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TODAY'S AGENDA

Database Access APIs
Database Network Protocols
Kernel/User Bypass Methods
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DATABASE ACCESS

All the demos in the class have been through a

terminal client.
— SQL queries are written by hand.
— Results are printed to the terminal.

Real programs access a database through an API:
— Direct Access (DBMS-specific)

— Open Database Connectivity (ODBC)
— Java Database Connectivity (JDBC)
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DATABASE ACCESS

All the demos in the class have been through a

terminal client.
— SQL queries are written by hand.
— Results are printed to the terminal.

Real programs access a database through an API:
— Direct Access (DBMS-specific)

— Open Database Connectivity (ODBC)
— Java Database Connectivity (JDBC)
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OPEN DATABASE CONNECTIVITY

Standard API for accessing a DBMS. Designed to be
independent of the DBMS and OS.

Originally developed in the early 1990s by
Microsoft and Simba Technologies.

Every major relational DBMS now has an ODBC
implementation.

$2CMU-DB

15-721 (Spring 2023 )


https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

OPEN DATABASE CONNECTIVITY

ODBC is based on the "device driver" model.

The driver encapsulates the logic needed to
convert a standard set of commands into the

DBMS-specific calls.

g
()
é Request
Application i <2 B
g Result
Q S— 7
-
DBMS Wire Protocol
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JAVA DATABASE CONNECTIVITY

Developed by Sun Microsystems in 1997 to provide

a standard API for connecting a Java program with

a DBMS.

— JDBC can be considered a version of ODBC for the
programming language Java instead of C.

JDBC supports different client-side configurations

because there may not be a native Java driver for
each DBMS.
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JAVA DATABASE CONNECTIVITY

Approach #1: JDBC-ODBC Bridge €@ Removed in 2014
— Convert J]DBC method calls into ODBC function calls.

Approach #2: Native-API Driver

— Convert JDBC method calls into native calls of the target
DBMS APIL.

Approach #3: Network-Protocol Driver

— Driver connects to a middleware in a separate process that
converts JDBC calls into a vendor-specific DBMS protocol.

Approach #4: Database-Protocol Driver €@ Best Approach

— Pure Java implementation that converts JDBC calls directly
into a vendor-specific DBMS protocol.
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DATABASE NETWORKING PROTOCOLS

All major DBMSs implement their own proprietary

client wire protocol over TCP/IP,
— Use Unix domain sockets if running on same box as app.
— Andy doesn't know of any DBMS using UDP for clients.

A typical client/server interaction:

— Client connects to DBMS and begins authentication
process. There may be an SSL/TLS handshake.

— Client then sends a query.

— DBMS executes the query, then|serializes the results|and
sends it back to the client.
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EXISTING PROTOCOLS

Most newer systems implement one of the open-
source DBMS wire protocols. This allows them to
reuse the client drivers without having to develop
and support them.

Just because on DBMS "speaks" another DBMS's

wire protocol does not mean that it is compatible.

— Need to also support catalogs, SQL dialect, and other
functionality.
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EXISTING PROTOCOLS
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PROTOCOL DESIGN SPACE

Row vs. Column Layout
Compression

Data Serialization
String Handling

=+.|DON'T HOLD MY DATA HOSTAGE: A CASE FOR
CLIENT PROTOCOL REDESIGN
VLDB 2017
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ROW VS. COLUMN LAYOUT

String sgl = "SELECT * FROM xxx";

. Statement stmt = conn.createStatement();
ODBC/JDBC arc rOW'Orlented APIS- ResultSet rs = stmt.executeQuery(sqgl);
E; L( 1 . while (rs.next()) {
— OErver pac ages tup es 1Into messages one // Do something magical row by row!
: rs.getInt(1);
tuple at a time. oy
— Client deserializes data one tuple at a time. | SRR

stmt.close();

But switching to a column-oriented String sql = 'SELECT » FROM xxx'’

Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery(sql);

API is a bad too because client may T

while (rs.nextRow()) {

access multiple columns for a tuple. 7/ 0o something magical per column!

rs.getValue();

}
}
stmt.close(); Not Real JDBC Code!

Solution: Vector-oriented API
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COMPRESSION

Approach #1: Naive Compression

— DBMS applies a general-purpose compression algo (1z4,
gzip, zstd) on message chunks before transmitting.

— Few systems support this (Oracle, MySQL).

Approach #2: Columnar-Specific Encoding

— Analyze results and choose a specific compression
encoding (dictionary, RLE, delta) per column.
— No system implements this.

Heavyweight compression is better when network
is slow. DBMS achieves better compression ratios
for larger message chunk sizes.
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DATA SERIALIZATION

Approach #1: Binary Encoding

— Client handles endian conversion.

— The closer the serialized format is to the DBMS's binary
format, then the lower the overhead to serialize.

— DBMS can implement its own format or rely on existing
libraries (ProtoBuffers, Thrift, FlatBuffers).
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Approach #1: Binary
— Client handles endian ¢
— The closer the serialize
format, then the lower
— DBMS can implement
libraries (ProtoBuffers,

ChatGPT Mar 14 v n.
LNatGPT Mar 14 Version.

Write me an example of a pr{

column and a timestamp col

Surel Here's an example Prof]

column and a "timestamp"
java

syntax =

e Table {

In this example, we define a
"name" and "timestamp”. Th
an int64 (a 64-bit integer).

Note that each field has a ta
are used by the Protocol Buff
decoding messages. The tag
and should be chosen carefy
existing encoded messages,

Free Research p

New chat + |

Write me an example of a Thrift specification for a table that has a name column
and a timestamp column.

Sure, here's an example of a Thrift specification for a table with a name column
and a timestamp column:

In this example, the “struct" keyword defines a structure or object that
represents a row in the table. The “MyTable" identifier js the name of the struct,
and it contains two required fields:

" “name’ s a string field with a field ID of 1.
* Ctimestamp® isan integer field with a field 1D of 2,

The “required” keyword indicates that both fields are mandatory, meaning that
they must be present in évery row of the table. The “ 164" data type is used to

represent a 64-bit integer, which is commonly used to store timestamps in Thrift
applications.

This specification can be used to generate code for a Thrift client and server,
allowing them to communicate with each other using this data structure.

0]
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DATA SERIALIZATION

Approach #1: Binary Encoding

— Client handles endian conversion.

— The closer the serialized format is to the DBMS's binary
format, then the lower the overhead to serialize.

— DBMS can implement its own format or rely on existing
libraries (ProtoBuffers, Thrift, FlatBuffers).
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DATA SERIALIZATION

Approach #1: Binary Encoding

— Client handles endian conversion.

— The closer the serialized format is to the DBMS's binary
format, then the lower the overhead to serialize.

— DBMS can implement its own format or rely on existing

libraries (ProtoBuffers, Thrift, FlatBuffers).
! ProfaneDB<+—
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DATA SERIALIZATION

Approach #1: Binary Encoding

— Client handles endian conversion.

— The closer the serialized format is to the DBMS's binary
format, then the lower the overhead to serialize.

— DBMS can implement its own format or rely on existing
libraries (ProtoBuffers, Thrift, FlatBuffers).
¢ ProfaneDB <+

Approach #2: Text Encoding

— Convert all binary values into strings (atoi).
— Do not have to worry about endianness.
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DATA SERIALIZATION

Approach #1: Binary Encoding

— Client handles endian conversion.

— The closer the serialized format is to the DBMS's binary
format, then the lower the overhead to serialize.

— DBMS can implement its own format or rely on existing
libraries (ProtoBuffers, Thrift, FlatBuffers).

£ ProfaneDB<«—
Approach #2: Text Encoding 123456
— Convert all binary values into strings (atoi). ‘

— Do not have to worry about endianness.

"123456"
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STRING HANDLING

Approach #1: Null Termination

— Store a null byte (' \@"') to denote the end of a string.
— Client scans the entire string to find end.

Approach #2: Length-Prefixes
— Add the length of the string at the beginning of the bytes.

Approach #3: Fixed Width

— Pad every string to be the max size of that attribute.
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NETWORK PROTOCOL PERFORMANCE

Transfer One Tuple from TCP-H LINEITEM

B MySQL+GZIP B MySQL B MonetDB B Postgres
M Oracle M MongoDB W DB2 M Hive
10 ;

S | Lower is Better
\:' o 1080
g |

= .

3 Text Encoding
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|

All Other Protocols Use Binary Encoding

Source: Hannes Muhleisen
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NETWORK PROTOCOL PERFORMANCE

Transfer Im Tuples from TCP-H LINEITEM

[ +-MySQL+GZIP -a=MySQL | -e-MonetDB —>Postgres
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¥ 100
5
~ Compression overhead is bad
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2 10
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1 [ I I 1

0.1 1 10 100
Network Latency (ms)

Source: Hannes Muhleisen
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NETWORK PROTOCOL PERFORMANCE

Transfer Im Tuples from TCP-H LINEITEM

Verb !
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APACHE ARROM

Standardized column-oriented format (PAX) >> ARROW

memory representation of tables.
— Think of it like Parquet/ORC but for in-memory data.
— Initial Java implementation from Apache Drill.

Allows systems to exchange data without having to
(de)serialize into proprietary formats.

Arrow project includes components around format:
— Wire Protocols (ADBC, Arrow Flight)
— Execution Engine (DataFusion)
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OBSERVATION

The DBMS's network protocol implementation is
not the only source of slowdown.

The OS's TCP/IP stack is slow...

— Expensive context switches / interrupts
— Data copying
— Lots of latches in the kernel

$2CMU-DB
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KERNEL BYPASS METHODS

Allows the system to get data directly from the NIC
into the DBMS address space.

— No unnecessary data copying.
— No OS TCP/IP stack.

Approach #1: Data Plane Development Kit
Approach #2: Remote Direct Memory Access
Approach #3: 10_uring

£=CMU-DB
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DATA PLANE DEVELOPMENT KIT (DPDK)

Set of libraries that allows programs to access NIC
directly. Treat the NIC as a bare metal device.

Requires the DBMS code to do more to manage

network stack (layers 3+4), memory, and buffers.
— TCP/IP in usercode (e.g., F-Stack).

— No data copying.

— No system calls.

Example: ScyllaDB's Seastar, Yellowbrick's ypRPC

s=CMU-DB DATA PLANE DEVELOPMENT KIT
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DATA PLANE DEVELOPMENT KIT (DPDK)

Set of libraries that allow “ o .

directly. Treat the NIC g  revying o esoumsers @amy saio anga o

Requires the DBMS cod{ A nasty analogy is that spdk is like peeing
your pants to keep warm. It works great for a

network stack (layers 34  few minutes, then you start regretting it.
— TCP/IP in usercode (e.g.|  1720am-6nov2017

— No data copying. 2 0 QOPVOODE @

— No system calls. Gz e

Q 10 [}

Example: ScyllaDB's Seastar, Yellowbrick's ypRPC ™

9 DATA PLANE DEVELOPMENT KIT
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REMOTE DIRECT MEMORY ACCESS

Read and write memory directly on a remote host
without going through OS.

— The client needs to know the correct address of the data
that it wants to access.

— The server is unaware that memory is being accessed
remotely (i.e., no callbacks).

Example: Oracle RAC, Microsoft FaRM
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I0_URING

Linux system call interface for zero-copy

asynchronous I/O operations.

— Originally added in 2019 for accessing storage devices.
— Expanded in 2022 to support network devices.

— Windows has something similar called ICOP.

OS exposes two circular buffers (queues) to store

submission and completion I/O requests.

— DBMS submits requests for the kernel to perform
read/write operations to DBMS-provided buffers.

— When OS completes request, it puts the event on the
competition queue and invokes callback.
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I0_URING

Linux system call interface for zero-copy

asynchronous I/O operations.

— Originally added in 2019 for accessing storage devices.
— Expanded in 2022 to support network devices.

— Windows has something similar called ICOP.

OS exposes two circular buffers (queues) to store

submission and completion I/O requests.

— DBMS submits requests for the kernel to perform
read/write operations to DBMS-provided buffers.

— When OS completes request, it puts the event on the
competition queue and invokes callback.
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USER BYPASS METHODS

Execute logic inside of the OS kernel when packets
arrive instead of copying it into the DBMS via
extended-Berkeley Packet Filters (eBPF).

— eBPF programs are written in a DSL and then compiled
into bytecode, verified, then JIT-ed at runtime.
— Programming model is limited (no malloc, # of instrs.).

Only useful for parts of the DBMS that operate on
I/Os that the system does not retain for long
periods of time.
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PARTING THOUGHTS

A DBMS's networking protocol is an often-
overlooked bottleneck for performance.

Kernel bypass methods greatly improve

performance but require more bookkeeping.
— Probably more useful for internal DBMS communication.

User bypass is an interesting direction for
ephemeral I/Os in DBMSs.
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NEXT CLASS

Query Optimizer
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