
ADVANCED DATABASE SYSTEMS

Andy Pavlo // 15-721 // Spring 2023

Sort-Merge Join
Algorithms

L
e

c
tu

re
 #

1
2

https://15721.courses.cs.cmu.edu/spring2023
http://db.cs.cmu.edu/

15-721 (Spring 2023)

ADMINISTRIVIA

Project #2:
→ Feedback Submission: Saturday April 1st

→ Final Submission: Monday May 1st

→ Sign up for a system if you haven't yet!

Project #3
→ Status Update Presentation: Monday April 3rd

→ Final Presentations: Friday May 5th @ 5:30pm

2

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

TODAY’S AGENDA

Background

Sorting Algorithms

Parallel Sort-Merge Join

Evaluation

3

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

SORT-MERGE JOIN (R⨝S)

Phase #1: Sort
→ Sort the tuples of R and S based on the join key(s).

Phase #2: Merge
→ Maintain two iterators (one per sorted relation) and

compare tuples at each position.
→ The outer relation R only needs to be scanned once.

4

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

SORT-MERGE JOIN (R⨝S)

5

Relation R Relation S

⨝
SO
RT
! SORT!

MERGE!

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

PARALLEL SORT-MERGE JOINS

Sorting is the most expensive part.

Use hardware correctly to speed up the join
algorithm as much as possible.
→ Utilize as many CPU cores as possible.
→ Be mindful of NUMA boundaries.
→ Use SIMD instructions where applicable.

6

MULTI-CORE, MAIN-MEMORY JOINS:
SORT VS. HASH REVISITED
VLDB 2013

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://www.vldb.org/pvldb/vol7/p85-balkesen.pdf
https://www.vldb.org/pvldb/vol7/p85-balkesen.pdf

15-721 (Spring 2023)

PARALLEL SORT-MERGE JOIN (R⨝S)

Phase #1: Partitioning (optional)
→ Partition R and assign them to workers / cores.
→ Can use the radix partitioning approach discussed last class.

Phase #2: Sort
→ Sort the tuples of R and S based on the join key.

Phase #3: Merge
→ Scan the sorted relations and compare tuples.
→ The outer relation R only needs to be scanned once.

7

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

SORT PHASE

Quicksort is probably what most DBMSs will use.

Mergesort is good but requires O(N) additional
storage for intermediate results.

We will first discuss a mergesort implementation
that takes advantage of NUMA and parallel cores
for in-memory data.

9

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

CACHE-CONSCIOUS SORTING

Level #1: In-Register Sorting
→ Sort runs that fit into CPU registers.

Level #2: In-Cache Sorting
→ Merge Level #1 output into runs that fit into CPU caches.
→ Repeat until sorted runs are ½ cache size.

Level #3: Out-of-Cache Sorting
→ Used when the runs of Level #2 exceed the size of caches.

10

SORT VS. HASH REVISITED: FAST JOIN IMPLEMENTATION
ON MODERN MULTI-CORE CPUS
VLDB 2009

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://15721.courses.cs.cmu.edu/spring2020/papers/18-sortmergejoins/kim-vldb2009.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/18-sortmergejoins/kim-vldb2009.pdf

15-721 (Spring 2023)

CACHE-CONSCIOUS SORTING

11

Level #1

Level #2

Level #3

SORTED

UNSORTED

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

LEVEL #1 – SORTING NETWORKS

Abstract model for sorting keys.
→ Fixed wiring “paths” for lists with the same # of elements.
→ Efficient to execute on modern CPUs because of limited

data dependencies and no branches.

12

9

5

3

6

3

6

5

9

9

6

5

3

5

6

Input Output
3

5

6

9

orig = [9,5,3,6]

wires1[0] = min(orig[0], orig[1])
wires1[1] = max(orig[0], orig[1])
wires1[2] = min(orig[2], orig[3])
wires1[3] = max(orig[2], orig[3])

output[0] = min(wires1[0], wires1[2])
wires2[2] = max(wires1[0], wires1[2])
wires2[1] = min(wires1[1], wires1[3])
output[3] = max(wires1[1], wires1[3])

output[1] = min(wires2[1], wires2[2])
output[2] = max(wires2[1], wires2[2])

1 1

2
2

3
3

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

LEVEL #1 – SORTING NETWORKS

13

12 21 4 13

9 8 6 7

1 14 3 0

5 11 15 10

<64-bit Join Key, 64-bit Tuple Pointer>

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

LEVEL #1 – SORTING NETWORKS

13

12 21 4 13

9 8 6 7

1 14 3 0

5 11 15 10

Sort Across
Registers

Instructions:
→ 4 LOAD

4-element run

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

LEVEL #1 – SORTING NETWORKS

13

12 21 4 13

9 8 6 7

1 14 3 0

5 11 15 10

1 8 3 0

5 11 4 7

9 14 6 10

12 21 15 13

Sort Across
Registers

Instructions:
→ 4 LOAD

Instructions:
→ 10 MIN/MAX

4-element run

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

LEVEL #1 – SORTING NETWORKS

13

12 21 4 13

9 8 6 7

1 14 3 0

5 11 15 10

1 8 3 0

5 11 4 7

9 14 6 10

12 21 15 13

1 5 9 12

8 11 14 21

3 4 6 15

0 7 10 13

Sort Across
Registers

Transpose
Registers

Instructions:
→ 4 LOAD

Instructions:
→ 10 MIN/MAX

Instructions:
→ 8 SHUFFLE
→ 4 STORE

4-element run

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

LEVEL #2 – BITONIC MERGE NETWORK

Similar technique as a Sorting Network but merges
two locally-sorted lists into a globally-sorted list.

Can expand network to merge progressively larger
lists up to ½ LLC size.

Intel’s Measurements
→ 2.25–3.5× speed-up over SISD implementation.

17

EFFICIENT IMPLEMENTATION OF SORTING
ON MULTI-CORE
VLDB 2008

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://www.vldb.org/pvldb/1/1454171.pdf
http://www.vldb.org/pvldb/1/1454171.pdf

15-721 (Spring 2023)

LEVEL #2 – BITONIC MERGE NETWORK

18

Input Output

12

9

5

1

Sorted Run

Reverse
Sorted Run

8

11

14

21

1

1

8

9

11

12

14

21

S

H

U

F

F

L

E

S

H

U

F

F

L

E

Sorted Run

min/max min/max min/max

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

LEVEL #3 – MULTI-WAY MERGING

Use the Bitonic Merge Networks but split the
process up into tasks.
→ Still one worker thread per core.
→ Link together tasks with a cache-sized FIFO queue.

A task blocks when either its input queue is empty,
or its output queue is full.

Requires more CPU instructions but brings
bandwidth and compute into balance.

19

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

Sorted Runs

LEVEL #3 – MULTI-WAY MERGING

20

MERGE

MERGE

MERGE

MERGE

MERGE

MERGE

MERGE

Cache-Sized
Queues

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

IN-PLACE SUPERSCALAR SAMPLESORT

The IPS4o algorithm (2017) recursively partition
relation by sampling keys to determine partition
boundaries.
→ Copies data into output buffers during the partitioning

phases.
→ When a buffer gets full, the DBMS writes it back into

portions of its existing input buffers instead of allocating a
new buffer.

This is the sorting algorithm that we used in CMU's
NoisePage DBMS (RIP).

21

IN-PLACE PARALLEL SUPER SCALAR SAMPLESORT
ESA 2017

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://github.com/ips4o/ips4o
https://github.com/cmu-db/noisepage/blob/master/src/execution/sql/sorter.cpp
https://arxiv.org/abs/1705.02257
https://arxiv.org/abs/1705.02257

15-721 (Spring 2023)

VECTORIZED QUICKSORT

Google vqsort (2022)
→ Use sorting network for less than 256 keys.
→ Based on Google Highway library to provide support for

different ISAs and SIMD register sizes.
→ Claims to be 1.59x faster than IPS4o.

Intel x86-simd-sort (2022)
→ Aggressive use of AVX512 instructions.

22

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://opensource.googleblog.com/2022/06/Vectorized and performance portable Quicksort.html
https://github.com/google/highway
https://github.com/intel/x86-simd-sort

15-721 (Spring 2023)

MERGE PHASE

Iterate through the outer table and inner table in
lockstep and compare join keys.

May need to backtrack if there are duplicates.

The DBMS can execute this phase in parallel using
multiple workers without synchronization if there
are separate output buffers.

23

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

SORT-MERGE JOIN VARIANTS

Multi-Way Sort-Merge (M-WAY)

Multi-Pass Sort-Merge (M-PASS)

Massively Parallel Sort-Merge (MPSM)

24

MULTI-CORE, MAIN-MEMORY JOINS:
SORT VS. HASH REVISITED
VLDB 2013

MULTI-CORE, MAIN-MEMORY JOINS:
SORT VS. HASH REVISITED
VLDB 2013

MASSIVELY PARALLEL SORT-MERGE JOINS IN
MAIN MEMORY MULTI-CORE DATABASE SYSTEMS
VLDB 2012

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://www.vldb.org/pvldb/vol7/p85-balkesen.pdf
https://www.vldb.org/pvldb/vol7/p85-balkesen.pdf
https://www.vldb.org/pvldb/vol7/p85-balkesen.pdf
https://www.vldb.org/pvldb/vol7/p85-balkesen.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/18-sortmergejoins/p1064-albutiu.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/18-sortmergejoins/p1064-albutiu.pdf

15-721 (Spring 2023)

MULTI-WAY SORT-MERGE

Outer Table
→ Each core sorts in parallel on local data (levels #1/#2).
→ Redistribute sorted runs across cores using range

partitioning then perform multi-way merge (level #3).

Inner Table
→ Same as outer table.

Merge phase is between matching pairs of chunks
of outer/inner tables at each core.

25

MULTI-CORE, MAIN-MEMORY JOINS:
SORT VS. HASH REVISITED
VLDB 2013

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://www.vldb.org/pvldb/vol7/p85-balkesen.pdf
https://www.vldb.org/pvldb/vol7/p85-balkesen.pdf

15-721 (Spring 2023)

MULTI-WAY SORT-MERGE

26

Local-NUMA
Partitioning Sort

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

MULTI-WAY SORT-MERGE

26

Local-NUMA
Partitioning Sort

Multi-Way
Merge

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

MULTI-WAY SORT-MERGE

26

Local-NUMA
Partitioning Sort

Multi-Way
Merge

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

MULTI-WAY SORT-MERGE

26

SO
RT
!

SO
RT
!

SO
RT
!

SO
RT
!

Local-NUMA
Partitioning Sort

Multi-Way
Merge

Same steps as
Outer Table

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

MULTI-WAY SORT-MERGE

26

SO
RT
!

SO
RT
!

SO
RT
!

SO
RT
!

⨝

⨝

⨝

⨝

Local-NUMA
Partitioning Sort

Multi-Way
Merge

Local Merge
Join

Same steps as
Outer Table

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

MULTI-PASS SORT-MERGE

Outer Table
→ Same level #1/#2 sorting as previous Multi-Way Merge.
→ But instead of redistributing data across cores, perform a

global multi-pass naïve merge on sorted runs.

Inner Table
→ Same as outer table.

Merge phase is between matching pairs of chunks
of outer table and inner table.

31

MULTI-CORE, MAIN-MEMORY JOINS:
SORT VS. HASH REVISITED
VLDB 2013

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://15721.courses.cs.cmu.edu/spring2020/papers/18-sortmergejoins/p85-balkesen.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/18-sortmergejoins/p85-balkesen.pdf

15-721 (Spring 2023)

MULTI-PASS SORT-MERGE

32

Local-NUMA
Partitioning Sort

Global Merge
Join

⨝

Local-NUMA
PartitioningSort

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

MASSIVELY PARALLEL SORT-MERGE

Outer Table
→ Range-partition outer table and redistribute to cores.
→ Each core sorts then in parallel on their local partitions.

Inner Table
→ Not redistributed like outer table.
→ Each core sorts its local data.

Merge phase is between entire sorted run of outer
table and a segment of inner table.

33

MASSIVELY PARALLEL SORT-MERGE JOINS IN
MAIN MEMORY MULTI-CORE DATABASE SYSTEMS
VLDB 2012

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://15721.courses.cs.cmu.edu/spring2020/papers/18-sortmergejoins/p1064-albutiu.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/18-sortmergejoins/p1064-albutiu.pdf

15-721 (Spring 2023)

MASSIVELY PARALLEL SORT-MERGE

34

SO
RT
!

SO
RT
!

SO
RT
!

SO
RT
!

⨝

⨝

⨝

⨝

Cross-NUMA
Partitioning Sort

Cross-Partition
Merge Join

Globally Sorted

Locally Sorted
Partitions

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

HYPER's RULES FOR PARALLELIZATION

Rule #1: No random writes to non-local
memory
→ Chunk the data, redistribute, and then each core

sorts/works on local data.

Rule #2: Only perform sequential reads on non-
local memory
→ This allows the hardware prefetcher to hide remote access

latency.

Rule #3: No core should ever wait for another
→ Avoid fine-grained latching or sync barriers.

35

Source: Martina-Cezara Albutiu

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://15721.courses.cs.cmu.edu/spring2016/papers/p1064-albutiu.pdf

15-721 (Spring 2023)

EVALUATION

Compare the different join algorithms using a
synthetic data set.
→ Sort-Merge: M-WAY, M-PASS, MPSM
→ Hash: Radix Partitioning

Hardware:
→ 4 Socket Intel Xeon E4640 @ 2.4GHz
→ 8 Cores with 2 Threads Per Core
→ 512 GB of DRAM

36

MULTI-CORE, MAIN-MEMORY JOINS:
SORT VS. HASH REVISITED
VLDB 2013

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://15721.courses.cs.cmu.edu/spring2020/papers/18-sortmergejoins/p85-balkesen.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/18-sortmergejoins/p85-balkesen.pdf

15-721 (Spring 2023)

COMPARISON OF SORT-MERGE JOINS

38

0

100

200

300

400

0

5

10

15

20

25

M-WAY M-PASS MPSM

T
hr

ou
gh

pu
t (

M
 T

u
pl

es
/s

ec
)

C
yc

le
s

/
O

u
tp

u
t T

u
pl

e

Partition Sort S-Merge J-Merge Throughput

13.6

Source: Cagri Balkesen

Workload: 1.6B⋈ 128M (8-byte tuples)

7.6

22.9

↑Higher is Better

↓Lower is Better

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://www.inf.ethz.ch/personal/cagri.balkesen/

15-721 (Spring 2023)

Hyper-
Threading

M-WAY JOIN VS. MPSM JOIN

39

0

100

200

300

400

1 2 4 8 16 32 64T
hr

ou
gh

pu
t (

M
 T

u
pl

es
/s

ec
)

Number of Threads

Multi-Way (M-WAY) Massively Parallel (MPSM)

108 M/sec

315 M/sec

Source: Cagri Balkesen

Workload: 1.6B⋈ 128M (8-byte tuples)

130 M/sec

54 M/sec

259 M/sec

90 M/sec

↑Higher is Better

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://www.inf.ethz.ch/personal/cagri.balkesen/

15-721 (Spring 2023)

SORT-MERGE JOIN VS. HASH JOIN

40

0

2

4

6

8

SORT HASH SORT HASH SORT HASH SORT HASH

128M⨝128M 1.6B⨝1.6B 128M⨝512M 1.6B⨝6.4B

C
yc

le
s

/
O

u
tp

ut
 T

u
pl

e

Partition Sort S-Merge J-Merge Build+Probe

Source: Cagri Balkesen

Workload: Different Table Sizes (8-byte tuples)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://www.inf.ethz.ch/personal/cagri.balkesen/

15-721 (Spring 2023)

SORT-MERGE JOIN VS. HASH JOIN

41

0

150

300

450

600

750

128 256 384 512 768 1024 1280 1536 1792 1920T
hr

ou
gh

pu
t (

M
 T

u
pl

es
/s

ec
)

Millions of Tuples

Multi-Way Sort-Merge Join Radix Hash Join

Source: Cagri Balkesen

Varying the size of the input relations

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://www.inf.ethz.ch/personal/cagri.balkesen/

15-721 (Spring 2023)

JOIN COMPARISON (R⨝S)

42

518 556
456

806

0

400

800

1200

Sort-Merge Concise Hash Radix-Part (Chained) No-Part (Linear)

4× Intel Xeon CPU E7-4870v2 (Only 32 cores)
|R|=128M, |S|=1280M

Source: Stefan Schuh

↑Higher is Better

T
hr

ou
gh

pu
t (

M
 tu

pl
es

 /
 s

ec
)

MWAY CHTJ PRB NOP

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://bigdata.uni-saarland.de/people/schuh.php

15-721 (Spring 2023)

PARTING THOUGHTS

Hash join is (almost) always the superior choice for
a join algorithm on modern hardware.
→ Most enterprise OLAP DBMS support both.

We did not consider the impact of queries where
the output needs to be sorted.

We will see sort-merge joins again next class…

43

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

NEXT CLASS

Worst-Case Optimal Joins (aka multi-way joins)

44

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

	Introduction
	Slide 1: Sort-Merge Join Algorithms
	Slide 2: ADMINISTRIVIA
	Slide 3: TODAY’S AGENDA

	Sort-Merge Join
	Slide 4: SORT-MERGE JOIN (R⨝S)
	Slide 5: SORT-MERGE JOIN (R⨝S)
	Slide 6: PARALLEL SORT-MERGE JOINS
	Slide 7: PARALLEL SORT-MERGE JOIN (R⨝S)

	Sort Phase
	Slide 9: SORT PHASE
	Slide 10: CACHE-CONSCIOUS SORTING
	Slide 11: CACHE-CONSCIOUS SORTING
	Slide 12: LEVEL #1 – SORTING NETWORKS
	Slide 13: LEVEL #1 – SORTING NETWORKS
	Slide 14: LEVEL #1 – SORTING NETWORKS
	Slide 15: LEVEL #1 – SORTING NETWORKS
	Slide 16: LEVEL #1 – SORTING NETWORKS
	Slide 17: LEVEL #2 – BITONIC MERGE NETWORK
	Slide 18: LEVEL #2 – BITONIC MERGE NETWORK
	Slide 19: LEVEL #3 – MULTI-WAY MERGING
	Slide 20: LEVEL #3 – MULTI-WAY MERGING
	Slide 21: IN-PLACE SUPERSCALAR SAMPLESORT
	Slide 22: VECTORIZED QUICKSORT

	Merge Phase
	Slide 23: MERGE PHASE
	Slide 24: SORT-MERGE JOIN VARIANTS
	Slide 25: MULTI-WAY SORT-MERGE
	Slide 26: MULTI-WAY SORT-MERGE
	Slide 27: MULTI-WAY SORT-MERGE
	Slide 28: MULTI-WAY SORT-MERGE
	Slide 29: MULTI-WAY SORT-MERGE
	Slide 30: MULTI-WAY SORT-MERGE
	Slide 31: MULTI-PASS SORT-MERGE
	Slide 32: MULTI-PASS SORT-MERGE
	Slide 33: MASSIVELY PARALLEL SORT-MERGE
	Slide 34: MASSIVELY PARALLEL SORT-MERGE
	Slide 35: HYPER's RULES FOR PARALLELIZATION

	Evaluation
	Slide 36: EVALUATION
	Slide 38: COMPARISON OF SORT-MERGE JOINS
	Slide 39: M-WAY JOIN VS. MPSM JOIN
	Slide 40: SORT-MERGE JOIN VS. HASH JOIN
	Slide 41: SORT-MERGE JOIN VS. HASH JOIN
	Slide 42: JOIN COMPARISON (R⨝S)

	Conclusion
	Slide 43: PARTING THOUGHTS
	Slide 44: NEXT CLASS

