Lecture #11

Carnegie Mellon University

ADVANCED DATABASE SYSTEMS

Parallel Hash
Join Algorithms

Andy Pavlo // 15-721 // Spring 2023

https://15721.courses.cs.cmu.edu/spring2023
http://db.cs.cmu.edu/

ADMINISTRIVIA

Project #2:

— Feedback Submission: Saturday April 1¢
— Final Submission: Monday May 1%

— Sign up for a system if you haven't yet!

Project #3

— Proposal Presentation: Wednesday March 1%
— Status Update Presentation: Monday April 37
— Final Presentations: TBA

££CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

TODAY’S AGENDA

Background
Parallel Hash Join
Hash Functions
Hashing Schemes

Evaluation

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

PARALLEL JOIN ALGORITHMS

Perform a join between two relations on multiple

threads simultaneously to speed up operation.
— We will discuss multi-way joins in Lecture #13.

Two main approaches:
— Hash Join
— Sort-Merge Join

We won't discuss nested-loop joins because an
OLAP DBMS almost never wants to use this...

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://15721.courses.cs.cmu.edu/spring2023/schedule.html#mar-15-2023

OBSERVATION

Many OLTP DBMSs do not implement hash join.

But an index nested-loop join is conceptually

equivalent to a hash join.

— Index NL joins typically means using an existing B+Tree.

— Hash join will build a hash table (index) on the fly and then
discard immediately after the operation is complete.

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

HASHING VS. SORTING JOINS

1970s — Sorting

1980s — Hashing

1990s — Equivalent

2000s - Hashing

2010s — Hashing (Partitioned vs. Non-Partitioned)
2020s — Non-Partitioned Hashing

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

PARALLEL JOIN ALGORITHMS

L D
MODERN MULTI-CORE CPUS ORACLE (intel
VLDB 2009

— Hashing is faster than Sort-Merge.

— Sort-Merge is faster w/ wider SIMD.

— BRSO oL
FOR MULTI-CORE CPUS @Mﬁgﬁﬁﬂl}!
SIGMOD 2011

— Trade-offs between partitioning & non-
partitioning Hash-Join.

=== | MASSIVELY PARALLEL SORT-MERGE
JOINS IN MAIN MEMORY MULTI- H Per
- \(IBLCI)DIEEZ %TABASE SYSTEMS y

— Sort-Merge is already faster than
Hashing, even without SIMD.

— mssal\glcz)l_lYN EARALLEL NUMA-AWARE E
IMDM 2013 Hyper

— Ignore what we said last year.
— You really want to use Hashing!

MULTI-CORE CPUS: TUNING TO THE
UNDERLYING HARDWARE

.. | MAIN-MEMORY HASH JOINS ON

ICDE 2013 Systemse ETHzirich
— New optimizations and results for Radix
Hash Join.

| AN EXPERIMENTAL COMPARISON OF B UnivERSITAT
THIRTEEN RELATIONAL EQUI-JOINS W""'""HH N
L Bt UM SAARLANDES

— Hold up everyone! Let's look at
everything more carefully!

/| TO PARTITION, OR NOT TO

‘| PARTITION, THAT IS THE JOIN
UESTION IN A REAL SYSTEM

SIGMOD 2021

£ZCMU-DB engineering costs.

15-721 (Spring 2023)

— Benefits of Radix Hash Join aren't worth

(83 UMBRA

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://www.vldb.org/pvldb/2/vldb09-257.pdf
http://www.vldb.org/pvldb/2/vldb09-257.pdf
https://dl.acm.org/doi/10.14778/2336664.2336678
https://dl.acm.org/doi/10.14778/2336664.2336678
https://dl.acm.org/doi/10.1109/ICDE.2013.6544839
https://dl.acm.org/doi/10.1109/ICDE.2013.6544839
https://dl.acm.org/doi/10.1145/1989323.1989328
https://dl.acm.org/doi/10.1145/1989323.1989328
http://imdm.ws/2013/papers/Lang.pdf
http://imdm.ws/2013/papers/Lang.pdf
https://dl.acm.org/doi/10.1145/2882903.2882917
https://dl.acm.org/doi/10.1145/2882903.2882917
https://dl.acm.org/doi/10.1145/3448016.3452831
https://dl.acm.org/doi/10.1145/3448016.3452831

JOIN ALGORITHM DESIGN GOALS

These goals matter whether the DBMS is using a
hardware-conscious vs. hardware-oblivious
algorithm for joins.

Goal #1: Minimize Synchronization
— Avoid taking latches during execution.

Goal #2: Minimize Memory Access Cost

— Ensure that data is always local to worker thread.
— Reuse data while it exists in CPU cache.

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

IMPROVING CACHE BEHAVIOR

Factors that affect cache misses in a DBMS:
— Cache + TLB capacity.
— Locality (temporal and spatial).

Non-Random Access (Scan):

— Clustering data to a cache line.
— Execute more operations per cache line.

Random Access (Lookups):
— Partition data to fit in cache + TLB.

Source: Johannes Gehrke

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://www.cs.cornell.edu/courses/cs632/2001sp/slides/Main-memory%20database%20systems.ppt

PARALLEL HASH JOINS

Hash join is one of the most important operators in
a DBMS for OLAP workloads.

— But it is still not the dominant cost.

[t is important that we speed up our DBMS's join

algorithm by taking advantage of multiple cores.
— We want to keep all cores busy, without becoming
memory bound.

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

HASH JOIN (Rp<S)

Phase #1: Partition (optional)

— Divide the tuples of R and S into disjoint subsets using a
hash function on the join key.

Phase #2: Build

— Scan relation R and create a hash table on join key.

Phase #3: Probe

— For each tuple in S, look up its join key in hash table for R.
[f a match is found, output combined tuple.

- | AN EXPERIMENTAL COMPARISON OF THIRTEEN
RELATIONAL EQUI-JOINS IN MAIN MEMORY
SIGMOD 2016

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/doi/10.1145/2882903.2882917
https://dl.acm.org/doi/10.1145/2882903.2882917

$2CMU-DB

15-721 (Spring 2023)

PARTITIONING PHASE

Approach #1: Implicit Partitioning

— The data was partitioned on the join key when it was
loaded into the database.
— No extra pass over the data is needed.

Approach #2: Explicit Partitioning

— Divide only the outer relation and redistribute among the
different CPU cores.

— Can use the same radix partitioning approach we talked
about last time.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

PARTITION PHASE

Split the input relations into partitioned buffers by
hashing the tuples’ join key(s).
— Ideally the cost of partitioning is less than the cost of cache

misses during build phase.
— Sometimes called Grace Hash Join / Radix Hash Join.

Contents of buffers depends on storage model:
— NSM: Usually the entire tuple.
— DSM: Only the columns needed for the join + offset.

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

$2CMU-DB

15-721 (Spring 2023)

PARTITION PHASE

Approach #1: Non-Blocking Partitioning

— Only scan the input relation once.

— Produce output incrementally and let other threads build
hash table at the same time.

Approach #2: Blocking Partitioning (Radix)
— Scan the input relation multiple times.

— Only materialize results all at once.

— Sometimes called radix hash join.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

NON-BLOCKING PARTITIONING

Scan the input relation only once and generate the
output on-the-fly.

Approach #1: Shared Partitions

— Single global set of partitions that all threads update.
— Must use a latch to synchronize threads.

Approach #2: Private Partitions

— Each thread has its own set of partitions.
— Must consolidate them after all threads finish.

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

SHARED PARTITIONS

Data Table

-

hash(key)

8
8

£=CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

SHARED PARTITIONS

Data Table Global Partitions

hash(key)
i m

8
8

$CMU-DB

111111111111111111

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

SHARED PARTITIONS

Data Table Global Partitions

hash(key)
i m

8
8

$CMU-DB

111111111111111111

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

SHARED PARTITIONS

Data Table Global Partitions

hash(key)
i m

8
8

$CMU-DB

111111111111111111

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

PRIVATE PARTITIONS

Data Table Local Partitions

hash(key)
i m

8
8

£=CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

PRIVATE PARTITIONS

Data Table Local Partitions Global Partitions

hash(key)
o =

»
»

8
8

£=CMU-DB
111111 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

PRIVATE PARTITIONS

Data Table Local Partitions Global Partitions
hash(key)

L (1= —P, — |, C—

8
8

£=CMU-DB
111111 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

PRIVATE PARTITIONS

Data Table Local Partitions Global Partitions
hash(key)

= = P]I:I

i
I
H
H

== —
. P,

=l =1

=]l = |

[

£=CMU-DB
111111 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

PRIVATE PARTITIONS

Data Table Local Partitions Global Partitions
hash(key)

N

B

>

C

e P]I:I

i
ll
H
H

= @'z]
|

== | I—
PZ

~ ==

\

|
)

0
IV ERARRNRRNR-
T
il
J
:
J

I
i
H
H

£=CMU-DB
111111 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

RADIX PARTITIONING

Scan the input relation multiple times to generate
the partitions.

Two-pass algorithm:

— Step #1: Scan R and compute a histogram of the # of tuples
per hash key for the radix at some offset.

— Step #2: Use this histogram to determine per-thread
output offsets by computing the prefix sum.

— Step #3: Scan R again and partition them according to the

hash key.

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

RADIX

The radix of a key is the value of an integer at a
position (using its base).
— Efficient to compute with bitshifting + multiplication.

Keys{19]12(23]08]|11(04

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

RADIX

The radix of a key is the value of an integer at a
position (using its base).
— Efficient to compute with bitshifting + multiplication.

Keys|1]9]| 1[2[[2]3] 0I8]| 1]1]| 0[4

Radix| 9 | 2 [3|8 | 1] 4

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

RADIX

The radix of a key is the value of an integer at a
position (using its base).
— Efficient to compute with bitshifting + multiplication.

Keys[1[9 |[1]2 [|213 ||o|8 |[1[1 [|0|4

Radix| 1 |1 | 2|0]|1]0

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

RADIX

The radix of a key is the value of an integer at a
position (using its base).
— Efficient to compute with bitshifting + multiplication.

Compute radix for each key and populate histogram
of counts per radix.

Radix

1

2

$CMU-DB

15-721 (Spring 2023)

Histogram
(Key —Count)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

PREFIX SUM

The prefix sum of a sequence of numbers
is a second sequence of numbers

(Yor Y1, s)
that is a running total of the input sequence.

—
N
w
D
ol
()]

Input

Prefix Sum | 1

£=CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

PREFIX SUM

The prefix sum of a sequence of numbers
is a second sequence of numbers

(Yor Y1, s)
that is a running total of the input sequence.

1 [2
=

+
1

Input

Prefix Sum

£=CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

PREFIX SUM

The prefix sum of a sequence of numbers
is a second sequence of numbers

(Yor Y1, s)
that is a running total of the input sequence.

1 [2]3]4]5]6

=
+
!

1

3

Input

Prefix Sum

£=CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

PREFIX SUM

The prefix sum of a sequence of numbers
is a second sequence of numbers

(Yor Y1, s)
that is a running total of the input sequence.

Input| 1 [2 [3]4]|5]6
7 ¥ 7 1
s Yk 2
PrefixSum| 1 | 3 | 6 [10]15] 21

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

$CMU-DB

15-721 (Spring 2023)

Scan Primitives for Vector Computers*

PREFIX S

Siddhartha Chatterjee Guy E. Blelloch Marco Zagha

School of Computer Science
Camegie Mellon University
Pittsburgh, PA 15213-3890

The prefix sum of a sequence of

x0’ x1’ ooey xn

is a second sequence of number

VYo VL, ..y ¥,

that is a running total of the in

Input

3

+ N

!
v

4
v
+

Prefix Sum

10

Abstract

used to implement the scans is based on an algorithm for par-
allel and is appli with minor modificati to
any register-based vector computer. On the CRAY Y-MP, the
Asymptotic running time of the Plus-scan is about 2.25 times that
©of a vector add, and is within 20% of optimal, An important
aspect of our impl; ion is that a set of versions
of these scans are only marginally more expensive than the un-
segmented versions. These segmented versions can be used to
execute a scan on multiple data sets without having t0 pay the
vector startup cost (1) ;) for each set,

The paper describes aradix sorting routine based on the scans
that is 13 times faster than a Fortran version and within 20% of
a highly optimized library sort routine, three operations on trees
that are between 10 and 20 times faster than the i

[: /. (clksfelty
Routine Scan version | Scalar version

Plus scan (int) 25 75()
segmented plus scan (in) 37 748 (s)
parallel radix sort (64 bits) 8968 | 117300(s)
branch_sums 122 206.5 (1)
Toot_sums 9.8 208.6 (f)
delete vertices 192 2762 (f)

Table 1: Incremental Processing times per element forprimitives
and applications discussed in this Paper, for both scan and scalar
versions. All numbers are for 5 single processor of a CRAY
Y-MP. 1 clock tick = 6 ns. Items marked with (+) were written
in Fortran and those marked with (1) were written in C,

create and manipulate more irregular and dynamically varying
data structures such s trees and graphs.

c
3
versions, and a connectionist learning algorithm that is 10 times
faster than the corresponding C version for Sparse and itregular
networks.

1 Introduction

Vector Supercomputers have been used to supply the high com-
Pputing power needed for many applications, However, the per-
formance obtained from these machines critically depends on
the ability to produce code that vectorizes well. Two distinet
approaches have been taken to meet this goal—vectorization of
“dusty decks” [18], and language support for vector intrinsics,
as seen in the proposed Fortran 8x standard [1]. In both cases,
the focus of the work has been in speeding up “scientific” com.

Ppredominantly regular access patterns within these data struc-
tures. These alternatives are not very effective for problems that

a3 supported by the Defense Advanced Rescarch Projocts
Agency (DOD) and monitored by the Avionics Laboratory, Air Force Wright
Acronautical Laborstories, Aeronautical Systems Division (AFSC), Wrigh-
Fatcrson AFB, Ohio 45433-6543 under Contract F33615-87-C-1499, ARPA
Order No. 4976, Amendment 20,

The views and conclusions contained in this document are those of the
author and should not be interproted as Tepresenting the official policies,
cither expressed or implied, of DARPA or the ()5, govemment,

CHESIS-S/QOIOOOOIOGSGMLOO © IEEE

El 3 scan (prefi tobe
extremely powerful primitives in designing parallel algorithms
for manipulating such irregular and dynamically changing data
siructures [3]. This paper shows how the sean operations can

Primitives on the CRAY Y-MP!, and gives performance numbers
for several applicati imil Table 1). The
approach in the design of these algorithms is similar to that of
the Basic Linear Algebra Subprogrlms(BLAS) developed in the
context of linear algebra computations [14] in that the algorithms
are based on a set of Pprimitives whose implementations are op-
timized rather than having a compiler try to Vvectorize existing
code.

‘The remainder of this Paper is organized as follows. Section 2
introduces the scan primitives and reviews previous work on

other primitives used in this paper, and three applications using
these primitives, Finally, future work and conclusions are given
in Section 5.2

!CRAY Y-MP and CFT77 are trademarks of Cray Research, Inc.
Al Fortran code discussd in this paper wae compiled with CFT77 er.
$om 3.1. AllC code was compited with Cray PCC Vi XMP/YMP 418,

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/doi/10.5555/110382.110597

RADIX PARTITIONS

Step #1: Inspect input,
create histograms

07

18

19

Q7

03

hash,(key)

11

15

10

£=CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

RADIX PARTITIONS

Step #1: Inspect input,
ﬁreate histograms

hash,(key)
8088808
— =]=lolel-1—|=
S| | |W[IN]|WO |0 |

£=CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

RADIX PARTITIONS

Step #1: Inspect input,

ﬁreate histograms
3 (o7
£3 [1ls
= B 1]
,§ Partition 0: 2
Nz, m o Partition 1: 2
= # MR
< B3 1
WS
m 110 Partmon 0:1
Partition 1: 3

0CMU -DB

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

hash,(key)

Q000002809

ol |lWIIN|JWO |00 |

$CMU-DB

15-721 (Spring 2023)

RADIX PARTITIONS

Step #2: Compute output

of fsets
> <+— Partition 0, CPU 0
> <+—— Partition 0, CPU 1
T U L
Partition 0: 2+ <— Partition1 ,CPU 0

Partition 1: 2

<«— Partition1, CPU 1

Partition 0: 1"
Partition 1: 3

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

hash,(key)

Q000002809

S |lOlT|m|W]IN]JW |0 |

$CMU-DB

15-721 (Spring 2023)

RADIX PARTITIONS

Step #2: Compute output

of fsets

<+— Partition 0, CPU 0

<«— Partition 0, CPU 1

Parti.ti.on 0:2 .. N <«— Partition1 , CPU 0
Partition 1: 2"

L <—— Partition 1, CPU 1
Partition 0:1
Partition 1: 3"

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

%
3 (o7
WG
= B 1]
\%367
%ﬂm
< B3 1
WG
3 |10

$CMU-DB

15-721 (Spring 2023)

RADIX

Partition 0: 2
Partition 1: 2

1
Partition 0: 1
Partition 1: 3

PARTITIONS

Step #3: Read input
and partition

<+— Partition 0, CPU 0

<«— Partition 0, CPU 1

<«— Partition1 , CPU 0

<«— Partition1, CPU 1

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

RADIX

Partition 0: 2
Partition 1: 2

hash,(key)

/

ol |lWIIN|JWO |00 |

Q000002809

1
Partition 0: 1

Partition 1: 3

$CMU-DB

15-721 (Spring 2023)

PARTITIONS

07

03

Step #3: Read input
and partition

<+— Partition 0, CPU 0

<«— Partition 0, CPU 1

<«— Partition1 , CPU 0

<«— Partition1, CPU 1

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

%
3 (o7
WG
= B 1]
\%367
%ﬂm
< B3 1
WG
3 |10

$CMU-DB

15-721 (Spring 2023)

RADIX

Partition 0: 2
Partition 1: 2

1
Partition 0: 1
Partition 1: 3

07

07

03

18

19

11

15

10

PARTITIONS

Step #3: Read input
and partition

<+— Partition 0, CPU 0

<«— Partition 0, CPU 1

<«— Partition1 , CPU 0

<«— Partition1, CPU 1

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

%
3 (o7
£3 [1ls
= B 1]
§ﬂ®7
%ﬂm
< B3 1
WG
3 |10

$CMU-DB

111111 (Spring 2023)

RADIX PARTITIONS

Recursively repeat until target number of
partitions have been created

Partition 0: 2
Partition 1: 2

1
Partition 0: 1
Partition 1: 3

<— Partition 0

S |
~

<«—— Partition 1

07

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

hash,(key)
aaaaaaaa'
— =]=lolel-1—|=
S| | |W[IN]|WO |0 |

0CMU -DB

111111111111111

RADIX PARTITIONS

Recursively repeat until target number of
partitions have

Partition 0: 2
Partition 1: 2

Partmon 0:1
Partition 1: 3

created

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

OPTIMIZATIONS

Software Write Combine Buffers:

— Each worker maintains local output buffer to stage writes.

— When buffer full, write changes to global partition.

— Similar to private partitions but without a separate write
phase at the end.

Non-temporal Streaming Writes

— Workers write data to global partition memory using
streaming instructions to bypass CPU caches.

| ON THE SURPRISING DIFFICULTY OF SIMPLE
- \'I/'II_-IDIISICZB&:STHE CASE OF RADIX PARTITIONING

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/doi/10.14778/2777598.2777602
https://dl.acm.org/doi/10.14778/2777598.2777602

BUILD PHASE

The threads are then to scan either the tuples (or
partitions) of R.

For each tuple, hash the join key attribute for that

tuple and add it to the appropriate bucket in the
hash table.

— The buckets should only be a few cache lines in size.

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

HASH TABLES

Design Decision #1: Hash Function

— How to map a large key space into a smaller domain.
— Trade-off between being fast vs. collision rate.

Design Decision #2: Hashing Scheme

— How to handle key collisions after hashing.

— Trade-off between allocating a large hash table vs.
additional instructions to find/insert keys.

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

$2CMU-DB

15-721 (Spring 2023)

HASH FUNCTIONS

We do not want to use a cryptographic hash
function for our join algorithm.

We want something that is fast and will have a low

collision rate.

— Best Speed: Always return '1'
— Best Collision Rate: Perfect hashing

See SMHasher for a comprehensive hash function
benchmark suite.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://github.com/aappleby/smhasher

$2CMU-DB

15-721 (Spring 2023)

We do not wan
function for ou

We want somse

collision rate.

— Best Speed: A
— Best Collisio

See SMHasher

benchmark su

<> Code © Issues 28

¥ master ~ smhasher / README.md

3 rurban results of fwojeik's fixes .. x

A7 contributors =) . i T ‘

= 444 lines (395 sloc) 37.4 KB

SMhasher
wmw

Hash function
donothing32
donothing64
donothing128
NOP_OAAT reads4
BadHash

sumhash
sumhash32
multiply_shift

pair_muiltiply_shift

1% Pull requests

MiB/sec
15316474 36
15330019.19
15278983.09

28467.50

7169.08
22556.18
5418.36
3716.95

@ Actions

cycl./hash
6.00

6.00

6.00

18.48
96.20
27.12
22.98
28.69

40.22

cycl./map

157.11 (3)
186.34 (3)

H ‘, H rurban/smhasher rusic 0 Sponsor 1\ Notifications

E Projects 0 wiki

863
345

609

% Fork 135 T Star 1.1k

0] Security |~ insights

Go 1o file

Latest commit 9asesss onAug 18 @ History

<> [Raw Blame R

Quality problems
bad seed 0, test NOP
bad seed 0, test NOP
bad seed 0, test NOp
test NOP
bad seed 0, test FAJL
bad seed 0, test FAJL
UB, test FAIL
bad seeds & OxFffffO, fails most tests

fails most tests

Ccp

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://github.com/aappleby/smhasher
https://github.com/rurban/smhasher

HASH FUNCTIONS

CRC-64 (1975)

— Used in networking for error detection.

MurmurHash (2008)

— Designed to a fast, general purpose hash function.

Google CityHash (2011)
— Designed to be faster for short keys (<64 bytes).

Facebook XXHash (2012)

— From the creator of zstd compression.

Google FarmHash (2014)

— Newer version of CityHash with better collision rates.

££CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://create.stephan-brumme.com/crc32/
https://github.com/aappleby/smhasher
https://github.com/google/cityhash
http://cyan4973.github.io/xxHash/
https://github.com/google/farmhash

HASH FUNCTION BENCHMARK

Intel Core i7-8700K @ 3.70GHz

—crc64 =—std::hash =——MurmurHash3 —CityHash —FarmHash —XXHash3

28000 -
~ 128
S 64
X 21000 - 192
= 32 ’
8 14000 - goov,
§.. / / A~ P oV
o0 \I\BRF SR M RN NVAR NRONODE
S 7000 - / ANgN -2
&~ [~
= f=
O | I [[
1 51 101 151 201 251

Source: Fredrik Widlund

=£CMUDB Key Size (bytes)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://github.com/apavlo/hash-function-benchmark

HASHING SCHEMES

Approach #1: Chained Hashing
Approach #2: Linear Probe Hashing
Approach #3: Robin Hood Hashing
Approach #4: Hopscotch Hashing
Approach #5: Cuckoo Hashing

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

CHAINED HASHING

Maintain a linked list of buckets for each slot in the

hash table.

Resolve collisions by placing all elements with the

same hash key into the same bucket.

— To determine whether an element is present, hash to its
bucket and scan for it.

— Insertions and deletions are generalizations of lookups.

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

hash(key)

Bucket

Pointers

OO =] >

CMU-DB
o

15-721 (Spring 2023)

CHAINED HASHING

- Buckets

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

CHAINED HASHING

hash(key)

hash(A)| A

| m OO =] >

15-721 (Spring 2023)

- Buckets

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

hash(key)

CHAINED HASHING

hash(B) | B

e

hash(A)| A

| m OO =] >

15-721 (Spring 2023)

- Buckets

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

CHAINED HASHING

hash(key)

hash(B) | B

\

hash(A)| A

hash(C) | C

| m OO =] >

15-721 (Spring 2023)

- Buckets

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

CHAINED HASHING

hash(key)

hash(B) | B

hash(A)| A

hash(C) | C

g5l fco] lw] F@ I--1 o=

15-721 (Spring 2023)

- Buckets

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

CHAINED HASHING

hash(D) | D

£CMU-DB
15-721 (Spring 2023,

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

CHAINED HASHING

£CMU-DB
15-721 (Spring 2023,

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

£CMU-DB
15-721 (Spring 2023,

CHAINED HASHING

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

CHAINED HASHING
AHyPer

hash(ke Yy) hash(B) I B 64-bit Bucket Pointers

I 48-bit Pointer
Y 16-bit Bloom Filter

hash(A)| A hash(D)| D
...... >

hash(C) | C hash(E) | E

hash(F) | F

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

LINEAR PROBE HASHING

Single giant table of slots.

Resolve collisions by linearly searching for the next

free slot in the table.

— To determine whether an element is present, hash to a
location in the table and scan for it.

— Must store the key in the table to know when to stop
scanning.

— Insertions and deletions are generalizations of lookups.

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

£=CMU-DB

15-721 (Spring 2023)

hash(key)

gol Icol fw] Fol -] =

LINEAR PROBE HASHING

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

LINEAR PROBE HASHING

hash(key)

hash(A)| A

mmcnj

£=CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

LINEAR PROBE HASHING

hash(key

hash(B)| B

g

hash(A)| A

T m OO =] >

£=CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

LINEAR PROBE HASHING

hash(key)

hash(B)| B

hash(A)| A

— 1

| m OO =] >

£=CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

LINEAR PROBE HASHING

hash(key)

hash(B)| B

hash(A)| A

— 1

hash(C)| C

| m OO =] >

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

LINEAR PROBE HASHING

hash(key) hash(B)| B
A
g hash(A) | A
E hash(D) | D
F

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

LINEAR PROBE HASHING

hash(key)

hash(B)| B

hash(A) | A

hash(C) | C

)

hash(D)

=)

OO =] >

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

LINEAR PROBE HASHING

hash(key)

hash(B)| B

hash(A)

)

hash(D)

OO =] >

A
hash(C)| C
D
E

hash(E)

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

LINEAR PROBE HASHING

hash(key)

hash(B)| B

hash(A)

hash(C)

hash(D)

L'[mcnw:>

hash(E)

T TO | >

hash(F)

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

$2CMU-DB

15-721 (Spring 2023)

OBSERVATION

To reduce the number of wasteful comparisons
during the build/probe phases, it is important to
avoid collisions of hashed keys.

This requires a hash table with ~2% the number of
slots as the number of elements in R.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

ROBIN HOOD HASHING

Variant of linear probe hashing that steals slots

from "rich" keys and give them to "poor" keys.

— Each key tracks the number of positions they are from
where its optimal position in the table.

— On insert, a key takes the slot of another key if the first key

is farther away from its optimal position than the second
key.

ROBIN HOOD HASHING
FOUNDATIONS OF COMPUTER SCIENCE 1985

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://ieeexplore.ieee.org/document/4568152/
http://ieeexplore.ieee.org/document/4568152/

15-721 (Spring 2023)

ROBIN HOOD HASHING

hash(key)

hash(A) | A [O0] ‘ # of " Jumps" From First Position

mmcnj

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

ROBIN HOOD HASHING

hash(key

hash(B)| B [0]

g

hash(A)| A [0]

T m OO =] >

£=CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

ROBIN HOOD HASHING

hash(key) hash(B)| B [O]

./ hash(A)| A [9]) Alo] ==C[0]

hash(C)| C [1]

| m OO =] >

£=CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

ROBIN HOOD HASHING

hash(key)

hash(B)| B [0]

._/—> hash(C)

hash(A)|A [©’

@)
=

hash(D)|D [1]

| m OO =] >

15-721 (Spring 2023)

C[1] > D[o]

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

ROBIN HOOD HASHING

hash(key) hash(B)| B [O]

hash(A)| A [@] §| Al0] == E[0]
/ hash(C)|C [1] 8C[1]==E[1]
hash(D)| D [1] 4] DI1] <El2]

@)

OO =] >

$2CMU-DB
o

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

ROBIN HOOD HASHING

hash(key) hash(B)| B [O]

hash(A)| A [@] §| Al0] == E[0]
/ hash(C)|C [1] 8C[1]==E[1]
hash(E) | E [2] |4 DI1] <El2]

@)

OO =] >

$2CMU-DB
o

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

ROBIN HOOD HASHING

hash(key) hash(B)| B [@]
A
g hash(A)| A [O] IA[0]==E[0]
D/ hash(C)|C [1] IC[1]==E[1]
E hash(E) | E [2] & DI1] <El2]
F hash(D)| D [2]}¥]

$2CMU-DB
o

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

ROBIN HOOD HASHING

hash(key)

hash(B)| B [0]

hash(A)|A [©’

hash(C)|C [1]

hash(E)|E [2]

L'[mcnw:>

hash(D)|D [2]

hash(F)|F [1]

15-721 (Spring 2023)

D[2] > Fl[o]

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

HOPSCOTCH HASHING

Variant of linear probe hashing where keys can

move between positions in a neighborhood.

— A neighborhood is contiguous range of slots in the table.

— The size of a neighborhood is a configurable constant
(ideally a single cache-line).

— A key is guaranteed to be in its neighborhood or not exist
in the table.

The goal is to have the cost of accessing a
neighborhood to be the same as finding a key.

HOPSCOTCH HASHING
SYMPOSIUM ON DISTRIBUTED COMPUTING 2008

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://doi.org/10.1007/978-3-540-87779-0_24
https://doi.org/10.1007/978-3-540-87779-0_24

15-721 (Spring 2023)

hash(key)

OO =] >

HOPSCOTCH HASHING

Neighborhood Size = 3
Neighborhood #1

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

£CMU-DB
15-721 (Spring 2023,

hash(key)

OO =] >

HOPSCOTCH HASHING

Neighborhood Size = 3
Neighborhood #1

Neighborhood #2

Neighborhood #3
Neighborhood #4

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

£CMU-DB
15-721 (Spring 2023,

hash(key)

OO =] >

HOPSCOTCH HASHING

Neighborhood Size = 3
Neighborhood #1 Neighborhood #6

Neighborhood #2

Neighborhood #3
Neighborhood #4

Neighborhood #6

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

HOPSCOTCH HASHING

Neighborhood Size = 3

hash(key)

Neighborhood #3

$2CMU-DB
o

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

HOPSCOTCH HASHING

hash(key)

T m OO =] >

hash(B) | B

hash(A)| A

££CMU-DB
Lt (i

111111111111111)

Neighborhood Size = 3
Neighborhood #1

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

HOPSCOTCH HASHING

hash(key)

hash(B)| B

| m OO =] >

hash(A)| A

15-721 (Spring 2023)

Neighborhood Size = 3

Neighborhood #3

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

HOPSCOTCH HASHING

hash(key)

hash(B)| B

| m OO =] >

hash(A)| A

15-721 (Spring 2023)

Neighborhood Size = 3

Neighborhood #3

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

HOPSCOTCH HASHING

hash(key)

hash(B)| B

OO =] >

hash(A)| A

15-721 (Spring 2023)

Neighborhood Size = 3

Neighborhood #3

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

hash(key)

OO =] >

15-721 (Spring 2023)

HOPSCOTCH HASHING

Neighborhood Size = 3

hash(B)| B

hash(A)| A

Neighborhood #3

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

HOPSCOTCH HASHING

hash(key)

eol Icol fw] Kol -] =

Neighborhood Size = 3

hash(B)| B

hash(A)| A

15-721 (Spring 2023)

Neighborhood #4

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

HOPSCOTCH HASHING

hash(key)

Neighborhood Size = 3

hash(B)| B

hash(A)| A

B haiOlC__

gol Icol fw] Fol -] =

15-721 (Spring 2023)

Neighborhood #4

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

hash(key)

gol Icol fw] Fol -] =

15-721 (Spring 2023)

HOPSCOTCH HASHING

Neighborhood Size = 3

hash(B)| B

hash(A) | A

Neighborhood #4

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

HOPSCOTCH HASHING

Neighborhood Size = 3

hash(key) hash(B) | B

hash(A)| A
/ hash(C) | C
hash(D)

=)

OO =] >

$2CMU-DB
o

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

HOPSCOTCH HASHING

hash(key)

OO =] >

Neighborhood Size = 3

hash(B)| B

hash(A)| A

Neighborhood #3

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

HOPSCOTCH HASHING

hash(key)

OO =] >

Neighborhood Size = 3

hash(B)| B

hash(A)| A

Neighborhood #3

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

hash(key)

OO =] >

15-721 (Spring 2023)

HOPSCOTCH HASHING

Neighborhood Size = 3

hash(B)| B

hash(A)| A

Neighborhood #3

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

HOPSCOTCH HASHING

hash(key)

hash(B)| B

| m OO =] >

hash(A) | A

15-721 (Spring 2023)

Neighborhood Size = 3

Neighborhood #4

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

HOPSCOTCH HASHING

hash(key)

hash(B)| B

| m OO =] >

hash(A)| A

15-721 (Spring 2023)

Neighborhood Size = 3

Neighborhood #4

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

HOPSCOTCH HASHING

hash(key)

hash(B)| B

hash(A)| A

hash(C)| C

OO =] >

hash(D)| D

15-721 (Spring 2023)

Neighborhood Size = 3

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

HOPSCOTCH HASHING

hash(key)

hash(B)| B

hash(A)

OO =] >

A
C

hash(D)

D

15-721 (Spring 2023)

Neighborhood Size = 3

Neighborhood #3

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

HOPSCOTCH HASHING

Neighborhood Size = 3

hash(key) hash(B) | B
A
g hash(A) | A
D hash(C)|C
E hash(E) | E
F hash(D)| D

$CMU-DB
o

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

££CMU-DB
Lt (i

111111111111111)

HOPSCOTCH HASHING

Neighborhood Size = 3

hash(key) | hash(B)| B |
A
B
. hash(A) | A
D hash(C) | C
E hash(E) | E
Neighborhood #6

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

HOPSCOTCH HASHING

hash(key)

OO =] >

Neighborhood Size = 3

| hash(B)| B

hash(A)

hash(C)

O f >

hash(E)

=)

Neighborhood #6

££CMU-DB
Lt (i

111111111111111)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

HOPSCOTCH HASHING

hash(key)

OO =] >

Neighborhood Size = 3

| hash(B)| B

hash(A)

hash(C)

O f >

hash(E)

=)

Neighborhood #6

££CMU-DB
Lt (i

111111111111111)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

HOPSCOTCH HASHING

hash(key)

OO =] >

Neighborhood Size = 3

| hash(B)| B

hash(A)

hash(C)

O f >

hash(E)

hash(F)

=)

2>

Neighborhood #6

££CMU-DB
Lt (i

111111111111111)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

££CMU-DB
Lt (i

111111111111111)

hash(key)

OO =] >

HOPSCOTCH HASHING

Neighborhood Size = 3

| hash(B)|B |

hash(A)

hash(C)
hash(E)

hash(D) Neighborhood #6
hash(F)

O f >

=)

2>

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

CUCKOO HASHING

Use multiple tables with different hash functions.

— On insert, check every table and pick anyone that has a free
slot.

— If no table has a free slot, evict the element from one of
them and then re-hash it find a new location.

Look-ups are always O(1) because only one location
per hash table is checked.

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

CUCKOO HASHING

Hash Table #1 Hash Table #2
Insert X

hash(X) hash,(X)

111

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

CUCKOO HASHING

Hash Table #1 Hash Table #2
Insert X

hash(X) hash,(X)

hash (X)| X

111

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

CUCKOO HASHING

Hash Table #1 Hash Table #2

Insert X
] hash(X) hash,(X)
hash(X)| X

InsertY
hash(Y) hash,(Y)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

CUCKOO HASHING

Hash Table #1 Hash Table #2
Insert X

hash(X) hash,(X) hash,(Y)| Y

hash (X)| X

InsertY
hash(Y) hash,(Y)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

CUCKOO HASHING

Hash Table #1 Hash Table #2
Insert X

| ek hash(X)

hash(X)| X
InsertY
hash(Y) hash,(Y)

Insert Z

L N\ hsh2) hash2) -

£CMU-DB
15-721 (Spring 2023,

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

CUCKOO HASHING

Hash Table #1 Hash Table #2
Insert X

hash(X) hash,(X)

InsertY
hash(Y) hash,(Y)

hash (X)| X

Insert Z

L k@) hash2) -

£CMU-DB
15-721 (Spring 2023,

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

£CMU-DB
15-721 (Spring 2023,

CUCKOO HASHING

Hash Table #1

Insert X
hash(X) hash,(X)

InsertY
hash(Y) hash,(Y)

Insert Z
hash(Z) hash,(Z)

hash,(Y)

Hash Table #2

hash(2)| Z

111

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

£CMU-DB
15-721 (Spring 2023,

CUCKOO HASHING

Hash Table #1

Insert X
hash(X) hash,(X)

InsertY
hash(Y) hash,(Y)

Insert Z
hash(Z) hash,(Z)

hash,(Y)

Hash Table #2

hash(2)| Z

111

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

£CMU-DB
15-721 (Spring 2023,

)

CUCKOO HASHING

Hash Table #1

hash (Y)Y

Insert X
hash(X) hash,(X)

InsertY
hash(Y) hash,(Y)

Insert Z
hash(Z) hash,(Z)

hash,(Y)
hash,(X)

Hash Table #2

hash(2)| Z

hash,(X) | X

111

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

PROBE PHASE

For each tuple in S, hash its join key and check to
see whether there is a match for each tuple in
corresponding bucket in the hash table constructed
for R.

— [f inputs were partitioned, then assign each thread a unique
partition.
— Otherwise, synchronize their access to the cursor on S.

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

PROBE PHASE - BLOOM FILTER

Create a Bloom Filter during the build phase when

the key is likely to not exist in the hash table.

— Threads check the filter before probing the hash table. This
will be faster since the filter will fit in CPU caches.

— Sometimes called sideways information passing.

“" MICRO ADAPTIVITY IN VECTORWISE
~ |SIGMOD 2013

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://dl.acm.org/citation.cfm?id=2465292
http://dl.acm.org/citation.cfm?id=2465292

PROBE PHASE - BLOOM FILTER

Create a Bloom Filter during the build phase when

the key is likely to not exist in the hash table.

— Threads check the filter before probing the hash table. This
will be faster since the filter will fit in CPU caches.

— Sometimes called sideways information passing.

= = =

n — C——]
n — L |——

g P>
Y Bloom Filter / \

A B

“" MICRO ADAPTIVITY IN VECTORWISE
~ |SIGMOD 2013

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://dl.acm.org/citation.cfm?id=2465292
http://dl.acm.org/citation.cfm?id=2465292

122

PROBE PHASE - BLOOM FILTER

Create a Bloom Filter during the build phase when

the key is likely to not exist in the hash table.

— Threads check the filter before probing the hash table. This
will be faster since the filter will fit in CPU caches.

— Sometimes called sideways information passing.

= = =

L = =
= =m —
N = ?M\Y Bloom Filter

“" | MICRO ADAPTIVITY IN VECTORWISE
~ |SIGMOD 2013

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://dl.acm.org/citation.cfm?id=2465292
http://dl.acm.org/citation.cfm?id=2465292

122

PROBE PHASE - BLOOM FILTER

Create a Bloom Filter during the build phase when

the key is likely to not exist in the hash table.

— Threads check the filter before probing the hash table. This
will be faster since the filter will fit in CPU caches.

— Sometimes called sideways information passing.

e

5 : ?M ?Bloom Filter

“" MICRO ADAPTIVITY IN VECTORWISE
~ |SIGMOD 2013

B

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://dl.acm.org/citation.cfm?id=2465292
http://dl.acm.org/citation.cfm?id=2465292

HASH JOIN VARIANTS

No-P Shared-P Private-P Radix

Partitioning No Yes Yes Yes
Input scans 0 1 1 2
Sync during ~ Spinlock Barrier, Barrier,

partitioning per tuple once atend 4 - #passes

Hash table = Shared Private Private Private

Syn.c during Yes No No No
build phase

Sync during No No No No

probe phase

$CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

BENCHMARKS

Implemented multiple variants of hash join
algorithms based on previous literature and
compare unoptimized vs. optimized versions.

Core approaches:

— No Partitioning Hash Join

— Concise Hash Table Join

— 2-pass Radix Hash Join (Chained vs. Linear)

Special Case: Arrays for monotonic primary keys.

- | AN EXPERIMENTAL COMPARISON OF THIRTEEN
RELATIONAL EQUI-JOINS IN MAIN MEMORY
SIGMOD 2016

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/doi/10.1145/2882903.2882917
https://dl.acm.org/doi/10.1145/2882903.2882917

JOIN COMPARISON (Rp<iS)

4% Intel Xeon CPU E7-4870v2 (Only 32 cores)
[R[=128M, [S|=1280 M o
Optimized

I \

1600 1449 1454 1449
1 Better Performance

806
800
556
518 456
400 -
O I T T T 1

Sort-Merge Concise Radix-Part No-Part No-Part Radix-Part Radix-Part Radix-Part
Source: Stefan Schuh Hash (Chained) (Linear) (Array) (Chained) (Linear) (Array)

£CMU-DB MWAY CHTJ PRB NOP NOPA PRO PRL PRA

15-721 (Spring 2023)

Throughput (M tuples / sec)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://bigdata.uni-saarland.de/people/schuh.php

TPC-H Q13

4x Intel Xeon CPU E7-487 0v4
Scale Factor 100

B Join Operator M Remaining Query

301 285
- 250 279

. 7

No-Part No-Part Radix Radix
(Linear) (Array) (Linear) (Array)

Runtime (ms)
S
(@)

Source: Stefan Schuh

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://bigdata.uni-saarland.de/people/schuh.php

PARTING THOUGHTS

Partitioned-based joins outperform no-partitioning
algorithms in most settings, but it is non-trivial to
tune it correctly.

AFAIK, every DBMS vendor picks one hash join
implementation and does not try to be adaptive.

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

NEXT CLASS

Parallel Sort-Merge Joins

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

	Introduction
	Slide 1: Parallel Hash Join Algorithms
	Slide 2: ADMINISTRIVIA
	Slide 3: TODAY’S AGENDA

	Background
	Slide 4: PARALLEL JOIN ALGORITHMS
	Slide 5: OBSERVATION
	Slide 6: HASHING VS. SORTING JOINS
	Slide 7: PARALLEL JOIN ALGORITHMS
	Slide 8: JOIN ALGORITHM DESIGN GOALS
	Slide 9: IMPROVING CACHE BEHAVIOR
	Slide 10: PARALLEL HASH JOINS
	Slide 11: HASH JOIN (R⨝S)

	Partition Phase
	Slide 12: PARTITIONING PHASE
	Slide 13: PARTITION PHASE
	Slide 14: PARTITION PHASE
	Slide 15: NON-BLOCKING PARTITIONING
	Slide 16: SHARED PARTITIONS
	Slide 17: SHARED PARTITIONS
	Slide 18: SHARED PARTITIONS
	Slide 19: SHARED PARTITIONS
	Slide 20: PRIVATE PARTITIONS
	Slide 21: PRIVATE PARTITIONS
	Slide 22: PRIVATE PARTITIONS
	Slide 23: PRIVATE PARTITIONS
	Slide 24: PRIVATE PARTITIONS
	Slide 25: RADIX PARTITIONING
	Slide 26: RADIX
	Slide 27: RADIX
	Slide 28: RADIX
	Slide 29: RADIX
	Slide 30: PREFIX SUM
	Slide 31: PREFIX SUM
	Slide 32: PREFIX SUM
	Slide 33: PREFIX SUM
	Slide 34: PREFIX SUM
	Slide 35: RADIX PARTITIONS
	Slide 36: RADIX PARTITIONS
	Slide 37: RADIX PARTITIONS
	Slide 38: RADIX PARTITIONS
	Slide 39: RADIX PARTITIONS
	Slide 40: RADIX PARTITIONS
	Slide 41: RADIX PARTITIONS
	Slide 42: RADIX PARTITIONS
	Slide 43: RADIX PARTITIONS
	Slide 44: RADIX PARTITIONS
	Slide 45: OPTIMIZATIONS

	Build Phase
	Slide 46: BUILD PHASE
	Slide 47: HASH TABLES

	Hash Functions
	Slide 48: HASH FUNCTIONS
	Slide 49: HASH FUNCTIONS
	Slide 50: HASH FUNCTIONS
	Slide 51: HASH FUNCTION BENCHMARK

	Hashing Schemes
	Slide 52: HASHING SCHEMES
	Slide 53: CHAINED HASHING
	Slide 54: CHAINED HASHING
	Slide 55: CHAINED HASHING
	Slide 56: CHAINED HASHING
	Slide 57: CHAINED HASHING
	Slide 58: CHAINED HASHING
	Slide 59: CHAINED HASHING
	Slide 60: CHAINED HASHING
	Slide 61: CHAINED HASHING
	Slide 62: CHAINED HASHING
	Slide 63: LINEAR PROBE HASHING
	Slide 64: LINEAR PROBE HASHING
	Slide 65: LINEAR PROBE HASHING
	Slide 66: LINEAR PROBE HASHING
	Slide 67: LINEAR PROBE HASHING
	Slide 68: LINEAR PROBE HASHING
	Slide 69: LINEAR PROBE HASHING
	Slide 70: LINEAR PROBE HASHING
	Slide 71: LINEAR PROBE HASHING
	Slide 72: LINEAR PROBE HASHING
	Slide 73: OBSERVATION
	Slide 74: ROBIN HOOD HASHING
	Slide 75: ROBIN HOOD HASHING
	Slide 76: ROBIN HOOD HASHING
	Slide 77: ROBIN HOOD HASHING
	Slide 78: ROBIN HOOD HASHING
	Slide 79: ROBIN HOOD HASHING
	Slide 80: ROBIN HOOD HASHING
	Slide 81: ROBIN HOOD HASHING
	Slide 82: ROBIN HOOD HASHING
	Slide 83: HOPSCOTCH HASHING
	Slide 84: HOPSCOTCH HASHING
	Slide 85: HOPSCOTCH HASHING
	Slide 86: HOPSCOTCH HASHING
	Slide 87: HOPSCOTCH HASHING
	Slide 88: HOPSCOTCH HASHING
	Slide 89: HOPSCOTCH HASHING
	Slide 90: HOPSCOTCH HASHING
	Slide 91: HOPSCOTCH HASHING
	Slide 92: HOPSCOTCH HASHING
	Slide 93: HOPSCOTCH HASHING
	Slide 94: HOPSCOTCH HASHING
	Slide 95: HOPSCOTCH HASHING
	Slide 96: HOPSCOTCH HASHING
	Slide 97: HOPSCOTCH HASHING
	Slide 98: HOPSCOTCH HASHING
	Slide 99: HOPSCOTCH HASHING
	Slide 100: HOPSCOTCH HASHING
	Slide 101: HOPSCOTCH HASHING
	Slide 102: HOPSCOTCH HASHING
	Slide 103: HOPSCOTCH HASHING
	Slide 104: HOPSCOTCH HASHING
	Slide 105: HOPSCOTCH HASHING
	Slide 106: HOPSCOTCH HASHING
	Slide 107: HOPSCOTCH HASHING
	Slide 108: HOPSCOTCH HASHING
	Slide 109: HOPSCOTCH HASHING
	Slide 110: CUCKOO HASHING
	Slide 111: CUCKOO HASHING
	Slide 112: CUCKOO HASHING
	Slide 113: CUCKOO HASHING
	Slide 114: CUCKOO HASHING
	Slide 115: CUCKOO HASHING
	Slide 116: CUCKOO HASHING
	Slide 117: CUCKOO HASHING
	Slide 118: CUCKOO HASHING
	Slide 119: CUCKOO HASHING

	Probe Phase
	Slide 121: PROBE PHASE
	Slide 122: PROBE PHASE – BLOOM FILTER
	Slide 123: PROBE PHASE – BLOOM FILTER
	Slide 124: PROBE PHASE – BLOOM FILTER
	Slide 125: PROBE PHASE – BLOOM FILTER
	Slide 126: HASH JOIN VARIANTS

	Evaluation
	Slide 127: BENCHMARKS
	Slide 128: JOIN COMPARISON (R⨝S)
	Slide 129: TPC-H Q19

	Conclusion
	Slide 130: PARTING THOUGHTS
	Slide 131: NEXT CLASS

