Lecture #14

Carnegie Mellon University

ADVANCED DATABASE SYSTEMS

Server-side/lLogic
EXecution

Andy Pavlo // 15-721 // Spring 2023

https://15721.courses.cs.cmu.edu/spring2023
http://db.cs.cmu.edu/

OBSERVATION

Until now, we have assumed that all the logic for an
application is in the application.

The application has a "conversation" with the

DBMS to store/retrieve data.
— The application initiates the transfer of data from the
DBMS, performs some computation on that data, and then

retrieves more data from the DBMS.
— Protocols: JDBC, ODBC

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

CONVERSATIONAL DATABASE API

Application Q gﬂ;f;r
Optimizer
BEGIN Query Execution

* execute(SQL) ——

<Program Logic> ::::§:::::::

execute(SQOL)
<Program Logic>

COMMIT

£=CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

CONVERSATIONAL DATABASE API

Application gﬂ;f;r
(Hnnnumr
BEGIN Query Execution
execute(SQL)

<Program Logic>

* execute(SQL) =

<Program Logic>

ISP

COMMIT

0CMU -DB

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

CONVERSATIONAL DATABASE API

Application Q gﬂ;f;r
Optimizer
BEGIN Query Execution
execute(SQL)

<Program Logic>
execute(SQOL)

<Program Logic> ’/,/””——_—_
*COMMIT :—/

$2CMU-DB
o

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

EMBEDDED DATABASE LOGIC

Moving application logic into the DBMS can

(potentially) provide several benefits:

— Fewer network round-trips (better efficiency).

— Immediate notification of changes.

— DBMS spends less time waiting during transactions.
— Developers do not have to reimplement functionality.
— Extend the functionality of the DBMS.

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

EMBEDDED DATABASE LOGIC

7%

I User-Defined Functions (UDFs) I
Stored Procedures

Triggers
User-Defined Types (UDTs) 69%

User-Defined Aggregates (UDAs)

Triggers [l UDFs
B Stored Procedures

~ |PROCEDURAL EXTENSIONS OF SQL:
UNDERSTANDING THEIR USAGE IN THE WILD
VLDB 2021

£=CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://www.vldb.org/pvldb/vol14/p1378-ramachandra.pdf
https://www.vldb.org/pvldb/vol14/p1378-ramachandra.pdf

USER-DEFINED FUNCTIONS

Application

BEGIN
execute(SQOL)
<Program Logic>
execute(SQOL)
<Program Logic>

COMMIT

$2CMU-DB
o

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

USER-DEFINED FUNCTIONS

Application

BEGIN

execute(SQOL)

execute(SQOL)

<Program Logic>

funci1(args):
execute(SQL)
<Program Logic>
return (result)

| <Program Logic>}

COMMIT

func2(args):
<Program Logic>
return (result)

£=CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

USER-DEFINED FUNCTIONS

Application
SELECT * FROM xxx

BEGIN /’ WHERE val = funcl(id)

execute(SOL) — |
execute(SQOL)
COMMIT

$2CMU-DB
o

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

TODAY’S AGENDA

Background
UDF In-lining
UDF CTE Conversion

Sam's Rant

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

$2CMU-DB

15-721 (Spring 2023)

USER-DEFINED FUNCTIONS

A user-defined function (UDF) is a function
written by the application developer that extends
the system's functionality beyond its built-in

operations.

— It takes in input arguments (scalars)
— Perform some computation

— Return a result (scalars, tables)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

UDF - SQL FUNCTIONS

A SQL-based UDF contains a list of queries that the

DBMS executes in order when invoked.
— The function returns the result of the last query executed.

CREATE FUNCTION |get_foo(int) |Input Args
RETURNS foo
LANGUAGE SQL AS $%
SELECT * FROM foo WHERE foo.1id = $1;
$$;

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

UDF - SQL FUNCTIONS

A SQL-based UDF contains a list of queries that the

DBMS executes in order when invoked.
— The function returns the result of the last query executed.

Return Args

CREATE FUNCTION get_foo(int)

RETURNS foo

LANGUAGE SQL AS $$%
SELECT * FROM foo WHERE foo.id = $1;

$$;

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

UDF - SQL FUNCTIONS

A SQL-based UDF contains a list of queries that the

DBMS executes in order when invoked.
— The function returns the result of the last query executed.

CREATE FUNCTION get_foo(int)
RETURNS foo

LANGUAGE SQL AS $$

SELECT * FROM foo WHERE foo.id = $1;| Fupnction Body
$$;

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

UDF - SQL FUNCTIONS

A SQL-based UDF contains a list of queries that the

DBMS executes in order when invoked.
— The function returns the result of the last query executed.

CREATE FUNCTION get_foo(int)

RETURNS foo

LANGUAGE SQL AS $%

SELECT * FROM foo WHERE foo.1id = $1;
$$;

SELECT get_foo(1); SELECT * FROM get_foo(1);

£=CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

UDF - SQL FUNCTIONS

SQL Standard provides the ATOMIC keyword to tell
the DBMS that it should track dependencies
between SQL UDFs.

CREATE FUNCTION get_foo(int)
RETURNS foo
LANGUAGE SQL
BEGIN ATOMIC:
SELECT * FROM foo WHERE foo.id = $1;
END;

£=CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

UDF - EXTERNAL PROGRAMMING LANGUAGE

Some DBMSs support writing UDFs in languages

other than SQL.

— SQL Standard: SQL/PSM

— Oracle/DB2: PL/SQL

— Postgres: PL/pgSQL

— DB2: SQL PL

— MSSQL/Sybase: Transact-SQL

Other systems support more common
programming languages:
— Sandbox vs. non-Sandbox

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://en.wikipedia.org/wiki/SQL/PSM
https://en.wikipedia.org/wiki/PL/SQL
https://en.wikipedia.org/wiki/PL/pgSQL
https://en.wikipedia.org/wiki/SQL_PL
https://en.wikipedia.org/wiki/Transact-SQL

UDF - EXTERNAL PROGRAMMING LANGUAGE

CREATE FUNCTION cust_level(eckey int)| Get all the customer ids and

RETURNS char(10) AS compute their customer service
L level based on the amount of
DECLARE @total float; cvel based o amot

DECLARE @level char(10); money they have spent.

SELECT @total = SUM(o_totalprice)
FROM orders WHERE o_custkey=@ckey;

IF (@total > 1000000)
SET @level = 'Platinum';

ELSE

SET @level = 'Regular’; SELECT c_custkey,

RETURN @level; cust_level(c_custkey)
END FROM customer

$CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

$2CMU-DB

15-721 (Spring 2023)

UDF ADVANTAGES

They encourage modularity and code reuse
— Different queries can reuse the same application logic
without having to reimplement it each time.

Fewer network round-trips between application
server and DBMS for complex operations.

Some types of application logic are easier to express
and read as UDFs than SQL.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

UDF DISADVANTAGES (1)

Query optimizers treat external programming
language UDFs as black boxes.

— DBMS is unable to estimate the function's cost / selectivity
if it doesn't understand what the logic inside of it will do

when it runs.
— Example: WHERE val = my_udf(123)

[t is difficult to parallelize UDFs due to correlated

queries inside of them.

— Some DBMSs will only execute queries with a single thread
if they contain a UDF.

— Some UDFs incrementally construct queries.

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

UDF DISADVANTAGES (2)

Complex UDFs in SELECT / WHERE clauses force the

DBMS to execute iteratively.

— RBAR = "Row By Agonizing Row"

— Things get even worse if UDF invokes queries due to
implicit joins that the optimizer cannot "see".

Since the DBMS executes the commands in the
UDF one-by-one, it is unable to perform cross-
statement optimizations.

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

UDF PERFORMANCE

Microsoft SQL Server

SELECT

FROM
WHERE
AND
AND
AND
AND
AND
GROUP
ORDER

1_shipmode,
SUM(CASE
WHEN o_orderpriority <> '1-URGENT'
THEN 1 ELSE © END
) AS low_line_count
orders, lineitem
o_orderkey = 1_orderkey
1_shipmode IN ('MAIL','SHIP')
1_commitdate < 1_receiptdate
1_shipdate < 1_commitdate
1_receiptdate >= '1994-01-01"
dbo.cust_name(o_custkey) IS NOT NULL
BY 1_shipmode
BY 1_shipmode

Source: Karthik Ramachandra

$2CMU-DB

15-721 (Spring 2023)

TPC-H Q12 using a UDF (SF=1).

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://www.microsoft.com/en-us/research/people/karam/

UDF PERFORMANCE

Microsoft SQL Server

SELECT

FROM
WHERE
AND
AND
AND

GROUP
ORDER

1_shipmode,
SUM(CASE

WHEN o_orderpriority <> '1-URGENT'

THEN 1 ELSE © END
) AS low_line_count
orders, lineitem
o_orderkey = 1_orderkey
1_shipmode IN ('MAIL', 'SHIP')
1_commitdate < 1_receiptdate
1_shipdate < 1_commitdate

i >=_' -01-01"

dbo.cust_name(o_custkey)
BY 1_shipmode
BY 1_shipmode

TPC-H Q12 using a UDF (SF=1).
— Original Query: 0.8 sec
— Query + UDF: 13 hr 30 min

REATE FUNCTION cust_name(@ckey int)
RETURNS char(25) AS
BEGIN

DECLARE @n char(25);

SELECT @n = c_name

FROM customer WHERE c_custkey = @ckey;
RETURN @n;
END

Source: Karthik Ramachandra

$CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://www.microsoft.com/en-us/research/people/karam/

Source: Surabhi Gupta
$=CMU-DB

15-721 (Spring 2023)

UDF Acceleration

Approach #1: Compilation

— Compile interpreted UDF code into native machine code.
— Can inline UDF into compiled query plan if the DBMS
supports holistic query compilation (e.g., HyPer).

Approach #2: Parallelization

— Rely on user-defined annotations to determine which
portions of a UDF can be safely executed in parallel.

Approach #3: Inlining

— Convert UDF into declarative form and then inline it into
the calling query.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://www.vldb.org/pvldb/vol14/p1378-ramachandra.pdf

MICROSOFT SQL SERVER UDF HISTORY

2001 — Microsoft adds TSQL Scalar UDFs.

Source: Karthik Ramachandra

111111111111111111

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://www.microsoft.com/en-us/research/people/karam/

MICROSOFT SQL SERVER UDF HISTORY

2001 — Microsoft adds TSQL Scalar UDFs.
2008 — People realize that UDFs are "evil".

Source: Karthik Ramachandra

£=CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://www.microsoft.com/en-us/research/people/karam/

Source:

£=CMU-

MICROSOFT <0l

TSQL Scalar functions are evil.

I've been working with a number of clients recently who all have suffered at the hands of TSQL Scalar functions. Scalar functions were introduced
in 5QL 2000 as a means to wrap logic so we benefit from code reuse and simplify our queries. who would be daft enough not to think this was a
good idea. | for one jumped on this initially thinking it was a great thing to do.

However as you might have gathered from the Hitle scalar functions aren't the nice friend you may think they are.
If you are running queries across large tables then this may explain why you are getting poor performance.
In this post we will look at a simple padding function, we will be creating large volumes to emphasize the issue with scalar udfs.

create function padiLeft(@val varchar(100), @len int, @char char (1))
returns varchar(100)
as
hegin
return right(replicate(@char,@len) + @val, @len)
end
go

Interpreted

Scalar functions are interpreted code that means EVERY call to the function results in your code being interpreted. That means overhead for
processing your function is proportional to the number of rows.

Running this code you will see that the native system calls take considerable less time than the UDF calls. On my machine it takes 2614 ms for the
system calls and 38758ms for the UDF. Thats a 19x increase.

set statistics time on

go

select max(right(replicate('@‘,1@@) + o.name + c.name, 100))
from msdb.sys.columns o

cross join msdb.sys.columns €

select max(dbo.padLeft(o.name * c.name, 100,'@'))
from msdb.sys.columns 0
cross join msdb.sys.columns C

F HISTORY

)Fs.

il

3

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://www.microsoft.com/en-us/research/people/karam/
https://sqlblogcasts.com/blogs/simons/archive/2008/11/03/TSQL-Scalar-functions-are-evil-.aspx

HISTORY

Q &% Microsoft Signin Q

Soften the RBAR Impact with Native
Compiled UDFs In SQL Server 2016

First publisheq ©on MSDN on Feb 17, 2016

Reviewers: Joe Sack, Denzi| Ribeiro, Jos de Bruijn

MICROSOFT

Many of us are very familiar with the negative performance implications of using scalar UpFs on columns in Queries: my colleagues haye Posted about issyes
here and here . Using UDFs in this manner js an anti-pattern most of us frown upon, because of the row-by-agonizing-row (RBAR) Processing that this
implies. In addition, scajar UDF usage also limits the optimizer to yse serial plans, Overall, eyjl Personifieds

Native Compiled UDFs introduced

We recently worked with an actyaj Customer workload in the lab. In this workioad, we had a query which invoked a scalar UDF in the outpyt list. That means
that the UDF was actually executing once Per row - in this case a total of 75 million rows; The UDF has a simple CASE expression inside it. However, we
wanted to Improve query Performance so we decided tg try rewriting the UDF.

Source: Karthik Ramachandra

£2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://www.microsoft.com/en-us/research/people/karam/
https://techcommunity.microsoft.com/t5/datacat/soften-the-rbar-impact-with-native-compiled-udfs-in-sql-server/ba-p/305260?advanced=false&collapse_discussion=true&search_type=thread

MICROSOFT SQL SERVER UDF HISTORY

2001 — Microsoft adds TSQL Scalar UDFs.

2008 — People realize that UDFs are "evil".

2010 - Microsoft acknowledges that UDFs are evil.
2014 — UDF decorrelation research @ II'T-B.

Source: Karthik Ramachandra
£=CMU-DB
15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://ieeexplore.ieee.org/document/6816679
https://www.microsoft.com/en-us/research/people/karam/

MICROSOFT SQL SERVER UDF HISTORY

2001 — Microsoft adds TSQL Scalar UDFs.

2008 — People realize that UDFs are "evil".

2010 - Microsoft acknowledges that UDFs are evil.
2014 — UDF decorrelation research @ II'T-B.

2015 - Froid project begins @ MSFT Gray Lab.

Source: Karthik Ramachandra
£=CMU-DB
15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://ieeexplore.ieee.org/document/6816679
https://www.microsoft.com/en-us/research/project/froid/
https://www.microsoft.com/en-us/research/people/karam/

MICROSOFT SQL SERVER UDF HISTORY

2001 — Microsoft adds TSQL Scalar UDFs.

2008 — People realize that UDFs are "evil".

2010 - Microsoft acknowledges that UDFs are evil.
2014 — UDF decorrelation research @ II'T-B.

2015 - Froid project begins @ MSFT Gray Lab.
2018 — Froid added to SQL Server 2019.

Source: Karthik Ramachandra
£=CMU-DB
15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://ieeexplore.ieee.org/document/6816679
https://www.microsoft.com/en-us/research/project/froid/
https://www.microsoft.com/en-us/research/people/karam/

Source: Karthi

MTICRASNAFET <Nl

CEDVULCD

1IINC_1ITCTANADN

BE Microsoft SQL Docs Overview ~ Install v Secure ~ Develop v Administer ~ More ~ Download SQL Server
| p

Docs / SQL / Database design / User-defined functions Scalar inlining

Azure SQL Database - current v

Nondeterministic
Functions

Create
Modify
Delete
Execute
Rename
View
> Views
> Development
> Internals & Architecture

> Installation

N O

1 Download PDF

Scalar UDF Inlining

02/27/2019 » 10 minutes to read « Contributors =]

APPLIES TO: @ 5QL Server @ Azure SQL Database * Azure SQL Data Warehouse *
Parallel Data Warehouse

This article introduces Scalar UDF inlining, a feature under the intelligent query processing
suite of features. This feature improves the performance of queries that invoke scalar UDFs
in SQL Server (starting with SQL Server 2019 preview) and SQL Database.

T-SQL Scalar User-Defined Functions

User-Defined Functions that are implemented in Transact-SQL and return a single data
value are referred to as T-SQL Scalar User-Defined Functions. T-SQL UDFs are an elegant
way to achieve code reuse and modularity across SQL queries. Some computations (such as
complex business rules) are easier to express in imperative UDF form. UDFs help in building
up complex logic without requiring expertise in writing complex SQL queries.

Performance of Scalar UDFs

Scalar UDFs tvpically end up performina noorly due to the followina reasons

& Edit |& Share

All Microsoft ~ O

& Dark assface

In this article

T-SQL Scalar User-
Defined Functions

performance of
Scalar UDFs

Automatic Inlining
of Scalar UDFs

Inlineable Scalar
UDFs requirements

Enabling scalar
UDF inlining
Disabling Scalar
UDF inlining
without changing
the compatibility
level

Important Notes

See Also

$CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://ieeexplore.ieee.org/document/6816679
https://www.microsoft.com/en-us/research/project/froid/
https://www.microsoft.com/en-us/research/people/karam/
https://docs.microsoft.com/en-us/sql/relational-databases/user-defined-functions/scalar-udf-inlining

VLDB 2017

$2CMU-DB

15-721 (Spring 2023)

FROID

Automatically convert UDFs into relational algebra

expressions that are inlined as sub-queries.
— Does not require the app developer to change UDF code.

Perform conversion during the rewrite phase to

avoid having to change the cost-base optimizer.
— Commercial DBMSs already have powerful transformation
rules for executing sub-queries efficiently.

== |FROID: OPTIMIZATION OF IMPERATIVE PROGRAMS
IN A RELATIONAL DATABASE

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://15721.courses.cs.cmu.edu/spring2020/papers/24-udfs/p432-ramachandra.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/24-udfs/p432-ramachandra.pdf

SUB-QUERIES

The DBMS treats nested sub-queries in the where
clause as functions that take parameters and return
a single value or set of values.

Two Approaches:

— Rewrite to de-correlate and/or flatten them

— Decompose nested query and store result to temporary
table. Then the outer joins with the temporary table,

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

SUB-QUERIES - REWRITE -

SELECT user_id FROM orders AS ol Example; Retrieve the first

WHERE EXISTS(
SELECT COUNT(*) FROM orders AS o2 user that has made at least

WHERE o1.user_id = 02.user_id two purchases.
GROUP BY 02.user_id HAVING COUNT(*) >= 2

)
ORDER BY user_id ASC LIMIT 1;

¥

SELECT user_id FROM orders
GROUP BY user_id

HAVING COUNT(*) >= 2

ORDER BY user_id ASC LIMIT 1;

$CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

$2CMU-DB

15-721 (Spring 2023)

LATERAL JOIN

A lateral inner subquery can refer to fields in rows
of the table reference to determine which rows to

return.
— Allows you to have sub-queries in FROM clause.

The DBMS iterates through each row in the table
referenced and evaluates the inner sub-query for

each row.

— The rows returned by the inner sub-query are added to the
result of the join with the outer query.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

LATERAL JOIN - EXAMPLE

SELECT user_id, first_order, next_order, id Example: Retrieve the first
FROM (SELECT user_id, user that has made at least
MIN(created) AS first_order t h 1 Tl
FROM orders GROUP BY user_id) AS ol WO purchases along wi
INNER JOIN LATERAL the timestamps of the first
(SELECT id, created AS next_order (i t (i
FROM orders and next orders.

WHERE user_id = ol.user_id
AND created > ol.first_order
ORDER BY created ASC LIMIT 1) AS o2
ON true
LIMIT 1;

Source: Krzysztof Kempiriski

$CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://medium.com/kkempin/postgresqls-lateral-join-bfd6bd0199df

LATERAL JOIN - EXAMPLE

SELECT user_id, first_order, next_order, id Example: Retrieve the first
FROM (SELECT user_id, user that has made at least
MIN(created) AS first_order t h 1 Tl
FROM orders GROUP BY user_id) AS ol WO purchases along wi
INNER JOIN LATERAL the timestamps of the first
(SELECT id, created AS next_order (i t (i
FROM orders and next orders.

WHERE user_id = ol.user_id
AND created > ol.first_order
ORDER BY created ASC LIMIT 1) AS o2
ON true
LIMIT 1;

Source: Krzysztof Kempiriski

$CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://medium.com/kkempin/postgresqls-lateral-join-bfd6bd0199df

LATERAL JOIN - EXAMPLE

SELECT user_id, first_order, next_order, id Example: Retrieve the ﬁI’St
FROM (SELECT user_id,< user that has made at least
MIN(created) AS fﬂrst_order<— h 1 ith
FROM orders GROUP BY uder_id) AS o two purcnases along wit
INNER JOIN LATERAL the timestamps of the first
(SELECT id, created AS ndxt_order d d
FROM orders and next orders.
WHERE user_id = ol.user_id
AND created > ol.first_order

ORDER BY created ASC LIMIT 1) AS o2
ON true
LIMIT 1;

Source: Krzysztof Kempiriski

$CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://medium.com/kkempin/postgresqls-lateral-join-bfd6bd0199df

FROID OVERVIEW

Step #1 — Transform Statements

Step #2 — Break UDF into Regions

Step #3 — Merge Expressions

Step #4 - Inline UDF Expression into Query

Step #5 — Run Updated Query through Optimizer

£=CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

STEP #1 - TRANSFORM STATEMENTS

Imperative Statements

FROM orders
WHERE o_custkey=@ckey;

IF (@total > 1000000) »
SET @level = 'Platinum';

Source: Karthik Ramachandra

$CMU-DB

15-721 (Spring 2023)

SQL Statements

SET @level = 'Platinum’; »

SELECT 'Platinum' AS level;

SELECT @total = SUM(o_totalprice) »

SELECT (
SELECT SUM(o_totalprice)
FROM orders
WHERE o_custkey=@ckey
) AS total;

SELECT (
CASE WHEN total > 1000000
THEN 'Platinum'
ELSE NULL

END) AS level;

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://www.microsoft.com/en-us/research/people/karam/

STEP #2 - BREAK INTO REGIONS

CREATE FUNCTION cust_level(@ckey int)
RETURNS char(10) AS

BEGIN

DECLARE @total float;

DECLARE @Qlevel char(10);

SELECT @total = SUM(o_totalprice)
FROM orders WHERE o_custkey=@ckey;

IF (@total > 1000000)
SET @level = 'Platinum';
ELSE

SET @level = 'Regular’;

RETURN @level;
END

$CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

STEP #2 - BREAK

CREATE FUNCTION cust_level(@ckey int)
RETURNS char(10) AS

BEGIN

Q DECLARE @total float;

DECLARE @Qlevel char(10);

SELECT @total = SUM(o_totalprice)
FROM orders WHERE o_custkey=@ckey;

IF (@total > 1000000)
SET @level = 'Platinum';
ELSE

SET @level = 'Regular’;

RETURN @level;
END

$CMU-DB

15-721 (Spring 2023)

INTO REGIONS

(SELECT NULL AS level,
(SELECT SUM(o_totalprice)
FROM orders
WHERE o_custkey=@ckey) AS total

) As EiGYl

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

STEP #2 - BREAK INTO REGIONS

CREATE FUNCTION cust_level(@ckey int)
RETURNS char(10) AS
BEGIN

Q DECLARE @total float;
DECLARE @level char(10);

SELECT @total = SUM(o_totalprice)

(SELECT NULL AS levelgs

(SELECT SUM(o_totalpri
FROM orders
WHERE o_custkey=@cke

) As EiGYl

ce)

) AS total

FROM orders WHERE o_custkey=@ckey;

—

SET @level = 'Platinum';
ELSE
SET @level = 'Regular';

RETURN @level;
END

€)|1F (ectotal > 1000000) -

(SELECT (
CASE WHEN E_R1.total
THEN 'Platingm'

> 1000000

ELSE E_R1.level END) AS level

) As G

$CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

STEP #2 - BREAK INTO REGIONS

CREATE FUNCTION cust_level(@ckey int)
RETURNS char(10) AS
BEGIN

Q DECLARE @total float;
DECLARE Q@level char(10);

SELECT @total = SUM(o_totalprice)

(SELECT NULL AS level s
(SELECT SUM(o_totalpri
FROM orders

ce)

WHERE o_custkey=@ckely) AS total

) As F]

FROM orders WHERE o_custkey=@ckey;

—

IF (@total > 1000000)

SET @level = 'Platinum';
6 ELSE

RETURN @level;
END

-
SET @level = 'Regular'; _-"“\\

(SELECT (

CASE WHEN E_r1.tota1 > 1000000

THEN 'Platingm'

ELSE E_R1.level END) AS lexel

) As G

$CMU-DB

15-721 (Spring 2023)

(SELECT (

CASE WHEN E_R1.total <= 1000000

THEN 'Regulal’

ELSE E_R2.1level END) AS level

) As FlE

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

STEP #2 - BREAK INTO REGIONS

CREATE FUNCTION cust_level(@ckey int)
RETURNS char(10) AS
BEGIN

Q DECLARE @total float;
DECLARE Q@level char(10);

SELECT @total = SUM(o_totalprice)

(SELECT NULL AS level s

(SELECT SUM(o_totalpri
FROM orders

WHERE o_custkey=@cke

) As F]

ce)

) AS total

FROM orders WHERE o_custkey=@ckey;

—

IF (@total > 1000000)

SET @level = 'Platinum';
6 ELSE

@)[RETURN @level;
END

-
SET @level = 'Regular'; _-"“\\

(SELECT (

CASE WHEN E_r1.tota1 > 1000000

THEN 'Platingm'

ELSE E_R1.level END) AS lexel

) As ¥

$CMU-DB

15-721 (Spring 2023)

(SELECT (
CASE WHEN E_R1.total
THEN 'Regulal’

ELSE E_R2.1level END)

) As FlE

<= 1000000

AS level

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

STEP #3 - MERGE EXPRESSIONS

(SELECT NULL AS level,
(SELECT SUM(o_totalprice)
FROM orders
WHERE o_custkey=@ckey) AS total

) As]

(SELECT (
CASE WHEN E_R1.total > 1000000
THEN 'Platinum’
ELSE E_R1.1level END) AS level

) AS @Y

(SELECT (
CASE WHEN E_R1.total <= 1000000
THEN 'Regular’
ELSE E_R2.1level END) AS level

) As ElGE

$CMU-DB

15-721 (Spring 2023)

»
»

SELECT E_R3.1level FROM
(SELECT NULL AS level,
(SELECT SUM(o_totalprice)
FROM orders
WHERE o_custkey=@ckey) AS total
) As FG]
CROSS APPLY
(SELECT (
CASE WHEN E_R1.total > 1000000
THEN 'Platinum'
ELSE E_R1.1level END) AS level
LSNE_R2
CROSS APPLY
(SELECT (
CASE WHEN E_R1.total <= 1000000
THEN 'Regular’
ELSE E_R2.1level END) AS level

) As FlGE;

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

STEP #3 - MERGE EXPRESSIONS

(SELECT NULL AS level,
(SELECT SUM(o_totalprice)
FROM orders
WHERE o_custkey=@ckey) AS total

) As]

(SELECT (
CASE WHEN E_R1.total > 1000000
THEN 'Platinum’
ELSE E_R1.1level END) AS level

) AS @Y

(SELECT (
CASE WHEN E_R1.total <= 1000000
THEN 'Regular’
ELSE E_R2.1level END) AS level

) As ElGE

$CMU-DB

15-721 (Spring 2023)

»
»
»

SELECT E_R3.1level |FROM

(SELECT NULL AS level,
(SELECT SUM(o_totalprice)
FROM orders
WHERE o_custkey=@ckey) AS total
) As FG]
CROSS APPLY
(SELECT (
CASE WHEN E_R1.total > 1000000
THEN 'Platinum'
ELSE E_R1.1level END) AS level
LSNE_R2
CROSS APPLY
(SELECT (
CASE WHEN E_R1.total <= 1000000
THEN 'Regular’
ELSE E_R2.1level END) AS level

) As FlGE;

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

STEP #4 - INLINE EXPRESSION

Original Query

SELECT c_custkey,
cust_level(c_custkey)
FROM customer

$CMU-DB

15-721 (Spring 2023)

SELFECT c custkev (
SELECT E_R3.level] FROM

"o
2

(SELECT NULL AS level,
(SELECT SUM(o_totalprice)
FROM orders
WHERE o_custkey=@ckey) AS total
AS

CROSS APPLY

(SELECT (
CASE WHEN E_R1.total > 1000000
THEN 'Platinum'’

ELSE E_R1.1level END) AS level

) AS

CROSS APPLY

)

(SELECT (
CASE WHEN E_R1.total <= 1000000
THEN 'Regular’
ELSE E_R2.1level END) AS level

) As FCE!:

FROM customer;

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

STEP #5 - OPTIMIZE

SELECT c_custkey, (
SELECT E_R3.level FROM
(SELECT NULL AS level,
(SELECT SUM(o_totalprice)
FROM orders
WHERE o_custkey=@ckey) AS total
) As]
CROSS APPLY
(SELECT (
CASE WHEN E_R1.total > 1000000
THEN 'Platinum'’
ELSE E_R1.1level END) AS level
) As ¥
CROSS APPLY
(SELECT (
CASE WHEN E_R1.total <= 1000000
THEN 'Regular’
ELSE E_R2.1level END) AS level
) As FE;

) FROM customer;

$CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

STEP #5 - OPTIMIZE

SELECT c_custkey, (
SELECT E_R3.1level FROM
(SELECT NULL AS level,
(SELECT SUM(o_totalprice)
FROM orders
WHERE o_custkey=@ckey) AS total
) AS
CROSS APPLY
(SELECT (
CASE WHEN E_R1.total > 1000000
THEN 'Platinum’
ELSE E_R1.level END) AS level
) AS
CROSS APPLY
(SELECT (
CASE WHEN E_R1.total <= 1000000
THEN 'Regular’
ELSE E_R2.1level END) AS level
) As ElGE};

) FROM customer;

SELECT c.c_custkey,
CASE WHEN e.total > 1000000
THEN 'Platinum'
ELSE 'Regular’
END
FROM customer c¢ LEFT OUTER JOIN
(SELECT o_custkey,
SUM(o_totalprice) AS total
FROM order GROUP BY o_custkey
) AS e
ON c.c_custkey=e.o_custkey;

$CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

CREATE FUNCTION getVal(@x int)
RETURNS char(10) AS
BEGIN
DECLARE @val char(10);
IF (@x > 1000)
SET @val = 'high';
ELSE
SET @val = 'low';
RETURN @val + ' value';
END

<

BONUS OPTIMIZATIONS

$2CMU-DB

15-721 (Spring 2023)

SELECT getVal(5000);

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

CREATE FUNCTION getVal(@x int)
RETURNS char(10) AS
BEGIN

DECLARE @val char(10);

IF (@x > 1000)

SET @val = 'high';

ELSE

SET @val = 'low';

RETURN @val + ' value';
END

Eroid ‘

BONUS OPTIMIZATIONS

BEGIN
DECLARE @val char(10);
SET @val = 'high';

»

BEGIN
DECLARE @val char(10);
SET @val = 'high';

»

RETURN @val + ' value'; RETURN 'high value';
END END
Dynamic Slicing Constant Propagation

SELECT returnVal FROM
(SELECT CASE WHEN @x > 1000
THEN 'high'
ELSE 'low' END AS val)
As Nl
OUTER APPLY
(SELECT DT1.val + ' value'
AS returnval)

SELECT returnVal FROM
(SELECT 'high' AS val)
AS DNl
OUTER APPLY
(SELECT DT1.val +

' value'
AS returnVal)

AS BIE

& Folding

SELECT returnVal FROM
(SELECT 'high value'
AS returnVal)

»

»

BEGIN
RETURN 'high value';
END

Dead Code Elimination

»

SELECT 'high value';

AS Bl

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

SUPPORTED OPERATIONS (2019)

T-SQL Syntax:

— DECLARE, SET (variable declaration, assignment)
— SELECT (SQL query, assignment)

— IF / ELSE / ELSE IF (arbitrary nesting)

— RETURN (multiple occurrences)

— EXISTS, NOT EXISTS, ISNULL, IN, ... (Other relational
algebra operations)

UDF invocation (nested/recursive with

configurable depth)
All SQL datatypes.

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

APPLICABILITY / COVERAGE

of Scalar Froid
UDFs Compatible

Workload 84%
Workload 2 91%
Workload 3 95%

£2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

UDF IMPROVEMENT STUDY

Table: 100k Tuples

U
-]

Workload 1

o
p—

p—
-]

Workload 2

Improvement Factor

Source: Karthik Ramachandra

0CMU -DB

zzzzzzzzzzzzzzz

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://www.microsoft.com/en-us/research/people/karam/

APFEL: UDFs-TO-CTEs

Rewrite UDFs into plain SQL commands.

Use recursive common table expressions (CTEs) to
support iterations and other control flow concepts
not supported in Froid.

Implemented as a rewrite middleware layer on top
of any DBMS that supports CTEs.

; . COMPILING PL/SQL AWAY
CIDR 2

0CMU -DB

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://15721.courses.cs.cmu.edu/spring2020/papers/24-udfs/p1-duta-cidr20.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/24-udfs/p1-duta-cidr20.pdf

UDFs-TO-CTEs OVERVIEW

Step #1 — Static Single Assignment Form

Step #2 — Administrative Normal Form

Step #3 — Mutual to Direct Recursion
Step #4 — Tail Recursion to WITH RECURSIVE
Step #5 — Run Through Query Optimizer

£=CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://en.wikipedia.org/wiki/Static_single_assignment_form
https://en.wikipedia.org/wiki/A-normal_form

STEP #1 - STATIC SINGLE ASSIGNMENT

CREATE FUNCTION pow(x int, n int) pow(x,n):
RETURNS int AS i, €« 0;
$$ Py € 0;
DECLARE while: i, « ®(i,,i,);
iint = 0; » p; < ©(Py,Po);
p int = 1; if i, < n then
BEGIN goto loop;
WHILE i < n LOOP else
P =p * X; goto exit;
1=1+1; loop: p, < p; * Xx;
END LOOP; i, « i, + 1;
RETURN p; goto while;
END; exit: return p,;
$$

Source: Torsten Grust

£=CMU-DB
111111 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://db.inf.uni-tuebingen.de/team/TorstenGrust.html

STEP #2 - ADMINISTRATIVE NORMAL FORM

pow(x,n): pow(x,n) =
i, « 0; let i, = 0 in
P, < 9; let p, = 1 in
while: i, « @(i,,1i,); while(i,,pg,X,Nn)
P < ©(Pg,Py); »
if i, < n then while(i,,p;,x,n) =
goto loop; let t, = i; >= n in
else if t, then p,
goto exit; else body(i,,p;,x,n)
loop: p, < p; * X;
1, « i, + 1; body(i,,p,,x,n) =
goto while; let p, = p; * x in
exit: return p,; let i, = i, + 1 in
while(i,,p,,X,n)

Source: Torsten Grust

£=CMU-DB
111111 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://db.inf.uni-tuebingen.de/team/TorstenGrust.html

STEP #3 - MUTUAL TO DIRECT RECURSION

pow(x,n) =
let i, = 0 in
let p, = 1 in
while(i,,pg,X,Nn)

while(i,,p,,x,n) =
let t, = i, >= n in
if t, then p,
else body(i,,p;,x,n)

bOdy(j-]’p]’X’n) -
let p, = p;, * x in
let i, = i, + 1 in
while(i,,p,,X,Nn)

Source: Torsten Grust

$CMU-DB

15-721 (Spring 2023)

»

pow(x,n) =
let i, = 0 in
let p, = 1 in
run(i,, Py, X,Nn)

run(i,,p;,X,n) =
let t, = i, >=n in
if t, then p,
else
let p, = p; * x in
let i, =i, + 1 in
run(i,,p,,X,n)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://db.inf.uni-tuebingen.de/team/TorstenGrust.html

STEP #4 - WITH RECURSIVE

pow(x,n) =
let i, = 0 in
let p, = 1 in
run(i,, Py, X,Nn)

run(i,,p;,Xx,n) =
let t, = i, >= n in
if t, then p,
else
let p, = p; * x in
let i, = i, + 1 in
run(i,,p,,Xx,n)

Source: Torsten Grust

$CMU-DB

15-721 (Spring 2023)

»

WITH RECURSIVE
run("call?",i1,p1,x,n,result) AS (

SELECT true,0,1,x,n,NULL

UNION ALL
SELECT iter.* FROM run, LATERAL (

SELECT false,0,0,0,0,p1
WHERE i1 >= n

UNION ALL
SELECT true,i1+1,pl1*x,x,n,0
WHERE i1 < n

) AS iter("call?",il,pl1,x,n,result)
WHERE run."call?"

)
SELECT * FROM run;

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://db.inf.uni-tuebingen.de/team/TorstenGrust.html

STEP #4 - WITH RECURSIVE

pow(x,n) = WITH RECURSIVE

c let i, = 0 in run("call?",i1,pl1,x,n,result) AS (

let p, = 1 in
run(i@7peyx7n)

|

—>ISELECT true,0,1,x,n,NULL

UNION ALL

run(i,,p;,x,n) = SELECT iter.* FROM run, LATERAL (

let t, = i, >= n in
g 1 SELECT false,0,0,0,0,p1

if t, then p, 1
T N\ WHERE i1 >= n

= — - —=>| UNION ALL
LG P2 = P * X 1N SELECT true,il+1,pl1*x,x,n,0
let i, = i, + 1 in

] WHERE i1 < n
run(i,,p,,X,n)

) AS iter("call?",il,pl1,x,n,result)
WHERE run."call?"

)
SELECT * FROM run;

Source: Torsten Grust

$CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://db.inf.uni-tuebingen.de/team/TorstenGrust.html

4500

(9N
o
o
o

Run Time (ms)
*
S

Source: Torsten Grust

$2CMU-DB

15-721 (Spring 2023)

UDFs-TO-CTEs EVALUATION

POW UDF on Postgres vil.3
-+-PL/SQL o-CTE
lb 26 36 40 50 50 %O éO 50 160
of Iterations (x1000)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://db.inf.uni-tuebingen.de/team/TorstenGrust.html

SAM ARCH'S

WHY FROID
DOESN'T WORK
UNLESS YOU
HAVE GERMANS

111111111111111111

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

FROID: WHAT HAPPENED NEXT?

2018 — Froid added to SQL Server 2019.

$CMU-DB

111111111111111111

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

FROID: WHAT HAPPENED NEXT?

2018 — Froid added to SQL Server 2019.

2019 — Huge performance wins in the wild.

£=CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

FROID: WHAT HAPPENED NEXT?

g Karthik Ramachandra

e

100 fold improvement in UDF performance due to
Froid as observed by @tf3604! Great news, but not

surprising at all.

¥ Breanna Hansen
Blogged: Testing Scalar UDF Performance on SQL Server 2019bit.ly/2RmUAPc

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

FROID: WHAT HAPPENED NEXT?

g Karthik Ramachandra

i

Order of magnitude "dramatic" perf gains due to Froid
observed by @jdanton in @SQLServer 2019 CTP2.1!

"The other feature that | refer to as simply magic...."

"The first time | tested it, | was blown away."

What's New in SQL Server 2019: A Closer Look at the Top ...

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

FROID: WHAT HAPPENED NEXT?

g Karthik Ramachandra

S

Quoting from the article:

"..the CPU time is 3 times lower ... and the query is
more than 20x faster!"

"For those, who use scalar UDFs extensively, the new
version looks like a gift from heaven. The
improvement is very impressive. "

"The improvement looks really fabulous..."

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

FROID: WHAT HAPPENED NEXT?

g Karthik Ramachandra

Scalar UDF inlining (aka Froid) at work :)

4 Gail Shaw @SQLintheWi

Ok wow. Scalar function (trlmmlng time off date) run against 840k rows 25
times.

Compat mode 140: 4 min 25 sec

Compat mode 150: 9 seconds

This is going to make a massive difference!

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

FROID: WHAT HAPPENED NEXT?

2018 — Froid added to SQL Server 2019.
2019 — Huge performance wins in the wild.
2020 - High praise from Andy.

£CMU-DB
15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

$CMU-DB

FROID: WHAT HAPPENED NEXT"

Joe Hellerstein @ erste

' : DB Twitter — favorite papers in Iast decade for reading in a grad DB class?
Nominate one (outside your team) that inspired you, challenged you, or
changed your thinking!

‘gy Andy Pavlo (@andy_pavlio@discuss.systems)

4

ing to @joe_hellerstein

In no particular order:

+ Froid (VLDB'17)

+ HyPer JIT Query Compilation (VLDB'11)
+ Hekaton Concurrency Control (VLDB'11)
+ Morsels (SIGMOD'14)

+ SIMD for In-Memory DBs (SIGMOD'15)
+ LeanStore (ICDE'18)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

FROID: WHAT HAPPENED NEXT?

2018 — Froid added to SQL Server 2019.
2019 — Huge performance wins in the wild.

2020 — High praise from Andy.

Andy Pavlo (@andy_pavlo@discuss.sys...

I've said it before, but @karthiksr's UDF inlining is one of the most
important query optimization techniques for databases developed in the

last decade. | dedicated an entire class on Froid in my Advanced DB
course in 2020: youtube.com/watch?v=rAR_IB...

$CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

FROID: WHAT HAPPENED NEXT?

2018 — Froid added to SQL Server 2019.
2019 — Huge performance wins in the wild.
2020 - High praise from Andy.

2021 - ProcBench paper released.

£CMU-DB
15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

FROID: WHAT HAPPENED NEXT?

2018 — Froid added to SOI. Server 2019.

Procedural Extensions of SQL.:
Understanding their usage in the wild

Surabhi Gupta Karthik Ramachandra
Microsoft Research India Microsoft Azure Data (SQL), India
t-sugu@microsoft.com karam@microsoft.com

$CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

PROCEDURAL EXTENSIONS OF SQL

Microsoft team published an analysis of real world
UDFs, TVFs, Triggers and Stored Procedures.

Also released an open-source benchmark based on
their analysis called SQL ProcBench.

— Authors argue that ProcBench faithfully represents real
world workloads

~ |PROCEDURAL EXTENSIONS OF SQL:
UNDERSTANDING THEIR USAGE IN THE WILD
VLDB 2021

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://github.com/microsoft/SQL-ProcBench
https://www.vldb.org/pvldb/vol14/p1378-ramachandra.pdf
https://www.vldb.org/pvldb/vol14/p1378-ramachandra.pdf

SCALAR UDFS IN THE PROCBENCH

UDFs with no parameters

SELECT maxReturnReasonWeb();

CREATE FUNCTION maxReturnReasonWeb()
RETURNS char(100) AS

BEGIN

DECLARE @reason_desc char(100);

SELECT @Qreason_desc
FROM ...;

RETURN @reason_desc;
END

$CMU-DB

15-721 (Spring 2023)

UDF invoked once

No substantial performance
advantage with UDF Inlining

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

SCALAR UDFS IN THE PROCBENCH

UDFs with parameters

CREATE FUNCTION cust_level(@ckey int)
RETURNS char(10) AS

BEGIN

DECLARE @total float;

DECLARE @Qlevel char(10);

SELECT @total = SUM(o_totalprice)
FROM orders WHERE o_custkey=@ckey;

IF (@total > 1000000)
SET @level = 'Platinum';
ELSE

SET @Qlevel = 'Regular';

RETURN @level;
END

SELECT cust_level(customer_id)
FROM customer;

$CMU-DB

15-721 (Spring 2023)

UDF invoked per customer
Implicit join between tables

Huge performance win with
UDF Inlining by “decorrelating”
the subquery

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

HOW DOES FROID FARE?

FROID is supported in SQL Server 2019
We tested SQL Server 2019 on the ProcBench

SQL Server’s optimizer could only decorrelate
two out of 13 of the UDFs with parameters

The German's Umbra optimizer could decorrelate
all 13 UDFs.

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

DECORRELATION OF SUBQUERIES (MSSQL)

Algebraic rewrite rules for APPLY

R A® E = RG®tueE, (1)

if no parameters in F resolved from R
R A® (0,E) = RQ®,E, (2)

if no parameters in F resolved from R
RA* (0,E) = o0,(RA"E) (3)
RA* (mE) = 7y columns(r)(RA™ E) (4)
RA* (E1UE)) = (RA* E1)U(R A E») (5)
RA* (E1—E)) = (RA® E1)— (RA™ E») (6)
R .A’< (E1 X B2) = (RA™ E1) XRgkey (RA™ E) (7)
(QA FE) = GAUcolumns(r),r(RA* E) (8)
“(GFE) = Geolumns(r)r(RA™TE) (9)

~|ORTHOGONAL OPTIMIZATION OF SUBQUERIES
AND AGGREGATION
SIGMOD 2001

$CMU-DB

15-721 (Spring 2023)

Execute the rewrite rules
where applicable

Some rewrites may require
duplicating subexpressions in
the query plan tree (and are
cost-based decisions)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://15721.courses.cs.cmu.edu/spring2020/papers/24-udfs/p1-duta-cidr20.pdf
https://sigmodrecord.org/publications/sigmodRecord/0106/pdfs/Orthogonal Optimization of Subqueries and Aggregation.pdf

DECORRELATION OF SUBQUERIES (GERMI-\HS)lﬂ

Dependent Join Operator

o orad Introduces a new “Dependent
e.grade=—m .y .
’ | Join” operator into the Query

X Plan DAG
/ \
M. id=e.sid F@;m:min(e2.grade)
RN | Systematically decorrelates any
students s €Xams € Os.id=e2.sid Subquery
|

exams e2

= | UNNESTING ARBITRARY QUERIES
BTW 2015

£=CMU-DB
111111 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://15721.courses.cs.cmu.edu/spring2020/papers/24-udfs/p1-duta-cidr20.pdf
https://cs.emis.de/LNI/Proceedings/Proceedings241/383.pdf

IMPLICATIONS FOR UDF INLINING

UDF Inlining is amazing. But to achieve great

performance from UDF Inlining requires a German-

style query optimizer.

— SQL Server's optimizer is good (according to Andy) but not as
good as the Germans for this task.

This is why we are extending DuckDB to support UDFs

£=CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

PARTING THOUGHTS

This is huge. You rarely get 500x speed up without
either switching to a new DBMS or rewriting your
application.

Another optimization approach is to compile the

UDF into machine code.
— This does not solve the optimizer's cost model problem.

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

NEXT CLASS

Database Networking Protocols

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

	Introduction
	Slide 1: Server-side Logic Execution
	Slide 2: OBSERVATION
	Slide 3: CONVERSATIONAL DATABASE API
	Slide 4: CONVERSATIONAL DATABASE API
	Slide 5: CONVERSATIONAL DATABASE API
	Slide 6: EMBEDDED DATABASE LOGIC
	Slide 7: EMBEDDED DATABASE LOGIC
	Slide 8: USER-DEFINED FUNCTIONS
	Slide 9: USER-DEFINED FUNCTIONS
	Slide 10: USER-DEFINED FUNCTIONS
	Slide 11: TODAY’S AGENDA

	UDFs
	Slide 12: USER-DEFINED FUNCTIONS
	Slide 13: UDF – SQL FUNCTIONS
	Slide 14: UDF – SQL FUNCTIONS
	Slide 15: UDF – SQL FUNCTIONS
	Slide 16: UDF – SQL FUNCTIONS
	Slide 17: UDF – SQL FUNCTIONS
	Slide 18: UDF – EXTERNAL PROGRAMMING LANGUAGE
	Slide 19: UDF – EXTERNAL PROGRAMMING LANGUAGE
	Slide 20: UDF ADVANTAGES
	Slide 21: UDF DISADVANTAGES (1)
	Slide 22: UDF DISADVANTAGES (2)
	Slide 23: UDF PERFORMANCE
	Slide 24: UDF PERFORMANCE
	Slide 25: UDF Acceleration

	Froid
	Slide 26: MICROSOFT SQL SERVER UDF HISTORY
	Slide 27: MICROSOFT SQL SERVER UDF HISTORY
	Slide 28: MICROSOFT SQL SERVER UDF HISTORY
	Slide 29: MICROSOFT SQL SERVER UDF HISTORY
	Slide 30: MICROSOFT SQL SERVER UDF HISTORY
	Slide 31: MICROSOFT SQL SERVER UDF HISTORY
	Slide 32: MICROSOFT SQL SERVER UDF HISTORY
	Slide 33: MICROSOFT SQL SERVER UDF HISTORY
	Slide 34: FROID
	Slide 35: SUB-QUERIES
	Slide 36: SUB-QUERIES – REWRITE
	Slide 37: LATERAL JOIN
	Slide 38: LATERAL JOIN - EXAMPLE
	Slide 39: LATERAL JOIN - EXAMPLE
	Slide 40: LATERAL JOIN - EXAMPLE
	Slide 41: FROID OVERVIEW
	Slide 42: STEP #1 – TRANSFORM STATEMENTS
	Slide 43: STEP #2 – BREAK INTO REGIONS
	Slide 44: STEP #2 – BREAK INTO REGIONS
	Slide 45: STEP #2 – BREAK INTO REGIONS
	Slide 46: STEP #2 – BREAK INTO REGIONS
	Slide 47: STEP #2 – BREAK INTO REGIONS
	Slide 48: STEP #3 – MERGE EXPRESSIONS
	Slide 49: STEP #3 – MERGE EXPRESSIONS
	Slide 50: STEP #4 – INLINE EXPRESSION
	Slide 51: STEP #5 - OPTIMIZE
	Slide 52: STEP #5 - OPTIMIZE
	Slide 53: BONUS OPTIMIZATIONS
	Slide 54: BONUS OPTIMIZATIONS
	Slide 55: SUPPORTED OPERATIONS (2019)
	Slide 56: APPLICABILITY / COVERAGE
	Slide 57: UDF IMPROVEMENT STUDY

	German CTE
	Slide 59: APFEL: UDFs-TO-CTEs
	Slide 60: UDFs-TO-CTEs OVERVIEW
	Slide 61: STEP #1 – STATIC SINGLE ASSIGNMENT
	Slide 62: STEP #2 – ADMINISTRATIVE NORMAL FORM
	Slide 63: STEP #3 – MUTUAL TO DIRECT RECURSION
	Slide 64: STEP #4 – WITH RECURSIVE
	Slide 65: STEP #4 – WITH RECURSIVE
	Slide 66: UDFs-TO-CTEs EVALUATION

	Sam's Rant
	Slide 67
	Slide 68: FROID: WHAT HAPPENED NEXT?
	Slide 69: FROID: WHAT HAPPENED NEXT?
	Slide 70: FROID: WHAT HAPPENED NEXT?
	Slide 71: FROID: WHAT HAPPENED NEXT?
	Slide 72: FROID: WHAT HAPPENED NEXT?
	Slide 73: FROID: WHAT HAPPENED NEXT?
	Slide 74: FROID: WHAT HAPPENED NEXT?
	Slide 75: FROID: WHAT HAPPENED NEXT?
	Slide 76: FROID: WHAT HAPPENED NEXT?
	Slide 77: FROID: WHAT HAPPENED NEXT?
	Slide 78: FROID: WHAT HAPPENED NEXT?
	Slide 79: PROCEDURAL EXTENSIONS OF SQL
	Slide 80: SCALAR UDFS IN THE PROCBENCH
	Slide 81: SCALAR UDFS IN THE PROCBENCH
	Slide 82: HOW DOES FROID FARE?
	Slide 83: DECORRELATION OF SUBQUERIES (MSSQL)
	Slide 84: DECORRELATION OF SUBQUERIES (GERMANS)
	Slide 85: IMPLICATIONS FOR UDF INLINING

	Conclusion
	Slide 86: PARTING THOUGHTS
	Slide 87: NEXT CLASS

