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15-721 (Spring 2023)

ADMINISTRIVIA

Project #2:
→ Feedback Submission: Saturday April 1st

→ Final Submission: Monday May 1st

→ Sign up for a system if you haven't yet!

Project #3
→ Proposal Presentation: Wednesday March 1st

→ Status Update Presentation: Monday April 3rd

→ Final Presentations: TBA
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TODAY’S AGENDA

Background

Parallel Hash Join

Hash Functions

Hashing Schemes

Evaluation
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PARALLEL JOIN ALGORITHMS

Perform a join between two relations on multiple 
threads simultaneously to speed up operation. 
→ We will discuss multi-way joins in Lecture #13.

Two main approaches:
→ Hash Join
→ Sort-Merge Join

We won't discuss nested-loop joins because an 
OLAP DBMS almost never wants to use this…
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OBSERVATION

Many OLTP DBMSs do not implement hash join.

But an index nested-loop join is conceptually 
equivalent to a hash join.
→ Index NL joins typically means using an existing B+Tree.
→ Hash join will build a hash table (index) on the fly and then 

discard immediately after the operation is complete.
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HASHING VS. SORTING JOINS

1970s – Sorting

1980s – Hashing

1990s – Equivalent

2000s – Hashing

2010s – Hashing (Partitioned vs. Non-Partitioned)

2020s – Non-Partitioned Hashing 
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PARALLEL JOIN ALGORITHMS

→ Hashing is faster than Sort-Merge.
→ Sort-Merge is faster w/ wider SIMD.

SORT VS. HASH REVISITED: FAST 
JOIN IMPLEMENTATION ON 
MODERN MULTI-CORE CPUS
VLDB 2009

→ Sort-Merge is already faster than 
Hashing, even without SIMD.

MASSIVELY PARALLEL SORT-MERGE 
JOINS IN MAIN MEMORY MULTI-
CORE DATABASE SYSTEMS
VLDB 2012

→ New optimizations and results for Radix 
Hash Join.

MAIN-MEMORY HASH JOINS ON 
MULTI-CORE CPUS: TUNING TO THE 
UNDERLYING HARDWARE
ICDE 2013

→ Trade-offs between partitioning & non-
partitioning Hash-Join.

DESIGN AND EVALUATION OF MAIN 
MEMORY HASH JOIN ALGORITHMS 
FOR MULTI-CORE CPUS
SIGMOD 2011

→ Ignore what we said last year.
→ You really want to use Hashing!

MASSIVELY PARALLEL NUMA-AWARE 
HASH JOINS
IMDM 2013

→ Hold up everyone! Let's look at 
everything more carefully!

AN EXPERIMENTAL COMPARISON OF 
THIRTEEN RELATIONAL EQUI-JOINS 
IN MAIN MEMORY
SIGMOD 2016

→ Benefits of Radix Hash Join aren't worth 
engineering costs.

TO PARTITION, OR NOT TO 
PARTITION, THAT IS THE JOIN 
QUESTION IN A REAL SYSTEM
SIGMOD 2021
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JOIN ALGORITHM DESIGN GOALS

These goals matter whether the DBMS is using a 
hardware-conscious vs. hardware-oblivious
algorithm for joins.

Goal #1: Minimize Synchronization
→ Avoid taking latches during execution.

Goal #2: Minimize Memory Access Cost
→ Ensure that data is always local to worker thread.
→ Reuse data while it exists in CPU cache.
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IMPROVING CACHE BEHAVIOR

Factors that affect cache misses in a DBMS:
→ Cache + TLB capacity.
→ Locality (temporal and spatial).

Non-Random Access (Scan):
→ Clustering data to a cache line.
→ Execute more operations per cache line.

Random Access (Lookups):
→ Partition data to fit in cache + TLB. 
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PARALLEL HASH JOINS

Hash join is one of the most important operators in 
a DBMS for OLAP workloads.
→ But it is still not the dominant cost.

It is important that we speed up our DBMS's join 
algorithm by taking advantage of multiple cores.
→ We want to keep all cores busy, without becoming 

memory bound.
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HASH JOIN (R⨝S)

Phase #1: Partition (optional)
→ Divide the tuples of R and S into disjoint subsets using a 

hash function on the join key.

Phase #2: Build
→ Scan relation R and create a hash table on join key.

Phase #3: Probe
→ For each tuple in S, look up its join key in hash table for R. 

If a match is found, output combined tuple.
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AN EXPERIMENTAL COMPARISON OF THIRTEEN 
RELATIONAL EQUI-JOINS IN MAIN MEMORY
SIGMOD 2016

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/doi/10.1145/2882903.2882917
https://dl.acm.org/doi/10.1145/2882903.2882917


15-721 (Spring 2023)

PARTITIONING PHASE

Approach #1: Implicit Partitioning
→ The data was partitioned on the join key when it was 

loaded into the database.
→ No extra pass over the data is needed.

Approach #2: Explicit Partitioning
→ Divide only the outer relation and redistribute among the 

different CPU cores.
→ Can use the same radix partitioning approach we talked 

about last time.
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PARTITION PHASE

Split the input relations into partitioned buffers by 
hashing the tuples’ join key(s).
→ Ideally the cost of partitioning is less than the cost of cache 

misses during build phase.
→ Sometimes called Grace Hash Join / Radix Hash Join.

Contents of buffers depends on storage model:
→ NSM: Usually the entire tuple.
→ DSM: Only the columns needed for the join + offset.
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PARTITION PHASE

Approach #1: Non-Blocking Partitioning
→ Only scan the input relation once.
→ Produce output incrementally and let other threads build 

hash table at the same time.

Approach #2: Blocking Partitioning (Radix)
→ Scan the input relation multiple times.
→ Only materialize results all at once.
→ Sometimes called radix hash join.
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NON-BLOCKING PARTITIONING

Scan the input relation only once and generate the 
output on-the-fly.

Approach #1: Shared Partitions
→ Single global set of partitions that all threads update.
→ Must use a latch to synchronize threads.

Approach #2: Private Partitions
→ Each thread has its own set of partitions.
→ Must consolidate them after all threads finish.
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SHARED PARTITIONS
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Global Partitions

SHARED PARTITIONS
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Global Partitions
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Local Partitions

PRIVATE PARTITIONS
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Local Partitions
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Local Partitions
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Local Partitions
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RADIX PARTITIONING

Scan the input relation multiple times to generate 
the partitions.

Two-pass algorithm:
→ Step #1: Scan R and compute a histogram of the # of tuples 

per hash key for the radix at some offset.
→ Step #2: Use this histogram to determine per-thread 

output offsets by computing the prefix sum.
→ Step #3: Scan R again and partition them according to the 

hash key.
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RADIX

The radix of a key is the value of an integer at a 
position (using its base).
→ Efficient to compute with bitshifting + multiplication.

26
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RADIX

The radix of a key is the value of an integer at a 
position (using its base).
→ Efficient to compute with bitshifting + multiplication.
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RADIX

The radix of a key is the value of an integer at a 
position (using its base).
→ Efficient to compute with bitshifting + multiplication.
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RADIX

The radix of a key is the value of an integer at a 
position (using its base).
→ Efficient to compute with bitshifting + multiplication.

Compute radix for each key and populate histogram 
of counts per radix.
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PREFIX SUM

The prefix sum of a sequence of numbers
(x0, x1, …, xn)

is a second sequence of numbers
(y0, y1, …, yn)

that is a running total of the input sequence.

30
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PREFIX SUM
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PREFIX SUM

The prefix sum of a sequence of numbers
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is a second sequence of numbers
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PREFIX SUM

The prefix sum of a sequence of numbers
(x0, x1, …, xn)

is a second sequence of numbers
(y0, y1, …, yn)

that is a running total of the input sequence.
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RADIX PARTITIONS

35
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RADIX PARTITIONS
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RADIX PARTITIONS

35

Step #1: Inspect input, 
create histograms
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RADIX PARTITIONS
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RADIX PARTITIONS
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RADIX PARTITIONS
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RADIX PARTITIONS

35

Partition 0: 2
Partition 1: 2

Partition 0: 1
Partition 1: 3

Partition 0

Partition 0, CPU 1

Partition 1

Partition 1, CPU 1

Step #3: Read input
and partition

0 7

0 3

, CPU 0

, CPU 0

0 7

1 8

1 9

0 7

0 3

1 1

1 5

1 0

0

1

#p

#p

#p

#p

#p

#p

#p

#p

ha
sh

P
(k

ey
)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023


15-721 (Spring 2023)

RADIX PARTITIONS
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RADIX PARTITIONS
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RADIX PARTITIONS
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OPTIMIZATIONS

Software Write Combine Buffers:
→ Each worker maintains local output buffer to stage writes.
→ When buffer full, write changes to global partition.
→ Similar to private partitions but without a separate write 

phase at the end.

Non-temporal Streaming Writes
→ Workers write data to global partition memory using 

streaming instructions to bypass CPU caches.

45
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BUILD PHASE

The threads are then to scan either the tuples (or 
partitions) of R.

For each tuple, hash the join key attribute for that 
tuple and add it to the appropriate bucket in the 
hash table.
→ The buckets should only be a few cache lines in size.
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HASH TABLES

Design Decision #1: Hash Function
→ How to map a large key space into a smaller domain.
→ Trade-off between being fast vs. collision rate.

Design Decision #2: Hashing Scheme
→ How to handle key collisions after hashing.
→ Trade-off between allocating a large hash table vs. 

additional instructions to find/insert keys.
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HASH FUNCTIONS

We do not want to use a cryptographic hash 
function for our join algorithm.

We want something that is fast and will have a low 
collision rate.
→ Best Speed: Always return '1'
→ Best Collision Rate: Perfect hashing

See SMHasher for a comprehensive hash function 
benchmark suite.

48
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HASH FUNCTIONS

CRC-64 (1975)
→ Used in networking for error detection.

MurmurHash (2008)
→ Designed to a fast, general purpose hash function.

Google CityHash (2011)
→ Designed to be faster for short keys (<64 bytes).

Facebook XXHash (2012)
→ From the creator of zstd compression.

Google FarmHash (2014)
→ Newer version of CityHash with better collision rates.
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HASH FUNCTION BENCHMARK
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HASHING SCHEMES

Approach #1: Chained Hashing

Approach #2: Linear Probe Hashing

Approach #3: Robin Hood Hashing

Approach #4: Hopscotch Hashing

Approach #5: Cuckoo Hashing
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CHAINED HASHING

Maintain a linked list of buckets for each slot in the 
hash table.

Resolve collisions by placing all elements with the 
same hash key into the same bucket.
→ To determine whether an element is present, hash to its 

bucket and scan for it.
→ Insertions and deletions are generalizations of lookups.

53
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CHAINED HASHING

54
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CHAINED HASHING
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CHAINED HASHING
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CHAINED HASHING
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CHAINED HASHING
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CHAINED HASHING
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CHAINED HASHING
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CHAINED HASHING
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CHAINED HASHING
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LINEAR PROBE HASHING

Single giant table of slots.

Resolve collisions by linearly searching for the next 
free slot in the table.
→ To determine whether an element is present, hash to a 

location in the table and scan for it.
→ Must store the key in the table to know when to stop 

scanning.
→ Insertions and deletions are generalizations of lookups.
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LINEAR PROBE HASHING
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LINEAR PROBE HASHING
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LINEAR PROBE HASHING
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LINEAR PROBE HASHING
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LINEAR PROBE HASHING
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LINEAR PROBE HASHING
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LINEAR PROBE HASHING
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OBSERVATION

To reduce the number of wasteful comparisons 
during the build/probe phases, it is important to 
avoid collisions of hashed keys.

This requires a hash table with ~2× the number of 
slots as the number of elements in R.
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ROBIN HOOD HASHING

Variant of linear probe hashing that steals slots 
from "rich" keys and give them to "poor" keys.
→ Each key tracks the number of positions they are from 

where its optimal position in the table.
→ On insert, a key takes the slot of another key if the first key 

is farther away from its optimal position than the second 
key.
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ROBIN HOOD HASHING 
FOUNDATIONS OF COMPUTER SCIENCE 1985

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://ieeexplore.ieee.org/document/4568152/
http://ieeexplore.ieee.org/document/4568152/


15-721 (Spring 2023)

ROBIN HOOD HASHING

75
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ROBIN HOOD HASHING
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ROBIN HOOD HASHING
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ROBIN HOOD HASHING
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ROBIN HOOD HASHING
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HOPSCOTCH HASHING

Variant of linear probe hashing where keys can 
move between positions in a neighborhood.
→ A neighborhood is contiguous range of slots in the table.
→ The size of a neighborhood is a configurable constant 

(ideally a single cache-line).
→ A key is guaranteed to be in its neighborhood or not exist 

in the table.

The goal is to have the cost of accessing a 
neighborhood to be the same as finding a key.
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HOPSCOTCH HASHING
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HOPSCOTCH HASHING
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HOPSCOTCH HASHING
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CUCKOO HASHING

Use multiple tables with different hash functions.
→ On insert, check every table and pick anyone that has a free 

slot.
→ If no table has a free slot, evict the element from one of 

them and then re-hash it find a new location.

Look-ups are always O(1) because only one location 
per hash table is checked.
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Hash Table #2

⋮

Insert X
hash1(X) hash2(X)

Insert Y
hash1(Y) hash2(Y)

Insert Z
hash1(Z) hash2(Z)

hash2(Z) | Z

hash1(Y)

hash1(Y) | Y

hash2(X)

hash2(X) | X

https://db.cs.cmu.edu/
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PROBE PHASE

For each tuple in S, hash its join key and check to 
see whether there is a match for each tuple in 
corresponding bucket in the hash table constructed 
for R.
→ If inputs were partitioned, then assign each thread a unique 

partition.
→ Otherwise, synchronize their access to the cursor on S.

121
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PROBE PHASE – BLOOM FILTER

Create a Bloom Filter during the build phase when 
the key is likely to not exist in the hash table.
→ Threads check the filter before probing the hash table. This 

will be faster since the filter will fit in CPU caches.
→ Sometimes called sideways information passing.

122

A B

⨝

MICRO ADAPTIVITY IN VECTORWISE
SIGMOD 2013
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HASH JOIN VARIANTS
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No-P Shared-P Private-P Radix

Partitioning No Yes Yes Yes

Input scans 0 1 1 2

Sync during 
partitioning

– Spinlock 
per tuple

Barrier, 
once at end

Barrier, 
4 · #passes

Hash table Shared Private Private Private

Sync during 
build phase

Yes No No No

Sync during 
probe phase

No No No No
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BENCHMARKS

Implemented multiple variants of hash join
algorithms based on previous literature and 
compare unoptimized vs. optimized versions.

Core approaches:
→ No Partitioning Hash Join
→ Concise Hash Table Join
→ 2-pass Radix Hash Join (Chained vs. Linear)

Special Case: Arrays for monotonic primary keys.

127

AN EXPERIMENTAL COMPARISON OF THIRTEEN 
RELATIONAL EQUI-JOINS IN MAIN MEMORY
SIGMOD 2016
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JOIN COMPARISON (R⨝S)
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TPC-H Q19
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PARTING THOUGHTS

Partitioned-based joins outperform no-partitioning 
algorithms in most settings, but it is non-trivial to 
tune it correctly.

AFAIK, every DBMS vendor picks one hash join 
implementation and does not try to be adaptive.
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NEXT CLASS

Parallel Sort-Merge Joins
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