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OBSERVATION

Until now, we have assumed that all the logic for an
application is in the application.

The application has a "conversation" with the

DBMS to store/retrieve data.
— The application initiates the transfer of data from the
DBMS, performs some computation on that data, and then

retrieves more data from the DBMS.
— Protocols: JDBC, ODBC
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CONVERSATIONAL DATABASE API

Application Q gﬂ;f;r
Optimizer
BEGIN Query Execution

* execute(SQL) ——

<Program Logic> ::::§:::::::

execute(SQOL)
<Program Logic>

COMMIT
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CONVERSATIONAL DATABASE API

Application Q gﬂ;f;r
Optimizer
BEGIN Query Execution
execute(SQL)

<Program Logic>
execute(SQOL)

<Program Logic> ’/,/””——_—_
*COMMIT :—/
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EMBEDDED DATABASE LOGIC

Moving application logic into the DBMS can

(potentially) provide several benefits:

— Fewer network round-trips (better efficiency).

— Immediate notification of changes.

— DBMS spends less time waiting during transactions.
— Developers do not have to reimplement functionality.
— Extend the functionality of the DBMS.
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EMBEDDED DATABASE LOGIC

7%

I User-Defined Functions (UDFs) I
Stored Procedures

Triggers
User-Defined Types (UDTs) 69%

User-Defined Aggregates (UDAs)

Triggers [l UDFs
B Stored Procedures

~ |PROCEDURAL EXTENSIONS OF SQL:
UNDERSTANDING THEIR USAGE IN THE WILD
VLDB 2021
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USER-DEFINED FUNCTIONS

Application

BEGIN
execute(SQOL)
<Program Logic>
execute(SQOL)
<Program Logic>

COMMIT
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USER-DEFINED FUNCTIONS

Application

BEGIN

execute(SQOL)

execute(SQOL)

<Program Logic>

funci1(args):
execute(SQL)
<Program Logic>
return (result)

| <Program Logic>}

COMMIT

func2(args):
<Program Logic>
return (result)
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USER-DEFINED FUNCTIONS

Application
SELECT * FROM xxx

BEGIN /’ WHERE val = funcl(id)

execute(SOL) — |
execute(SQOL)
COMMIT
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TODAY’S AGENDA

Background
UDF In-lining
UDF CTE Conversion

Sam's Rant
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USER-DEFINED FUNCTIONS

A user-defined function (UDF) is a function
written by the application developer that extends
the system's functionality beyond its built-in

operations.

— It takes in input arguments (scalars)
— Perform some computation

— Return a result (scalars, tables)
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UDF - SQL FUNCTIONS

A SQL-based UDF contains a list of queries that the

DBMS executes in order when invoked.
— The function returns the result of the last query executed.

CREATE FUNCTION |get_foo(int) |Input Args
RETURNS foo
LANGUAGE SQL AS $%
SELECT * FROM foo WHERE foo.1id = $1;
$$;
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UDF - SQL FUNCTIONS

A SQL-based UDF contains a list of queries that the

DBMS executes in order when invoked.
— The function returns the result of the last query executed.

Return Args

CREATE FUNCTION get_foo(int)

RETURNS foo

LANGUAGE SQL AS $$%
SELECT * FROM foo WHERE foo.id = $1;

$$;
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UDF - SQL FUNCTIONS

A SQL-based UDF contains a list of queries that the

DBMS executes in order when invoked.
— The function returns the result of the last query executed.

CREATE FUNCTION get_foo(int)
RETURNS foo

LANGUAGE SQL AS $$

SELECT * FROM foo WHERE foo.id = $1;| Fupnction Body
$$;

$2CMU-DB

15-721 (Spring 2023 )


https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

UDF - SQL FUNCTIONS

A SQL-based UDF contains a list of queries that the

DBMS executes in order when invoked.
— The function returns the result of the last query executed.

CREATE FUNCTION get_foo(int)

RETURNS foo

LANGUAGE SQL AS $%

SELECT * FROM foo WHERE foo.1id = $1;
$$;

SELECT get_foo(1); SELECT * FROM get_foo(1);
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UDF - SQL FUNCTIONS

SQL Standard provides the ATOMIC keyword to tell
the DBMS that it should track dependencies
between SQL UDFs.

CREATE FUNCTION get_foo(int)
RETURNS foo
LANGUAGE SQL
BEGIN ATOMIC:
SELECT * FROM foo WHERE foo.id = $1;
END;
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UDF - EXTERNAL PROGRAMMING LANGUAGE

Some DBMSs support writing UDFs in languages

other than SQL.

— SQL Standard: SQL/PSM

— Oracle/DB2: PL/SQL

— Postgres: PL/pgSQL

— DB2: SQL PL

— MSSQL/Sybase: Transact-SQL

Other systems support more common
programming languages:
— Sandbox vs. non-Sandbox
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UDF - EXTERNAL PROGRAMMING LANGUAGE

CREATE FUNCTION cust_level(eckey int)| Get all the customer ids and

RETURNS char(10) AS compute their customer service
L level based on the amount of
DECLARE @total float; cvel based o amot

DECLARE @level char(10); money they have spent.

SELECT @total = SUM(o_totalprice)
FROM orders WHERE o_custkey=@ckey;

IF (@total > 1000000)
SET @level = 'Platinum';

ELSE

SET @level = 'Regular’; SELECT c_custkey,

RETURN @level; cust_level(c_custkey)
END FROM customer
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UDF ADVANTAGES

They encourage modularity and code reuse
— Different queries can reuse the same application logic
without having to reimplement it each time.

Fewer network round-trips between application
server and DBMS for complex operations.

Some types of application logic are easier to express
and read as UDFs than SQL.
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UDF DISADVANTAGES (1)

Query optimizers treat external programming
language UDFs as black boxes.

— DBMS is unable to estimate the function's cost / selectivity
if it doesn't understand what the logic inside of it will do

when it runs.
— Example: WHERE val = my_udf(123)

[t is difficult to parallelize UDFs due to correlated

queries inside of them.

— Some DBMSs will only execute queries with a single thread
if they contain a UDF.

— Some UDFs incrementally construct queries.

$2CMU-DB

15-721 (Spring 2023)


https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

UDF DISADVANTAGES (2)

Complex UDFs in SELECT / WHERE clauses force the

DBMS to execute iteratively.

— RBAR = "Row By Agonizing Row"

— Things get even worse if UDF invokes queries due to
implicit joins that the optimizer cannot "see".

Since the DBMS executes the commands in the
UDF one-by-one, it is unable to perform cross-
statement optimizations.
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UDF PERFORMANCE

Microsoft SQL Server

SELECT

FROM
WHERE
AND
AND
AND
AND
AND
GROUP
ORDER

1_shipmode,
SUM(CASE
WHEN o_orderpriority <> '1-URGENT'
THEN 1 ELSE © END
) AS low_line_count
orders, lineitem
o_orderkey = 1_orderkey
1_shipmode IN ('MAIL','SHIP')
1_commitdate < 1_receiptdate
1_shipdate < 1_commitdate
1_receiptdate >= '1994-01-01"
dbo.cust_name(o_custkey) IS NOT NULL
BY 1_shipmode
BY 1_shipmode

Source: Karthik Ramachandra
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UDF PERFORMANCE

Microsoft SQL Server

SELECT

FROM
WHERE
AND
AND
AND

GROUP
ORDER

1_shipmode,
SUM(CASE

WHEN o_orderpriority <> '1-URGENT'

THEN 1 ELSE © END
) AS low_line_count
orders, lineitem
o_orderkey = 1_orderkey
1_shipmode IN ('MAIL', 'SHIP')
1_commitdate < 1_receiptdate
1_shipdate < 1_commitdate

i >=_' -01-01"

dbo.cust_name(o_custkey)
BY 1_shipmode
BY 1_shipmode

TPC-H Q12 using a UDF (SF=1).
— Original Query: 0.8 sec
— Query + UDF: 13 hr 30 min

REATE FUNCTION cust_name(@ckey int)
RETURNS char(25) AS
BEGIN

DECLARE @n char(25);

SELECT @n = c_name

FROM customer WHERE c_custkey = @ckey;
RETURN @n;
END

Source: Karthik Ramachandra
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Source: Surabhi Gupta
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UDF Acceleration

Approach #1: Compilation

— Compile interpreted UDF code into native machine code.
— Can inline UDF into compiled query plan if the DBMS
supports holistic query compilation (e.g., HyPer).

Approach #2: Parallelization

— Rely on user-defined annotations to determine which
portions of a UDF can be safely executed in parallel.

Approach #3: Inlining

— Convert UDF into declarative form and then inline it into
the calling query.
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MICROSOFT SQL SERVER UDF HISTORY

2001 — Microsoft adds TSQL Scalar UDFs.

Source: Karthik Ramachandra

111111111111111111


https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://www.microsoft.com/en-us/research/people/karam/

MICROSOFT SQL SERVER UDF HISTORY

2001 — Microsoft adds TSQL Scalar UDFs.
2008 — People realize that UDFs are "evil".

Source: Karthik Ramachandra
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TSQL Scalar functions are evil.

I've been working with a number of clients recently who all have suffered at the hands of TSQL Scalar functions. Scalar functions were introduced
in 5QL 2000 as a means to wrap logic so we benefit from code reuse and simplify our queries. who would be daft enough not to think this was a
good idea. | for one jumped on this initially thinking it was a great thing to do.

However as you might have gathered from the Hitle scalar functions aren't the nice friend you may think they are.
If you are running queries across large tables then this may explain why you are getting poor performance.
In this post we will look at a simple padding function, we will be creating large volumes to emphasize the issue with scalar udfs.

create function padiLeft(@val varchar(100), @len int, @char char (1))
returns varchar(100)
as
hegin
return right(replicate(@char,@len) + @val, @len)
end
go

Interpreted

Scalar functions are interpreted code that means EVERY call to the function results in your code being interpreted. That means overhead for
processing your function is proportional to the number of rows.

Running this code you will see that the native system calls take considerable less time than the UDF calls. On my machine it takes 2614 ms for the
system calls and 38758ms for the UDF. Thats a 19x increase.

set statistics time on

go

select max(right(replicate('@‘,1@@) + o.name + c.name, 100))
from msdb.sys.columns o

cross join msdb.sys.columns €

select max(dbo.padLeft(o.name * c.name, 100,'@'))
from msdb.sys.columns 0
cross join msdb.sys.columns C

F HISTORY

)Fs.

il

3
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HISTORY

Q &% Microsoft Signin Q

Soften the RBAR Impact with Native
Compiled UDFs In SQL Server 2016

First publisheq ©on MSDN on Feb 17, 2016

Reviewers: Joe Sack, Denzi| Ribeiro, Jos de Bruijn

MICROSOFT

Many of us are very familiar with the negative performance implications of using scalar UpFs on columns in Queries: my colleagues haye Posted about issyes
here and here . Using UDFs in this manner js an anti-pattern most of us frown upon, because of the row-by-agonizing-row (RBAR) Processing that this
implies. In addition, scajar UDF usage also limits the optimizer to yse serial plans, Overall, eyjl Personifieds

Native Compiled UDFs introduced

We recently worked with an actyaj Customer workload in the lab. In this workioad, we had a query which invoked a scalar UDF in the outpyt list. That means
that the UDF was actually executing once Per row - in this case a total of 75 million rows; The UDF has a simple CASE expression inside it. However, we
wanted to Improve query Performance so we decided tg try rewriting the UDF.

Source: Karthik Ramachandra
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MICROSOFT SQL SERVER UDF HISTORY

2001 — Microsoft adds TSQL Scalar UDFs.

2008 — People realize that UDFs are "evil".

2010 - Microsoft acknowledges that UDFs are evil.
2014 — UDF decorrelation research @ II'T-B.

Source: Karthik Ramachandra
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MICROSOFT SQL SERVER UDF HISTORY

2001 — Microsoft adds TSQL Scalar UDFs.

2008 — People realize that UDFs are "evil".

2010 - Microsoft acknowledges that UDFs are evil.
2014 — UDF decorrelation research @ II'T-B.

2015 - Froid project begins @ MSFT Gray Lab.

Source: Karthik Ramachandra
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MICROSOFT SQL SERVER UDF HISTORY

2001 — Microsoft adds TSQL Scalar UDFs.

2008 — People realize that UDFs are "evil".

2010 - Microsoft acknowledges that UDFs are evil.
2014 — UDF decorrelation research @ II'T-B.

2015 - Froid project begins @ MSFT Gray Lab.
2018 — Froid added to SQL Server 2019.

Source: Karthik Ramachandra
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Source: Karthi
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Scalar UDF Inlining

02/27/2019 » 10 minutes to read « Contributors =]

APPLIES TO: @ 5QL Server @ Azure SQL Database * Azure SQL Data Warehouse  *
Parallel Data Warehouse

This article introduces Scalar UDF inlining, a feature under the intelligent query processing
suite of features. This feature improves the performance of queries that invoke scalar UDFs
in SQL Server (starting with SQL Server 2019 preview) and SQL Database.

T-SQL Scalar User-Defined Functions

User-Defined Functions that are implemented in Transact-SQL and return a single data
value are referred to as T-SQL Scalar User-Defined Functions. T-SQL UDFs are an elegant
way to achieve code reuse and modularity across SQL queries. Some computations (such as
complex business rules) are easier to express in imperative UDF form. UDFs help in building
up complex logic without requiring expertise in writing complex SQL queries.

Performance of Scalar UDFs

Scalar UDFs tvpically end up performina noorly due to the followina reasons

& Edit  |& Share

All Microsoft ~ O

& Dark assface

In this article

T-SQL Scalar User-
Defined Functions

performance of
Scalar UDFs

Automatic Inlining
of Scalar UDFs

Inlineable Scalar
UDFs requirements

Enabling scalar
UDF inlining
Disabling Scalar
UDF inlining
without changing
the compatibility
level

Important Notes

See Also
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VLDB 2017
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FROID

Automatically convert UDFs into relational algebra

expressions that are inlined as sub-queries.
— Does not require the app developer to change UDF code.

Perform conversion during the rewrite phase to

avoid having to change the cost-base optimizer.
— Commercial DBMSs already have powerful transformation
rules for executing sub-queries efficiently.

== |FROID: OPTIMIZATION OF IMPERATIVE PROGRAMS
IN A RELATIONAL DATABASE



https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://15721.courses.cs.cmu.edu/spring2020/papers/24-udfs/p432-ramachandra.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/24-udfs/p432-ramachandra.pdf

SUB-QUERIES

The DBMS treats nested sub-queries in the where
clause as functions that take parameters and return
a single value or set of values.

Two Approaches:

— Rewrite to de-correlate and/or flatten them

— Decompose nested query and store result to temporary
table. Then the outer joins with the temporary table,
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SUB-QUERIES - REWRITE -

SELECT user_id FROM orders AS ol Example; Retrieve the first

WHERE EXISTS(
SELECT COUNT(*) FROM orders AS o2 user that has made at least

WHERE o1.user_id = 02.user_id two purchases.
GROUP BY 02.user_id HAVING COUNT(*) >= 2

)
ORDER BY user_id ASC LIMIT 1;

¥

SELECT user_id FROM orders
GROUP BY user_id

HAVING COUNT(*) >= 2

ORDER BY user_id ASC LIMIT 1;

$CMU-DB
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LATERAL JOIN

A lateral inner subquery can refer to fields in rows
of the table reference to determine which rows to

return.
— Allows you to have sub-queries in FROM clause.

The DBMS iterates through each row in the table
referenced and evaluates the inner sub-query for

each row.

— The rows returned by the inner sub-query are added to the
result of the join with the outer query.
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LATERAL JOIN - EXAMPLE

SELECT user_id, first_order, next_order, id Example: Retrieve the first
FROM (SELECT user_id, user that has made at least
MIN(created) AS first_order t h 1 Tl
FROM orders GROUP BY user_id) AS ol WO purchases along wi
INNER JOIN LATERAL the timestamps of the first
(SELECT id, created AS next_order (i t (i
FROM orders and next orders.

WHERE user_id = ol.user_id
AND created > ol.first_order
ORDER BY created ASC LIMIT 1) AS o2
ON true
LIMIT 1;

Source: Krzysztof Kempiriski
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LATERAL JOIN - EXAMPLE

SELECT user_id, first_order, next_order, id Example: Retrieve the first
FROM (SELECT user_id, user that has made at least
MIN(created) AS first_order t h 1 Tl
FROM orders GROUP BY user_id) AS ol WO purchases along wi
INNER JOIN LATERAL the timestamps of the first
(SELECT id, created AS next_order (i t (i
FROM orders and next orders.

WHERE user_id = ol.user_id
AND created > ol.first_order
ORDER BY created ASC LIMIT 1) AS o2
ON true
LIMIT 1;

Source: Krzysztof Kempiriski
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LATERAL JOIN - EXAMPLE

SELECT user_id, first_order, next_order, id Example: Retrieve the ﬁI’St
FROM (SELECT user_id,< user that has made at least
MIN(created) AS fﬂrst_order<— h 1 ith
FROM orders GROUP BY uder_id) AS o two purcnases along wit
INNER JOIN LATERAL the timestamps of the first
(SELECT id, created AS ndxt_order d d
FROM orders and next orders.
WHERE user_id = ol.user_id
AND created > ol.first_order

ORDER BY created ASC LIMIT 1) AS o2
ON true
LIMIT 1;

Source: Krzysztof Kempiriski
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FROID OVERVIEW

Step #1 — Transform Statements

Step #2 — Break UDF into Regions

Step #3 — Merge Expressions

Step #4 - Inline UDF Expression into Query

Step #5 — Run Updated Query through Optimizer
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STEP #1 - TRANSFORM STATEMENTS

Imperative Statements

FROM orders
WHERE o_custkey=@ckey;

IF (@total > 1000000) »
SET @level = 'Platinum';

Source: Karthik Ramachandra
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SQL Statements

SET @level = 'Platinum’; »

SELECT 'Platinum' AS level;

SELECT @total = SUM(o_totalprice) »

SELECT (
SELECT SUM(o_totalprice)
FROM orders
WHERE o_custkey=@ckey
) AS total;

SELECT (
CASE WHEN total > 1000000
THEN 'Platinum'
ELSE NULL

END) AS level;
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STEP #2 - BREAK INTO REGIONS

CREATE FUNCTION cust_level(@ckey int)
RETURNS char(10) AS

BEGIN

DECLARE @total float;

DECLARE @Qlevel char(10);

SELECT @total = SUM(o_totalprice)
FROM orders WHERE o_custkey=@ckey;

IF (@total > 1000000)
SET @level = 'Platinum';
ELSE

SET @level = 'Regular’;

RETURN @level;
END

$CMU-DB

15-721 (Spring 2023)
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STEP #2 - BREAK

CREATE FUNCTION cust_level(@ckey int)
RETURNS char(10) AS

BEGIN

Q DECLARE @total float;

DECLARE @Qlevel char(10);

SELECT @total = SUM(o_totalprice)
FROM orders WHERE o_custkey=@ckey;

IF (@total > 1000000)
SET @level = 'Platinum';
ELSE

SET @level = 'Regular’;

RETURN @level;
END

$CMU-DB

15-721 (Spring 2023)

INTO REGIONS

(SELECT NULL AS level,
(SELECT SUM(o_totalprice)
FROM orders
WHERE o_custkey=@ckey) AS total

) As EiGYl
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STEP #2 - BREAK INTO REGIONS

CREATE FUNCTION cust_level(@ckey int)
RETURNS char(10) AS
BEGIN

Q DECLARE @total float;
DECLARE @level char(10);

SELECT @total = SUM(o_totalprice)

(SELECT NULL AS levelgs

(SELECT SUM(o_totalpri
FROM orders
WHERE o_custkey=@cke

) As EiGYl

ce)

) AS total

FROM orders WHERE o_custkey=@ckey;

—

SET @level = 'Platinum';
ELSE
SET @level = 'Regular';

RETURN @level;
END

€)|1F (ectotal > 1000000) -

(SELECT (
CASE WHEN E_R1.total
THEN 'Platingm'

> 1000000

ELSE E_R1.level END) AS level

) As G

$CMU-DB
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STEP #2 - BREAK INTO REGIONS

CREATE FUNCTION cust_level(@ckey int)
RETURNS char(10) AS
BEGIN

Q DECLARE @total float;
DECLARE Q@level char(10);

SELECT @total = SUM(o_totalprice)

(SELECT NULL AS level s
(SELECT SUM(o_totalpri
FROM orders

ce)

WHERE o_custkey=@ckely) AS total

) As F]

FROM orders WHERE o_custkey=@ckey;

—

IF (@total > 1000000)

SET @level = 'Platinum';
6 ELSE

RETURN @level;
END

-
SET @level = 'Regular'; _-"“\\

(SELECT (

CASE WHEN E_r1.tota1 > 1000000

THEN 'Platingm'

ELSE E_R1.level END) AS lexel

) As G

$CMU-DB
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(SELECT (

CASE WHEN E_R1.total <= 1000000

THEN 'Regulal’

ELSE E_R2.1level END) AS level

) As FlE
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STEP #2 - BREAK INTO REGIONS

CREATE FUNCTION cust_level(@ckey int)
RETURNS char(10) AS
BEGIN

Q DECLARE @total float;
DECLARE Q@level char(10);

SELECT @total = SUM(o_totalprice)

(SELECT NULL AS level s

(SELECT SUM(o_totalpri
FROM orders

WHERE o_custkey=@cke

) As F]

ce)

) AS total

FROM orders WHERE o_custkey=@ckey;

—

IF (@total > 1000000)

SET @level = 'Platinum';
6 ELSE

@)[RETURN @level;
END

-
SET @level = 'Regular'; _-"“\\

(SELECT (

CASE WHEN E_r1.tota1 > 1000000

THEN 'Platingm'

ELSE E_R1.level END) AS lexel

) As ¥

$CMU-DB
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(SELECT (
CASE WHEN E_R1.total
THEN 'Regulal’

ELSE E_R2.1level END)

) As FlE

<= 1000000

AS level
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STEP #3 - MERGE EXPRESSIONS

(SELECT NULL AS level,
(SELECT SUM(o_totalprice)
FROM orders
WHERE o_custkey=@ckey) AS total

) As ]

(SELECT (
CASE WHEN E_R1.total > 1000000
THEN 'Platinum’
ELSE E_R1.1level END) AS level

) AS @Y

(SELECT (
CASE WHEN E_R1.total <= 1000000
THEN 'Regular’
ELSE E_R2.1level END) AS level

) As ElGE

$CMU-DB

15-721 (Spring 2023)

»
»

SELECT E_R3.1level FROM
(SELECT NULL AS level,
(SELECT SUM(o_totalprice)
FROM orders
WHERE o_custkey=@ckey) AS total
) As FG]
CROSS APPLY
(SELECT (
CASE WHEN E_R1.total > 1000000
THEN 'Platinum'
ELSE E_R1.1level END) AS level
LSNE_R2
CROSS APPLY
(SELECT (
CASE WHEN E_R1.total <= 1000000
THEN 'Regular’
ELSE E_R2.1level END) AS level

) As FlGE;
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STEP #3 - MERGE EXPRESSIONS

(SELECT NULL AS level,
(SELECT SUM(o_totalprice)
FROM orders
WHERE o_custkey=@ckey) AS total

) As ]

(SELECT (
CASE WHEN E_R1.total > 1000000
THEN 'Platinum’
ELSE E_R1.1level END) AS level

) AS @Y

(SELECT (
CASE WHEN E_R1.total <= 1000000
THEN 'Regular’
ELSE E_R2.1level END) AS level

) As ElGE

$CMU-DB
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»
»
»

SELECT E_R3.1level |FROM

(SELECT NULL AS level,
(SELECT SUM(o_totalprice)
FROM orders
WHERE o_custkey=@ckey) AS total
) As FG]
CROSS APPLY
(SELECT (
CASE WHEN E_R1.total > 1000000
THEN 'Platinum'
ELSE E_R1.1level END) AS level
LSNE_R2
CROSS APPLY
(SELECT (
CASE WHEN E_R1.total <= 1000000
THEN 'Regular’
ELSE E_R2.1level END) AS level

) As FlGE;
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STEP #4 - INLINE EXPRESSION

Original Query

SELECT c_custkey,
cust_level(c_custkey)
FROM customer

$CMU-DB

15-721 (Spring 2023)

SELFECT c custkev (
SELECT E_R3.level] FROM

"o
2

(SELECT NULL AS level,
(SELECT SUM(o_totalprice)
FROM orders
WHERE o_custkey=@ckey) AS total
AS

CROSS APPLY

(SELECT (
CASE WHEN E_R1.total > 1000000
THEN 'Platinum'’

ELSE E_R1.1level END) AS level

) AS

CROSS APPLY

)

(SELECT (
CASE WHEN E_R1.total <= 1000000
THEN 'Regular’
ELSE E_R2.1level END) AS level

) As FCE!:

FROM customer;
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STEP #5 - OPTIMIZE

SELECT c_custkey, (
SELECT E_R3.level FROM
(SELECT NULL AS level,
(SELECT SUM(o_totalprice)
FROM orders
WHERE o_custkey=@ckey) AS total
) As ]
CROSS APPLY
(SELECT (
CASE WHEN E_R1.total > 1000000
THEN 'Platinum'’
ELSE E_R1.1level END) AS level
) As ¥
CROSS APPLY
(SELECT (
CASE WHEN E_R1.total <= 1000000
THEN 'Regular’
ELSE E_R2.1level END) AS level
) As FE;

) FROM customer;

$CMU-DB

15-721 (Spring 2023)
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STEP #5 - OPTIMIZE

SELECT c_custkey, (
SELECT E_R3.1level FROM
(SELECT NULL AS level,
(SELECT SUM(o_totalprice)
FROM orders
WHERE o_custkey=@ckey) AS total
) AS
CROSS APPLY
(SELECT (
CASE WHEN E_R1.total > 1000000
THEN 'Platinum’
ELSE E_R1.level END) AS level
) AS
CROSS APPLY
(SELECT (
CASE WHEN E_R1.total <= 1000000
THEN 'Regular’
ELSE E_R2.1level END) AS level
) As ElGE};

) FROM customer;

SELECT c.c_custkey,
CASE WHEN e.total > 1000000
THEN 'Platinum'
ELSE 'Regular’
END
FROM customer c¢ LEFT OUTER JOIN
(SELECT o_custkey,
SUM(o_totalprice) AS total
FROM order GROUP BY o_custkey
) AS e
ON c.c_custkey=e.o_custkey;

$CMU-DB
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CREATE FUNCTION getVal(@x int)
RETURNS char(10) AS
BEGIN
DECLARE @val char(10);
IF (@x > 1000)
SET @val = 'high';
ELSE
SET @val = 'low';
RETURN @val + ' value';
END

<

BONUS OPTIMIZATIONS

$2CMU-DB

15-721 (Spring 2023)

SELECT getVal(5000);
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CREATE FUNCTION getVal(@x int)
RETURNS char(10) AS
BEGIN

DECLARE @val char(10);

IF (@x > 1000)

SET @val = 'high';

ELSE

SET @val = 'low';

RETURN @val + ' value';
END

Eroid ‘

BONUS OPTIMIZATIONS

BEGIN
DECLARE @val char(10);
SET @val = 'high';

»

BEGIN
DECLARE @val char(10);
SET @val = 'high';

»

RETURN @val + ' value'; RETURN 'high value';
END END
Dynamic Slicing Constant Propagation

SELECT returnVal FROM
(SELECT CASE WHEN @x > 1000
THEN 'high'
ELSE 'low' END AS val)
As Nl
OUTER APPLY
(SELECT DT1.val + ' value'
AS returnval)

SELECT returnVal FROM
(SELECT 'high' AS val)
AS DNl
OUTER APPLY
(SELECT DT1.val +

' value'
AS returnVal)

AS BIE

& Folding

SELECT returnVal FROM
(SELECT 'high value'
AS returnVal)

»

»

BEGIN
RETURN 'high value';
END

Dead Code Elimination

»

SELECT 'high value';

AS Bl

$2CMU-DB

15-721 (Spring 2023)
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SUPPORTED OPERATIONS (2019)

T-SQL Syntax:

— DECLARE, SET (variable declaration, assignment)
— SELECT (SQL query, assignment )

— IF / ELSE / ELSE IF (arbitrary nesting)

— RETURN (multiple occurrences)

— EXISTS, NOT EXISTS, ISNULL, IN, ... (Other relational
algebra operations)

UDF invocation (nested/recursive with

configurable depth)
All SQL datatypes.

$2CMU-DB

15-721 (Spring 2023)
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APPLICABILITY / COVERAGE

# of Scalar Froid
UDFs Compatible

Workload 84%
Workload 2 91%
Workload 3 95%

£2CMU-DB
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UDF IMPROVEMENT STUDY

Table: 100k Tuples

U
-]

Workload 1

o
p—

p—
-]

Workload 2

Improvement Factor

Source: Karthik Ramachandra

0CMU -DB
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APFEL: UDFs-TO-CTEs

Rewrite UDFs into plain SQL commands.

Use recursive common table expressions (CTEs) to
support iterations and other control flow concepts
not supported in Froid.

Implemented as a rewrite middleware layer on top
of any DBMS that supports CTEs.

; . COMPILING PL/SQL AWAY
CIDR 2

0CMU -DB
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UDFs-TO-CTEs OVERVIEW

Step #1 — Static Single Assignment Form

Step #2 — Administrative Normal Form

Step #3 — Mutual to Direct Recursion
Step #4 — Tail Recursion to WITH RECURSIVE
Step #5 — Run Through Query Optimizer

£=CMU-DB
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STEP #1 - STATIC SINGLE ASSIGNMENT

CREATE FUNCTION pow(x int, n int) pow(x,n):
RETURNS int AS i, €« 0;
$$ Py € 0;
DECLARE while: i, « ®(i,,i,);
iint = 0; » p; < ©(Py,Po);
p int = 1; if i, < n then
BEGIN goto loop;
WHILE i < n LOOP else
P =p * X; goto exit;
1=1+1; loop: p, < p; * Xx;
END LOOP; i, « i, + 1;
RETURN p; goto while;
END; exit: return p,;
$$

Source: Torsten Grust

£=CMU-DB
111111 (Spring 2023)
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STEP #2 - ADMINISTRATIVE NORMAL FORM

pow(x,n): pow(x,n) =
i, « 0; let i, = 0 in
P, < 9; let p, = 1 in
while: i, « @(i,,1i,); while(i,,pg,X,Nn)
P < ©(Pg,Py); »
if i, < n then while(i,,p;,x,n) =
goto loop; let t, = i; >= n in
else if t, then p,
goto exit; else body(i,,p;,x,n)
loop: p, < p; * X;
1, « i, + 1; body(i,,p,,x,n) =
goto while; let p, = p; * x in
exit: return p,; let i, = i, + 1 in
while(i,,p,,X,n)

Source: Torsten Grust

£=CMU-DB
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STEP #3 - MUTUAL TO DIRECT RECURSION

pow(x,n) =
let i, = 0 in
let p, = 1 in
while(i,,pg,X,Nn)

while(i,,p,,x,n) =
let t, = i, >= n in
if t, then p,
else body(i,,p;,x,n)

bOdy(j-]’p]’X’n) -
let p, = p;, * x in
let i, = i, + 1 in
while(i,,p,,X,Nn)

Source: Torsten Grust

$CMU-DB
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»

pow(x,n) =
let i, = 0 in
let p, = 1 in
run(i,, Py, X,Nn)

run(i,,p;,X,n) =
let t, = i, >=n in
if t, then p,
else
let p, = p; * x in
let i, =i, + 1 in
run(i,,p,,X,n)
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STEP #4 - WITH RECURSIVE

pow(x,n) =
let i, = 0 in
let p, = 1 in
run(i,, Py, X,Nn)

run(i,,p;,Xx,n) =
let t, = i, >= n in
if t, then p,
else
let p, = p; * x in
let i, = i, + 1 in
run(i,,p,,Xx,n)

Source: Torsten Grust
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»

WITH RECURSIVE
run("call?",i1,p1,x,n,result) AS (

SELECT true,0,1,x,n,NULL

UNION ALL
SELECT iter.* FROM run, LATERAL (

SELECT false,0,0,0,0,p1
WHERE i1 >= n

UNION ALL
SELECT true,i1+1,pl1*x,x,n,0
WHERE i1 < n

) AS iter("call?",il,pl1,x,n,result)
WHERE run."call?"

)
SELECT * FROM run;
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STEP #4 - WITH RECURSIVE

pow(x,n) = WITH RECURSIVE

c let i, = 0 in run("call?",i1,pl1,x,n,result) AS (

let p, = 1 in
run(i@7peyx7n)

|

—>ISELECT true,0,1,x,n,NULL

UNION ALL

run(i,,p;,x,n) = SELECT iter.* FROM run, LATERAL (

let t, = i, >= n in
g 1 SELECT false,0,0,0,0,p1

if t, then p, 1
T N\ WHERE i1 >= n

= — - —=>| UNION ALL
LG P2 = P * X 1N SELECT true,il+1,pl1*x,x,n,0
let i, = i, + 1 in

] WHERE i1 < n
run(i,,p,,X,n)

) AS iter("call?",il,pl1,x,n,result)
WHERE run."call?"

)
SELECT * FROM run;

Source: Torsten Grust

$CMU-DB

15-721 (Spring 2023)



https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://db.inf.uni-tuebingen.de/team/TorstenGrust.html

4500

(9N
o
o
o

Run Time (ms)
*
S

Source: Torsten Grust

$2CMU-DB

15-721 (Spring 2023 )

UDFs-TO-CTEs EVALUATION

POW UDF on Postgres vil.3
-+-PL/SQL o-CTE
lb 26 36 40 50 50 %O éO 50 160
# of Iterations (x1000)
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SAM ARCH'S

WHY FROID
DOESN'T WORK
UNLESS YOU
HAVE GERMANS
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FROID: WHAT HAPPENED NEXT?

2018 — Froid added to SQL Server 2019.

$CMU-DB
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FROID: WHAT HAPPENED NEXT?

2018 — Froid added to SQL Server 2019.

2019 — Huge performance wins in the wild.

£=CMU-DB
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FROID: WHAT HAPPENED NEXT?

g Karthik Ramachandra

e

100 fold improvement in UDF performance due to
Froid as observed by @tf3604! Great news, but not

surprising at all.

¥ Breanna Hansen
Blogged: Testing Scalar UDF Performance on SQL Server 2019bit.ly/2RmUAPc
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FROID: WHAT HAPPENED NEXT?

g Karthik Ramachandra

i

Order of magnitude "dramatic" perf gains due to Froid
observed by @jdanton in @SQLServer 2019 CTP2.1!

"The other feature that | refer to as simply magic...."

"The first time | tested it, | was blown away."

What's New in SQL Server 2019: A Closer Look at the Top ...
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FROID: WHAT HAPPENED NEXT?

g Karthik Ramachandra

S

Quoting from the article:

"..the CPU time is 3 times lower ... and the query is
more than 20x faster!"

"For those, who use scalar UDFs extensively, the new
version looks like a gift from heaven. The
improvement is very impressive. "

"The improvement looks really fabulous..."
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FROID: WHAT HAPPENED NEXT?

g Karthik Ramachandra

Scalar UDF inlining (aka Froid) at work :)

4 Gail Shaw @SQLintheWi

Ok wow. Scalar function (trlmmlng time off date) run against 840k rows 25
times.

Compat mode 140: 4 min 25 sec

Compat mode 150: 9 seconds

This is going to make a massive difference!
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FROID: WHAT HAPPENED NEXT?

2018 — Froid added to SQL Server 2019.
2019 — Huge performance wins in the wild.
2020 - High praise from Andy.

£CMU-DB
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FROID: WHAT HAPPENED NEXT"

Joe Hellerstein @ erste

' : DB Twitter — favorite papers in Iast decade for reading in a grad DB class?
Nominate one (outside your team) that inspired you, challenged you, or
changed your thinking!

‘gy Andy Pavlo (@andy_pavlio@discuss.systems)

4

ing to @joe_hellerstein

In no particular order:

+ Froid (VLDB'17)

+ HyPer JIT Query Compilation (VLDB'11)
+ Hekaton Concurrency Control (VLDB'11)
+ Morsels (SIGMOD'14)

+ SIMD for In-Memory DBs (SIGMOD'15)
+ LeanStore (ICDE'18)
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FROID: WHAT HAPPENED NEXT?

2018 — Froid added to SQL Server 2019.
2019 — Huge performance wins in the wild.

2020 — High praise from Andy.

Andy Pavlo (@andy_pavlo@discuss.sys...

I've said it before, but @karthiksr's UDF inlining is one of the most
important query optimization techniques for databases developed in the

last decade. | dedicated an entire class on Froid in my Advanced DB
course in 2020: youtube.com/watch?v=rAR_IB...

$CMU-DB
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FROID: WHAT HAPPENED NEXT?

2018 — Froid added to SQL Server 2019.
2019 — Huge performance wins in the wild.
2020 - High praise from Andy.

2021 - ProcBench paper released.

£CMU-DB
15-721 (Spring 2023)
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FROID: WHAT HAPPENED NEXT?

2018 — Froid added to SOI. Server 2019.

Procedural Extensions of SQL.:
Understanding their usage in the wild

Surabhi Gupta Karthik Ramachandra
Microsoft Research India Microsoft Azure Data (SQL), India
t-sugu@microsoft.com karam@microsoft.com

$CMU-DB
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PROCEDURAL EXTENSIONS OF SQL

Microsoft team published an analysis of real world
UDFs, TVFs, Triggers and Stored Procedures.

Also released an open-source benchmark based on
their analysis called SQL ProcBench.

— Authors argue that ProcBench faithfully represents real
world workloads

~ |PROCEDURAL EXTENSIONS OF SQL:
UNDERSTANDING THEIR USAGE IN THE WILD
VLDB 2021

$2CMU-DB

15-721 (Spring 2023)



https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://github.com/microsoft/SQL-ProcBench
https://www.vldb.org/pvldb/vol14/p1378-ramachandra.pdf
https://www.vldb.org/pvldb/vol14/p1378-ramachandra.pdf

SCALAR UDFS IN THE PROCBENCH

UDFs with no parameters

SELECT maxReturnReasonWeb();

CREATE FUNCTION maxReturnReasonWeb()
RETURNS char(100) AS

BEGIN

DECLARE @reason_desc char(100);

SELECT @Qreason_desc
FROM ...;

RETURN @reason_desc;
END

$CMU-DB
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UDF invoked once

No substantial performance
advantage with UDF Inlining
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SCALAR UDFS IN THE PROCBENCH

UDFs with parameters

CREATE FUNCTION cust_level(@ckey int)
RETURNS char(10) AS

BEGIN

DECLARE @total float;

DECLARE @Qlevel char(10);

SELECT @total = SUM(o_totalprice)
FROM orders WHERE o_custkey=@ckey;

IF (@total > 1000000)
SET @level = 'Platinum';
ELSE

SET @Qlevel = 'Regular';

RETURN @level;
END

SELECT cust_level(customer_id)
FROM customer;

$CMU-DB
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UDF invoked per customer
Implicit join between tables

Huge performance win with
UDF Inlining by “decorrelating”
the subquery
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HOW DOES FROID FARE?

FROID is supported in SQL Server 2019
We tested SQL Server 2019 on the ProcBench

SQL Server’s optimizer could only decorrelate
two out of 13 of the UDFs with parameters

The German's Umbra optimizer could decorrelate
all 13 UDFs.

$2CMU-DB
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DECORRELATION OF SUBQUERIES (MSSQL)

Algebraic rewrite rules for APPLY

R A® E = RG®tueE, (1)

if no parameters in F resolved from R
R A® (0,E) = RQ®,E, (2)

if no parameters in F resolved from R
RA* (0,E) = o0,(RA"E) (3)
RA* (mE) = 7y columns(r)(RA™ E) (4)
RA* (E1UE)) = (RA* E1)U(R A E») (5)
RA* (E1—E)) = (RA® E1)— (RA™ E») (6)
R .A’< (E1 X B2) = (RA™ E1) XRgkey (RA™ E) (7)
(QA FE) = GAUcolumns(r),r(RA* E) (8)
“(GFE) = Geolumns(r)r(RA™TE)  (9)

~|ORTHOGONAL OPTIMIZATION OF SUBQUERIES
AND AGGREGATION
SIGMOD 2001

$CMU-DB
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Execute the rewrite rules
where applicable

Some rewrites may require
duplicating subexpressions in
the query plan tree (and are
cost-based decisions)
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https://15721.courses.cs.cmu.edu/spring2020/papers/24-udfs/p1-duta-cidr20.pdf
https://sigmodrecord.org/publications/sigmodRecord/0106/pdfs/Orthogonal Optimization of Subqueries and Aggregation.pdf

DECORRELATION OF SUBQUERIES (GERMI-\HS)lﬂ

Dependent Join Operator

o orad Introduces a new “Dependent
e.grade=—m .y .
’ | Join” operator into the Query

X Plan DAG
/ \
M. id=e.sid F@;m:min(e2.grade)
RN | Systematically decorrelates any
students s €Xams € Os.id=e2.sid Subquery
|

exams e2

= | UNNESTING ARBITRARY QUERIES
BTW 2015

£=CMU-DB
111111 (Spring 2023)
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https://cs.emis.de/LNI/Proceedings/Proceedings241/383.pdf

IMPLICATIONS FOR UDF INLINING

UDF Inlining is amazing. But to achieve great

performance from UDF Inlining requires a German-

style query optimizer.

— SQL Server's optimizer is good (according to Andy) but not as
good as the Germans for this task.

This is why we are extending DuckDB to support UDFs

£=CMU-DB

15-721 (Spring 2023 )
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PARTING THOUGHTS

This is huge. You rarely get 500x speed up without
either switching to a new DBMS or rewriting your
application.

Another optimization approach is to compile the

UDF into machine code.
— This does not solve the optimizer's cost model problem.

$2CMU-DB

15-721 (Spring 2023)
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NEXT CLASS

Database Networking Protocols

$2CMU-DB
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