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15-721 (Spring 2023)

ADMINISTRIVIA

Project #2:
→ Feedback Submission: Saturday April 1st

→ Final Submission: Monday May 1st

→ Sign up for a system if you haven't yet!

Project #3
→ Status Update Presentation: Monday April 3rd

→ Final Presentations: Friday May 5th @ 5:30pm
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TODAY’S AGENDA

Background

Sorting Algorithms

Parallel Sort-Merge Join

Evaluation
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SORT-MERGE JOIN (R⨝S)

Phase #1: Sort
→ Sort the tuples of R and S based on the join key(s).

Phase #2: Merge
→ Maintain two iterators (one per sorted relation) and 

compare tuples at each position.
→ The outer relation R only needs to be scanned once.
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SORT-MERGE JOIN (R⨝S)
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PARALLEL SORT-MERGE JOINS

Sorting is the most expensive part.

Use hardware correctly to speed up the join 
algorithm as much as possible.
→ Utilize as many CPU cores as possible.
→ Be mindful of NUMA boundaries.
→ Use SIMD instructions where applicable.
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MULTI-CORE, MAIN-MEMORY JOINS: 
SORT VS. HASH REVISITED
VLDB 2013
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PARALLEL SORT-MERGE JOIN (R⨝S)

Phase #1: Partitioning (optional)
→ Partition R and assign them to workers / cores.
→ Can use the radix partitioning approach discussed last class.

Phase #2: Sort
→ Sort the tuples of R and S based on the join key.

Phase #3: Merge
→ Scan the sorted relations and compare tuples.
→ The outer relation R only needs to be scanned once.
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SORT PHASE

Quicksort is probably what most DBMSs will use.

Mergesort is good but requires O(N) additional 
storage for intermediate results.

We will first discuss a mergesort implementation
that takes advantage of NUMA and parallel cores 
for in-memory data.
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CACHE-CONSCIOUS SORTING

Level #1: In-Register Sorting
→ Sort runs that fit into CPU registers.

Level #2: In-Cache Sorting
→ Merge Level #1 output into runs that fit into CPU caches.
→ Repeat until sorted runs are ½ cache size.

Level #3: Out-of-Cache Sorting
→ Used when the runs of Level #2 exceed the size of caches.
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VLDB 2009
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CACHE-CONSCIOUS SORTING

11

Level #1

Level #2

Level #3

SORTED

UNSORTED

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023


15-721 (Spring 2023)

LEVEL #1 – SORTING NETWORKS

Abstract model for sorting keys.
→ Fixed wiring “paths” for lists with the same # of elements.
→ Efficient to execute on modern CPUs because of limited 

data dependencies and no branches.
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orig = [9,5,3,6]

wires1[0] = min(orig[0], orig[1])
wires1[1] = max(orig[0], orig[1])
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LEVEL #1 – SORTING NETWORKS
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LEVEL #1 – SORTING NETWORKS
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Sort Across 
Registers

Instructions:
→ 4 LOAD

4-element run
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LEVEL #1 – SORTING NETWORKS
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LEVEL #1 – SORTING NETWORKS
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LEVEL #2 – BITONIC MERGE NETWORK

Similar technique as a Sorting Network but merges 
two locally-sorted lists into a globally-sorted list.

Can expand network to merge progressively larger 
lists up to ½ LLC size.

Intel’s Measurements
→ 2.25–3.5× speed-up over SISD implementation.
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EFFICIENT IMPLEMENTATION OF SORTING 
ON MULTI-CORE
VLDB 2008
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LEVEL #2 – BITONIC MERGE NETWORK
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LEVEL #3 – MULTI-WAY MERGING 

Use the Bitonic Merge Networks but split the 
process up into tasks.
→ Still one worker thread per core.
→ Link together tasks with a cache-sized FIFO queue.

A task blocks when either its input queue is empty, 
or its output queue is full.

Requires more CPU instructions but brings 
bandwidth and compute into balance.
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Sorted Runs

LEVEL #3 – MULTI-WAY MERGING 
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IN-PLACE SUPERSCALAR SAMPLESORT

The IPS4o algorithm (2017) recursively partition 
relation by sampling keys to determine partition 
boundaries. 
→ Copies data into output buffers during the partitioning 

phases.
→ When a buffer gets full, the DBMS writes it back into 

portions of its existing input buffers instead of allocating a 
new buffer.

This is the sorting algorithm that we used in CMU's 
NoisePage DBMS (RIP).
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VECTORIZED QUICKSORT

Google vqsort (2022)
→ Use sorting network for less than 256 keys.
→ Based on Google Highway library to provide support for 

different ISAs and SIMD register sizes.
→ Claims to be 1.59x faster than IPS4o.

Intel x86-simd-sort (2022)
→ Aggressive use of AVX512 instructions.
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MERGE PHASE

Iterate through the outer table and inner table in 
lockstep and compare join keys.

May need to backtrack if there are duplicates.

The DBMS can execute this phase in parallel using
multiple workers without synchronization if there 
are separate output buffers.
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SORT-MERGE JOIN VARIANTS

Multi-Way Sort-Merge (M-WAY)

Multi-Pass Sort-Merge (M-PASS)

Massively Parallel Sort-Merge (MPSM)
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SORT VS. HASH REVISITED
VLDB 2013
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MULTI-WAY SORT-MERGE

Outer Table
→ Each core sorts in parallel on local data (levels #1/#2).
→ Redistribute sorted runs across cores using range 

partitioning then perform multi-way merge (level #3).

Inner Table
→ Same as outer table.

Merge phase is between matching pairs of chunks 
of outer/inner tables at each core.
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MULTI-WAY SORT-MERGE
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MULTI-WAY SORT-MERGE
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MULTI-WAY SORT-MERGE
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MULTI-WAY SORT-MERGE
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MULTI-WAY SORT-MERGE
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MULTI-PASS SORT-MERGE

Outer Table
→ Same level #1/#2 sorting as previous Multi-Way Merge.
→ But instead of redistributing data across cores, perform a 

global multi-pass naïve merge on sorted runs.

Inner Table
→ Same as outer table.

Merge phase is between matching pairs of chunks 
of outer table and inner table.
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MULTI-PASS SORT-MERGE
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MASSIVELY PARALLEL SORT-MERGE

Outer Table
→ Range-partition outer table and redistribute to cores.
→ Each core sorts then in parallel on their local partitions.

Inner Table
→ Not redistributed like outer table.
→ Each core sorts its local data.

Merge phase is between entire sorted run of outer 
table and a segment of inner table.
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MASSIVELY PARALLEL SORT-MERGE
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HYPER's RULES FOR PARALLELIZATION

Rule #1: No random writes to non-local 
memory
→ Chunk the data, redistribute, and then each core 

sorts/works on local data.

Rule #2: Only perform sequential reads on non-
local memory
→ This allows the hardware prefetcher to hide remote access 

latency.

Rule #3: No core should ever wait for another
→ Avoid fine-grained latching or sync barriers.

35

Source: Martina-Cezara Albutiu

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
http://15721.courses.cs.cmu.edu/spring2016/papers/p1064-albutiu.pdf


15-721 (Spring 2023)

EVALUATION

Compare the different join algorithms using a 
synthetic data set.
→ Sort-Merge: M-WAY, M-PASS, MPSM
→ Hash: Radix Partitioning

Hardware:
→ 4 Socket Intel Xeon E4640 @ 2.4GHz
→ 8 Cores with 2 Threads Per Core
→ 512 GB of DRAM
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COMPARISON OF SORT-MERGE JOINS
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Hyper-
Threading

M-WAY JOIN VS. MPSM JOIN
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SORT-MERGE JOIN VS. HASH JOIN
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SORT-MERGE JOIN VS. HASH JOIN
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JOIN COMPARISON (R⨝S)
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PARTING THOUGHTS

Hash join is (almost) always the superior choice for 
a join algorithm on modern hardware.
→ Most enterprise OLAP DBMS support both.

We did not consider the impact of queries where 
the output needs to be sorted.

We will see sort-merge joins again next class…
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NEXT CLASS

Worst-Case Optimal Joins (aka multi-way joins)
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