[0] == E[0]

C[1] == E[1]

D[1] < E[2]

F

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

ROBIN HOOD HASHING

75

A
B
C
D

hash(key)

| A [0]hash(A)

| B [0]hash(B)

| C [1]hash(C)

E | E [2]hash(E)

A[0] == E[0]

C[1] == E[1]

D[1] < E[2]

F

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

ROBIN HOOD HASHING

75

A
B
C
D

hash(key)

| A [0]hash(A)

| B [0]hash(B)

| C [1]hash(C)

E | E [2]hash(E)

A[0] == E[0]

C[1] == E[1]

D[1] < E[2]

F | D [2]hash(D)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

ROBIN HOOD HASHING

75

A
B
C
D

hash(key)

| A [0]hash(A)

| B [0]hash(B)

| C [1]hash(C)

E | E [2]hash(E)

F | D [2]hash(D)

| F [1]hash(F)

D[2] > F[0]

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

HOPSCOTCH HASHING

Variant of linear probe hashing where keys can
move between positions in a neighborhood.
→ A neighborhood is contiguous range of slots in the table.
→ The size of a neighborhood is a configurable constant

(ideally a single cache-line).
→ A key is guaranteed to be in its neighborhood or not exist

in the table.

The goal is to have the cost of accessing a
neighborhood to be the same as finding a key.

83

HOPSCOTCH HASHING
SYMPOSIUM ON DISTRIBUTED COMPUTING 2008

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://doi.org/10.1007/978-3-540-87779-0_24
https://doi.org/10.1007/978-3-540-87779-0_24

15-721 (Spring 2023)

HOPSCOTCH HASHING

84

A
B
C
D

hash(key)

E
F

Neighborhood Size = 3

Neighborhood #1

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

HOPSCOTCH HASHING

84

A
B
C
D

hash(key)

E
F

Neighborhood Size = 3

Neighborhood #1

Neighborhood #2

Neighborhood #3

⋮

Neighborhood #4

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

HOPSCOTCH HASHING

84

A
B
C
D

hash(key)

E
F

Neighborhood Size = 3

Neighborhood #1

Neighborhood #2

Neighborhood #3

Neighborhood #6

⋮

Neighborhood #6

Neighborhood #4

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

HOPSCOTCH HASHING

84

A
B
C
D

hash(key)

E
F

Neighborhood Size = 3

Neighborhood #3| Ahash(A)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

HOPSCOTCH HASHING

84

A
B
C
D

hash(key)

E
F

Neighborhood Size = 3

Neighborhood #1

| Ahash(A)

| Bhash(B)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

HOPSCOTCH HASHING

84

A
B
C
D

hash(key)

E
F

Neighborhood Size = 3

Neighborhood #3| Ahash(A)

| Bhash(B)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

HOPSCOTCH HASHING

84

A
B
C
D

hash(key)

E
F

Neighborhood Size = 3

Neighborhood #3| Ahash(A)

| Bhash(B)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

HOPSCOTCH HASHING

84

A
B
C
D

hash(key)

E
F

Neighborhood Size = 3

Neighborhood #3| Ahash(A)

| Bhash(B)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

HOPSCOTCH HASHING

84

A
B
C
D

hash(key)

E
F

Neighborhood Size = 3

Neighborhood #3| Ahash(A)

| Bhash(B)

| Chash(C)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

HOPSCOTCH HASHING

84

A
B
C
D

hash(key)

E
F

Neighborhood Size = 3

| Ahash(A)

| Bhash(B)

| Chash(C) Neighborhood #4

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

HOPSCOTCH HASHING

84

A
B
C
D

hash(key)

E
F

Neighborhood Size = 3

| Ahash(A)

| Bhash(B)

| Chash(C) Neighborhood #4

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

HOPSCOTCH HASHING

84

A
B
C
D

hash(key)

E
F

Neighborhood Size = 3

| Ahash(A)

| Bhash(B)

| Chash(C)

| Dhash(D)

Neighborhood #4

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

HOPSCOTCH HASHING

84

A
B
C
D

hash(key)

E
F

Neighborhood Size = 3

| Ahash(A)

| Bhash(B)

| Chash(C)

| Dhash(D)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

HOPSCOTCH HASHING

84

A
B
C
D

hash(key)

E
F

Neighborhood Size = 3

Neighborhood #3| Ahash(A)

| Bhash(B)

| Chash(C)

| Dhash(D)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

HOPSCOTCH HASHING

84

A
B
C
D

hash(key)

E
F

Neighborhood Size = 3

Neighborhood #3| Ahash(A)

| Bhash(B)

| Chash(C)

| Dhash(D)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

HOPSCOTCH HASHING

84

A
B
C
D

hash(key)

E
F

Neighborhood Size = 3

Neighborhood #3| Ahash(A)

| Bhash(B)

| Chash(C)

| Dhash(D)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

HOPSCOTCH HASHING

84

A
B
C
D

hash(key)

E
F

Neighborhood Size = 3

| Ahash(A)

| Bhash(B)

| Chash(C)

| Dhash(D)

Neighborhood #4

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

HOPSCOTCH HASHING

84

A
B
C
D

hash(key)

E
F

Neighborhood Size = 3

| Ahash(A)

| Bhash(B)

| Chash(C)

| Dhash(D)

Neighborhood #4

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

HOPSCOTCH HASHING

84

A
B
C
D

hash(key)

E
F

Neighborhood Size = 3

| Ahash(A)

| Bhash(B)

| Chash(C)

| Dhash(D)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

HOPSCOTCH HASHING

84

A
B
C
D

hash(key)

E
F

Neighborhood Size = 3

Neighborhood #3| Ahash(A)

| Bhash(B)

| Chash(C)

| Dhash(D)

| Ehash(E)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

HOPSCOTCH HASHING

84

A
B
C
D

hash(key)

E
F

Neighborhood Size = 3

| Ahash(A)

| Bhash(B)

| Chash(C)

| Dhash(D)

| Ehash(E)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

HOPSCOTCH HASHING

84

A
B
C
D

hash(key)

E
F

Neighborhood Size = 3

Neighborhood #6

| Ahash(A)

| Bhash(B)

| Chash(C)

| Dhash(D)

| Ehash(E)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

HOPSCOTCH HASHING

84

A
B
C
D

hash(key)

E
F

Neighborhood Size = 3

Neighborhood #6

| Ahash(A)

| Bhash(B)

| Chash(C)

| Dhash(D)

| Ehash(E)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

HOPSCOTCH HASHING

84

A
B
C
D

hash(key)

E
F

Neighborhood Size = 3

Neighborhood #6

| Ahash(A)

| Bhash(B)

| Chash(C)

| Dhash(D)

| Ehash(E)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

HOPSCOTCH HASHING

84

A
B
C
D

hash(key)

E
F

Neighborhood Size = 3

Neighborhood #6

| Ahash(A)

| Bhash(B)

| Chash(C)

| Dhash(D)

| Ehash(E)

| Fhash(F)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

HOPSCOTCH HASHING

84

A
B
C
D

hash(key)

E
F

Neighborhood Size = 3

Neighborhood #6

| Ahash(A)

| Bhash(B)

| Chash(C)

| Dhash(D)

| Ehash(E)

| Fhash(F)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

CUCKOO HASHING

Use multiple tables with different hash functions.
→ On insert, check every table and pick anyone that has a free

slot.
→ If no table has a free slot, evict the element from one of

them and then re-hash it find a new location.

Look-ups are always O(1) because only one location
per hash table is checked.

110

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

CUCKOO HASHING

111

Hash Table #1

⋮

Hash Table #2

⋮

Insert X
hash1(X) hash2(X)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

CUCKOO HASHING

111

Hash Table #1

⋮

Hash Table #2

⋮

Insert X
hash1(X) hash2(X)

hash1(X) | X

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

CUCKOO HASHING

111

Hash Table #1

⋮

Hash Table #2

⋮

Insert X
hash1(X) hash2(X)

Insert Y
hash1(Y) hash2(Y)

hash1(X) | X

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

CUCKOO HASHING

111

Hash Table #1

⋮

Hash Table #2

⋮

Insert X
hash1(X) hash2(X)

Insert Y
hash1(Y) hash2(Y)

hash1(X) | X
hash2(Y) | Y

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

CUCKOO HASHING

111

Hash Table #1

⋮

Hash Table #2

⋮

Insert X
hash1(X) hash2(X)

Insert Y
hash1(Y) hash2(Y)

hash1(X) | X
hash2(Y) | Y

Insert Z
hash1(Z) hash2(Z)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

CUCKOO HASHING

111

Hash Table #1

⋮

Hash Table #2

⋮

Insert X
hash1(X) hash2(X)

Insert Y
hash1(Y) hash2(Y)

hash1(X) | X

Insert Z
hash1(Z) hash2(Z)

hash2(Z) | Z

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

CUCKOO HASHING

111

Hash Table #1

⋮

Hash Table #2

⋮

Insert X
hash1(X) hash2(X)

Insert Y
hash1(Y) hash2(Y)

hash1(X) | X

Insert Z
hash1(Z) hash2(Z)

hash2(Z) | Z

hash1(Y)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

CUCKOO HASHING

111

Hash Table #1

⋮

Hash Table #2

⋮

Insert X
hash1(X) hash2(X)

Insert Y
hash1(Y) hash2(Y)

Insert Z
hash1(Z) hash2(Z)

hash2(Z) | Z

hash1(Y)

hash1(Y) | Y

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

CUCKOO HASHING

111

Hash Table #1

⋮

Hash Table #2

⋮

Insert X
hash1(X) hash2(X)

Insert Y
hash1(Y) hash2(Y)

Insert Z
hash1(Z) hash2(Z)

hash2(Z) | Z

hash1(Y)

hash1(Y) | Y

hash2(X)

hash2(X) | X

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

PROBE PHASE

For each tuple in S, hash its join key and check to
see whether there is a match for each tuple in
corresponding bucket in the hash table constructed
for R.
→ If inputs were partitioned, then assign each thread a unique

partition.
→ Otherwise, synchronize their access to the cursor on S.

121

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

PROBE PHASE – BLOOM FILTER

Create a Bloom Filter during the build phase when
the key is likely to not exist in the hash table.
→ Threads check the filter before probing the hash table. This

will be faster since the filter will fit in CPU caches.
→ Sometimes called sideways information passing.

122

A B

⨝

MICRO ADAPTIVITY IN VECTORWISE
SIGMOD 2013

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://dl.acm.org/citation.cfm?id=2465292
http://dl.acm.org/citation.cfm?id=2465292

15-721 (Spring 2023)

PROBE PHASE – BLOOM FILTER

Create a Bloom Filter during the build phase when
the key is likely to not exist in the hash table.
→ Threads check the filter before probing the hash table. This

will be faster since the filter will fit in CPU caches.
→ Sometimes called sideways information passing.

122

A B

⨝
Bloom Filter

MICRO ADAPTIVITY IN VECTORWISE
SIGMOD 2013

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://dl.acm.org/citation.cfm?id=2465292
http://dl.acm.org/citation.cfm?id=2465292

15-721 (Spring 2023)

PROBE PHASE – BLOOM FILTER

Create a Bloom Filter during the build phase when
the key is likely to not exist in the hash table.
→ Threads check the filter before probing the hash table. This

will be faster since the filter will fit in CPU caches.
→ Sometimes called sideways information passing.

122

A B

⨝ Bloom Filter

MICRO ADAPTIVITY IN VECTORWISE
SIGMOD 2013

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://dl.acm.org/citation.cfm?id=2465292
http://dl.acm.org/citation.cfm?id=2465292

15-721 (Spring 2023)

PROBE PHASE – BLOOM FILTER

Create a Bloom Filter during the build phase when
the key is likely to not exist in the hash table.
→ Threads check the filter before probing the hash table. This

will be faster since the filter will fit in CPU caches.
→ Sometimes called sideways information passing.

122

A B

⨝ Bloom Filter

MICRO ADAPTIVITY IN VECTORWISE
SIGMOD 2013

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://dl.acm.org/citation.cfm?id=2465292
http://dl.acm.org/citation.cfm?id=2465292

15-721 (Spring 2023)

HASH JOIN VARIANTS

126

No-P Shared-P Private-P Radix

Partitioning No Yes Yes Yes

Input scans 0 1 1 2

Sync during
partitioning

– Spinlock
per tuple

Barrier,
once at end

Barrier,
4 · #passes

Hash table Shared Private Private Private

Sync during
build phase

Yes No No No

Sync during
probe phase

No No No No

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

BENCHMARKS

Implemented multiple variants of hash join
algorithms based on previous literature and
compare unoptimized vs. optimized versions.

Core approaches:
→ No Partitioning Hash Join
→ Concise Hash Table Join
→ 2-pass Radix Hash Join (Chained vs. Linear)

Special Case: Arrays for monotonic primary keys.

127

AN EXPERIMENTAL COMPARISON OF THIRTEEN
RELATIONAL EQUI-JOINS IN MAIN MEMORY
SIGMOD 2016

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/doi/10.1145/2882903.2882917
https://dl.acm.org/doi/10.1145/2882903.2882917

15-721 (Spring 2023)

JOIN COMPARISON (R⨝S)

128

518 556
456

806

1145

1449 1454 1449

0

400

800

1200

1600

Sort-Merge Concise
Hash

Radix-Part
(Chained)

No-Part
(Linear)

No-Part
(Array)

Radix-Part
(Chained)

Radix-Part
(Linear)

Radix-Part
(Array)

4× Intel Xeon CPU E7-4870v2 (Only 32 cores)
|R|=128M, |S|=1280M

Source: Stefan Schuh

↑Better Performance

T
hr

ou
gh

pu
t (

M
 tu

pl
es

 /
 s

ec
) Optimized

MWAY CHTJ PRB NOP NOPA PRO PRL PRA

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://bigdata.uni-saarland.de/people/schuh.php

15-721 (Spring 2023)

TPC-H Q19

129

250 279
301 285

0

100

200

300

400

No-Part
(Linear)

No-Part
(Array)

Radix
(Linear)

Radix
(Array)

R
un

ti
m

e
(m

s)

Join Operator Remaining Query

4× Intel Xeon CPU E7-4870v4
Scale Factor 100

Source: Stefan Schuh

⬅ 13% ⬅7% ⬅7% ⬅7%

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://bigdata.uni-saarland.de/people/schuh.php

15-721 (Spring 2023)

PARTING THOUGHTS

Partitioned-based joins outperform no-partitioning
algorithms in most settings, but it is non-trivial to
tune it correctly.

AFAIK, every DBMS vendor picks one hash join
implementation and does not try to be adaptive.

130

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

NEXT CLASS

Parallel Sort-Merge Joins

131

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

	Introduction
	Slide 1: Parallel Hash Join Algorithms
	Slide 2: ADMINISTRIVIA
	Slide 3: TODAY’S AGENDA

	Background
	Slide 4: PARALLEL JOIN ALGORITHMS
	Slide 5: OBSERVATION
	Slide 6: HASHING VS. SORTING JOINS
	Slide 7: PARALLEL JOIN ALGORITHMS
	Slide 8: JOIN ALGORITHM DESIGN GOALS
	Slide 9: IMPROVING CACHE BEHAVIOR
	Slide 10: PARALLEL HASH JOINS
	Slide 11: HASH JOIN (R⨝S)

	Partition Phase
	Slide 12: PARTITIONING PHASE
	Slide 13: PARTITION PHASE
	Slide 14: PARTITION PHASE
	Slide 15: NON-BLOCKING PARTITIONING
	Slide 16: SHARED PARTITIONS
	Slide 17: SHARED PARTITIONS
	Slide 18: SHARED PARTITIONS
	Slide 19: SHARED PARTITIONS
	Slide 20: PRIVATE PARTITIONS
	Slide 21: PRIVATE PARTITIONS
	Slide 22: PRIVATE PARTITIONS
	Slide 23: PRIVATE PARTITIONS
	Slide 24: PRIVATE PARTITIONS
	Slide 25: RADIX PARTITIONING
	Slide 26: RADIX
	Slide 27: RADIX
	Slide 28: RADIX
	Slide 29: RADIX
	Slide 30: PREFIX SUM
	Slide 31: PREFIX SUM
	Slide 32: PREFIX SUM
	Slide 33: PREFIX SUM
	Slide 34: PREFIX SUM
	Slide 35: RADIX PARTITIONS
	Slide 36: RADIX PARTITIONS
	Slide 37: RADIX PARTITIONS
	Slide 38: RADIX PARTITIONS
	Slide 39: RADIX PARTITIONS
	Slide 40: RADIX PARTITIONS
	Slide 41: RADIX PARTITIONS
	Slide 42: RADIX PARTITIONS
	Slide 43: RADIX PARTITIONS
	Slide 44: RADIX PARTITIONS
	Slide 45: OPTIMIZATIONS

	Build Phase
	Slide 46: BUILD PHASE
	Slide 47: HASH TABLES

	Hash Functions
	Slide 48: HASH FUNCTIONS
	Slide 49: HASH FUNCTIONS
	Slide 50: HASH FUNCTIONS
	Slide 51: HASH FUNCTION BENCHMARK

	Hashing Schemes
	Slide 52: HASHING SCHEMES
	Slide 53: CHAINED HASHING
	Slide 54: CHAINED HASHING
	Slide 55: CHAINED HASHING
	Slide 56: CHAINED HASHING
	Slide 57: CHAINED HASHING
	Slide 58: CHAINED HASHING
	Slide 59: CHAINED HASHING
	Slide 60: CHAINED HASHING
	Slide 61: CHAINED HASHING
	Slide 62: CHAINED HASHING
	Slide 63: LINEAR PROBE HASHING
	Slide 64: LINEAR PROBE HASHING
	Slide 65: LINEAR PROBE HASHING
	Slide 66: LINEAR PROBE HASHING
	Slide 67: LINEAR PROBE HASHING
	Slide 68: LINEAR PROBE HASHING
	Slide 69: LINEAR PROBE HASHING
	Slide 70: LINEAR PROBE HASHING
	Slide 71: LINEAR PROBE HASHING
	Slide 72: LINEAR PROBE HASHING
	Slide 73: OBSERVATION
	Slide 74: ROBIN HOOD HASHING
	Slide 75: ROBIN HOOD HASHING
	Slide 76: ROBIN HOOD HASHING
	Slide 77: ROBIN HOOD HASHING
	Slide 78: ROBIN HOOD HASHING
	Slide 79: ROBIN HOOD HASHING
	Slide 80: ROBIN HOOD HASHING
	Slide 81: ROBIN HOOD HASHING
	Slide 82: ROBIN HOOD HASHING
	Slide 83: HOPSCOTCH HASHING
	Slide 84: HOPSCOTCH HASHING
	Slide 85: HOPSCOTCH HASHING
	Slide 86: HOPSCOTCH HASHING
	Slide 87: HOPSCOTCH HASHING
	Slide 88: HOPSCOTCH HASHING
	Slide 89: HOPSCOTCH HASHING
	Slide 90: HOPSCOTCH HASHING
	Slide 91: HOPSCOTCH HASHING
	Slide 92: HOPSCOTCH HASHING
	Slide 93: HOPSCOTCH HASHING
	Slide 94: HOPSCOTCH HASHING
	Slide 95: HOPSCOTCH HASHING
	Slide 96: HOPSCOTCH HASHING
	Slide 97: HOPSCOTCH HASHING
	Slide 98: HOPSCOTCH HASHING
	Slide 99: HOPSCOTCH HASHING
	Slide 100: HOPSCOTCH HASHING
	Slide 101: HOPSCOTCH HASHING
	Slide 102: HOPSCOTCH HASHING
	Slide 103: HOPSCOTCH HASHING
	Slide 104: HOPSCOTCH HASHING
	Slide 105: HOPSCOTCH HASHING
	Slide 106: HOPSCOTCH HASHING
	Slide 107: HOPSCOTCH HASHING
	Slide 108: HOPSCOTCH HASHING
	Slide 109: HOPSCOTCH HASHING
	Slide 110: CUCKOO HASHING
	Slide 111: CUCKOO HASHING
	Slide 112: CUCKOO HASHING
	Slide 113: CUCKOO HASHING
	Slide 114: CUCKOO HASHING
	Slide 115: CUCKOO HASHING
	Slide 116: CUCKOO HASHING
	Slide 117: CUCKOO HASHING
	Slide 118: CUCKOO HASHING
	Slide 119: CUCKOO HASHING

	Probe Phase
	Slide 121: PROBE PHASE
	Slide 122: PROBE PHASE – BLOOM FILTER
	Slide 123: PROBE PHASE – BLOOM FILTER
	Slide 124: PROBE PHASE – BLOOM FILTER
	Slide 125: PROBE PHASE – BLOOM FILTER
	Slide 126: HASH JOIN VARIANTS

	Evaluation
	Slide 127: BENCHMARKS
	Slide 128: JOIN COMPARISON (R⨝S)
	Slide 129: TPC-H Q19

	Conclusion
	Slide 130: PARTING THOUGHTS
	Slide 131: NEXT CLASS

