Lecture #15

Carnegie Mellon University

ADVANCED DATABASE SYSTEMS

Database
Networking

Andy Pavlo // 15-721 // Spring 2023

https://15721.courses.cs.cmu.edu/spring2023
http://db.cs.cmu.edu/

ADMINISTRIVIA

Project #2:

— Feedback Submission: Saturday April 1¢
— Final Submission: Monday May 1%
— [sent out dbdb.io signup links on Monday!

Project #3

— Status Update Presentation: Monday April 37
— Final Presentations: Friday May 5th @ 5:30pm

££CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dbdb.io/

$CMU-DB

15-721 (Spring 2023)

ARCHITECTURE OVERVIEW

Networking Layer

Planner

Compiler

Executum Engme

Storage Manager {

SQL Parser

Binder

Rewriter

Optimizer / Cost Models

Scheduling / Placement @@

Operator Execution 0
I ndexes @

Storage Models @
Compression 0

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

TODAY'S AGENDA

Database Access APIs
Database Network Protocols
Kernel/User Bypass Methods

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

$2CMU-DB

15-721 (Spring 2023)

DATABASE ACCESS

All the demos in the class have been through a

terminal client.
— SQL queries are written by hand.
— Results are printed to the terminal.

Real programs access a database through an API:
— Direct Access (DBMS-specific)

— Open Database Connectivity (ODBC)
— Java Database Connectivity (JDBC)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://en.wikipedia.org/wiki/Open_Database_Connectivity
https://en.wikipedia.org/wiki/Java_Database_Connectivity

Contact MysqQL

ponate Your account

Developers Support

Comrmunity

@ Home About pownload Documentation
5.2,14.7, 1310, 12.14, and 11.19 Released!

9th February 2023 PostgresQL 1
>
Documentation PostgresQL 13 Search the documentation for.. Q M S
supported Versions: current (15y/14713712/711 S l y L 8 O C A P
Development Versions: devel [, D e ve ' (o] .
Unsupported versions: 10/9.6/95/9.4/93/92/ 9.1/ Abstract p e r G u | d e
2.0/ 8.4/83/82/81 /8074173172 /174
This is the M
- S
34.3. Command Execution Functions YSQLB.O C AP Developer Guide. Thi
. . - This doc
Prev Up Chapter 34. libpg — € Library Home Next The C AP . ument acco
. provides low-leve| ac mpanles MySQL 8.0 R
d The C AP| cade Is distrib Ccess to the MysqQL cllents -0 Reference Manual
. . il 5 .
34.3. Command Execution Functions . W1EG With MySCQL and implementea e S € P
or lg; . nted In ograms N
er gal information, see the the 1ibaysqicaient libra 10 access database con
34.3.1. Main Functions] F €gal Notices, ke ents.
. ar helj
rmation p with using
ySQL,
, QL, please visit the MySQL Forum:
ocument s, where
generated on: 2023-03-20 (revision; 7 youcan discuss your issues with oth
n: 75178) er MySQL use
TS,

34,3.2. Retrieving Query Result info
ther Result Information

QL commands
Table of Contents

7]
Prefac
at‘ 17Th ce and Legal Notices
e MySQL C AP

. 2 Mys|
‘1f : W::(EL CAPlIimplementations
b ol '8 C APl-Based Client Applic;
Pl Function Reference ree

34.3.3. Retrieving O
34.3.4. Escaping Strings for Inclusion in 5

erver has been successfully establi

shed, the functions described here are used to perform

Once a connection to a database s
sSQL queries and commands.

34.3.1. Main Functions

pPQexec
Submits a command to the server and waits for the result.
t 5 C API Basic Interface
peresult *pgexec({PGcoNn sconn, censt char *command) ; 6 CAPI Prepare
7 APLA ed Statement Interface
synchronous E
Interface
Returns a Peresult pointer o possibly a null painter. A non-null pointer will generally be returned except in out-of- 7 8 CAPI Thread Interface
erious errors such as inability to send the command to the server. The PQresultstatus k. 9 CAPI Client Plugin Interf,
ac
ding the value of & null pointer, in which case it 10 CAPI Binary Log Int ‘
Index g Interface

memory conditions or 5
function should be called t© checl
will return PGRES,FATAL_ERRGR)‘ Usi

K the return value for any ercors (inclu
e PQerrorMessage to get more infor
y semicolons). Multiple queries sentin a single PQexec
W/COMMIT commands included in the query string to

the server handles muiti-query strings-)
& string.

mation about such errors.

QL commands (separated b
less there are explicit BEGI!
1 for more details about how

ommand string can include mubtiple S
HOME NEXT >

The
-ansaction, unl

call are processed in @ single tr

divide it into multiple transactions. (See Section 55.2.2.
Mote however that the returned Peresult structure describes only the result of the last command executed from th
should one of the commands fail, processing of the string stops with it and the returned peresult describes the error OR, ACL &
=L LE ©2033
Oracle

condition.

pQexecparams

ol

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://en.wikipedia.org/wiki/Open_Database_Connectivity
https://en.wikipedia.org/wiki/Java_Database_Connectivity
https://dev.mysql.com/doc/c-api/8.0/en/
https://www.postgresql.org/docs/current/libpq-exec.html

Documentation = postgreSQL 15
Suppurted versions: Current (15)/1

Development Versions: devel
Unsupported versions: 10 /9.6 /9.5/ 9.4/93/92/9.1/

9.0/84/83/82/ 8.1/8.0/ 7.4473/7.2171

4713712/

Chapter 34.lib

Prev Up

34.3. Command Execution Functions

34.3.1. Main Functions

ving Query Result information

ther Result Information

for Inclusion in SQL Commands

34.33. Retrieving O
34.3.4, Escaping SUrings

Once a connectionto a database server has beel

SQL queries and commands.

34.3.1. Main Functions

Submits a command to the server and waits for the r

peresult *pgexec({PGcoNn «conn, canst cha

Returns a Peresult poin
memory conditions or serious errors suc
function should be calied to ched
will return PGRES,FATAL_ERHDR'A Use PQerrorMess
The command string can include multiple 5QL commands (se
call are processed ina single transaction.
divide it into multiple transactions. (See Section 55.2.2.1 foi
Note however that the returne
Should one of the commands fail, proce:

condition.

_ PQexecParams
)

34.3. Command Execution Functions

 successfully established, the fu

ter or possibly a null pointer. AT
h as inability to send the command to the serve

K the return value fo
sage to get more in

unless there are expli
r more details about how the ser

d Peresult structure describes only t
ssing of the string stops wit

Home Nex

pg — C Library

nctions described here are used to perform

esult.
r *command);

an-null pointer will generally be returned except in ou
r. The PQresultstatu

value of a null pointer, in which

¢ any ercors including the
formation about such errors.
Jeries sent in a single P
cit BEGIN/COMMIT commands included in the query strin;

ver handies multi-query stri
d executed from the

parated by semicolons). Multiple au

he result of the last comman:

h it and the returned peresult describes the error

CM

15-721 (Spring 2023)

S
-

C
Program executes SELECT query

Write an exam

< I
SELECT query. Ple C program that uses libpq that
connects to a da
tabase and ex
ecutes a

Here's
an example C program that uses

execute a SE libpg to
LECT query: 4 to connect to a PostgresqL databa:
se and

riessage

PQerrorm, e (conn
connj);

tuples(re
§ = POnfields(r,

i < n_roi

anles i

Q

ol and enat

U can discuss

ber Guide

L

eference M
€rence Manual.

es

rams to access

t library,

your issues w

database content

Version 8.0 v

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://en.wikipedia.org/wiki/Open_Database_Connectivity
https://en.wikipedia.org/wiki/Java_Database_Connectivity
https://dev.mysql.com/doc/c-api/8.0/en/
https://www.postgresql.org/docs/current/libpq-exec.html

$2CMU-DB

15-721 (Spring 2023)

DATABASE ACCESS

All the demos in the class have been through a

terminal client.
— SQL queries are written by hand.
— Results are printed to the terminal.

Real programs access a database through an API:
— Direct Access (DBMS-specific)

— Open Database Connectivity (ODBC)
— Java Database Connectivity (JDBC)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://en.wikipedia.org/wiki/Open_Database_Connectivity
https://en.wikipedia.org/wiki/Java_Database_Connectivity

OPEN DATABASE CONNECTIVITY

Standard API for accessing a DBMS. Designed to be
independent of the DBMS and OS.

Originally developed in the early 1990s by
Microsoft and Simba Technologies.

Every major relational DBMS now has an ODBC
implementation.

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

OPEN DATABASE CONNECTIVITY

ODBC is based on the "device driver" model.

The driver encapsulates the logic needed to
convert a standard set of commands into the

DBMS-specific calls.

g
()
é Request
Application i <2 B
g Result
Q S— 7
-
DBMS Wire Protocol

£=CMU-DB

111111 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://en.wikipedia.org/wiki/Device_driver

JAVA DATABASE CONNECTIVITY

Developed by Sun Microsystems in 1997 to provide

a standard API for connecting a Java program with

a DBMS.

— JDBC can be considered a version of ODBC for the
programming language Java instead of C.

JDBC supports different client-side configurations

because there may not be a native Java driver for
each DBMS.

£=CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

$2CMU-DB

15-721 (Spring 2023)

JAVA DATABASE CONNECTIVITY

Approach #1: JDBC-ODBC Bridge €@ Removed in 2014
— Convert J]DBC method calls into ODBC function calls.

Approach #2: Native-API Driver

— Convert JDBC method calls into native calls of the target
DBMS APIL.

Approach #3: Network-Protocol Driver

— Driver connects to a middleware in a separate process that
converts JDBC calls into a vendor-specific DBMS protocol.

Approach #4: Database-Protocol Driver €@ Best Approach

— Pure Java implementation that converts JDBC calls directly
into a vendor-specific DBMS protocol.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

$2CMU-DB

15-721 (Spring 2023)

DATABASE NETWORKING PROTOCOLS

All major DBMSs implement their own proprietary

client wire protocol over TCP/IP,
— Use Unix domain sockets if running on same box as app.
— Andy doesn't know of any DBMS using UDP for clients.

A typical client/server interaction:

— Client connects to DBMS and begins authentication
process. There may be an SSL/TLS handshake.

— Client then sends a query.

— DBMS executes the query, then|serializes the results|and
sends it back to the client.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://www.morling.dev/blog/talking-to-postgres-through-java-16-unix-domain-socket-channels/

EXISTING PROTOCOLS

Most newer systems implement one of the open-
source DBMS wire protocols. This allows them to
reuse the client drivers without having to develop
and support them.

Just because on DBMS "speaks" another DBMS's

wire protocol does not mean that it is compatible.

— Need to also support catalogs, SQL dialect, and other
functionality.

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

EXISTING PROTOCOLS

“\MysaoL. PostgreSQL @ redis
) . N7 apacHE ,
O singlestore | Clustrix amazon %, GEODE 0
§ actoroe () TiDB e e N
I ,uE HyPer @ .
‘8 cLEARDB | VERTICA rosedb Iy
'® Cockroach Laes Kvrocks Dragonf
. yugabyteDB =
) STARDOG AAmu:r:\g%n J (B UMBRA STendis @KeyDB
=! CrateDB Amazon SUMMITIDB
N Materialize Aurora {!}

Yellowbrick ¢ (% QuestDB
N\
£2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

PROTOCOL DESIGN SPACE

Row vs. Column Layout
Compression

Data Serialization
String Handling

=+.|DON'T HOLD MY DATA HOSTAGE: A CASE FOR
CLIENT PROTOCOL REDESIGN
VLDB 2017

£=CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/citation.cfm?id=3115408
http://dl.acm.org/citation.cfm?id=2005619

ROW VS. COLUMN LAYOUT

String sgl = "SELECT * FROM xxx";

. Statement stmt = conn.createStatement();
ODBC/JDBC arc rOW'Orlented APIS- ResultSet rs = stmt.executeQuery(sqgl);
E; L(1 . while (rs.next()) {
— OErver pac ages tup es 1Into messages one // Do something magical row by row!
: rs.getInt(1);
tuple at a time. oy
— Client deserializes data one tuple at a time. | SRR

stmt.close();

But switching to a column-oriented String sql = 'SELECT » FROM xxx'’

Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery(sql);

API is a bad too because client may T

while (rs.nextRow()) {

access multiple columns for a tuple. 7/ 0o something magical per column!

rs.getValue();

}
}
stmt.close(); Not Real JDBC Code!

Solution: Vector-oriented API

$CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

$2CMU-DB

15-721 (Spring 2023)

COMPRESSION

Approach #1: Naive Compression

— DBMS applies a general-purpose compression algo (1z4,
gzip, zstd) on message chunks before transmitting.

— Few systems support this (Oracle, MySQL).

Approach #2: Columnar-Specific Encoding

— Analyze results and choose a specific compression
encoding (dictionary, RLE, delta) per column.
— No system implements this.

Heavyweight compression is better when network
is slow. DBMS achieves better compression ratios
for larger message chunk sizes.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://blogs.oracle.com/dbstorage/post/advanced-network-compression-a-lessor-known-feature-of-advanced-compression
https://dev.mysql.com/doc/refman/8.0/en/connection-compression-control.html

$2CMU-DB

15-721 (Spring 2023)

DATA SERIALIZATION

Approach #1: Binary Encoding

— Client handles endian conversion.

— The closer the serialized format is to the DBMS's binary
format, then the lower the overhead to serialize.

— DBMS can implement its own format or rely on existing
libraries (ProtoBuffers, Thrift, FlatBuffers).

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://developers.google.com/protocol-buffers
https://en.wikipedia.org/wiki/Apache_Thrift
https://google.github.io/flatbuffers/

$CMU-DB

15-721 (Spring 2023)

Approach #1: Binary
— Client handles endian ¢
— The closer the serialize
format, then the lower
— DBMS can implement
libraries (ProtoBuffers,

ChatGPT Mar 14 v n.
LNatGPT Mar 14 Version.

Write me an example of a pr{

column and a timestamp col

Surel Here's an example Prof]

column and a "timestamp"
java

syntax =

e Table {

In this example, we define a
"name" and "timestamp”. Th
an int64 (a 64-bit integer).

Note that each field has a ta
are used by the Protocol Buff
decoding messages. The tag
and should be chosen carefy
existing encoded messages,

Free Research p

New chat + |

Write me an example of a Thrift specification for a table that has a name column
and a timestamp column.

Sure, here's an example of a Thrift specification for a table with a name column
and a timestamp column:

In this example, the “struct" keyword defines a structure or object that
represents a row in the table. The “MyTable" identifier js the name of the struct,
and it contains two required fields:

" “name’ s a string field with a field ID of 1.
* Ctimestamp® isan integer field with a field 1D of 2,

The “required” keyword indicates that both fields are mandatory, meaning that
they must be present in évery row of the table. The “ 164" data type is used to

represent a 64-bit integer, which is commonly used to store timestamps in Thrift
applications.

This specification can be used to generate code for a Thrift client and server,
allowing them to communicate with each other using this data structure.

0]

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://developers.google.com/protocol-buffers
https://en.wikipedia.org/wiki/Apache_Thrift
https://google.github.io/flatbuffers/

$2CMU-DB

15-721 (Spring 2023)

DATA SERIALIZATION

Approach #1: Binary Encoding

— Client handles endian conversion.

— The closer the serialized format is to the DBMS's binary
format, then the lower the overhead to serialize.

— DBMS can implement its own format or rely on existing
libraries (ProtoBuffers, Thrift, FlatBuffers).

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://developers.google.com/protocol-buffers
https://en.wikipedia.org/wiki/Apache_Thrift
https://google.github.io/flatbuffers/

$2CMU-DB

15-721 (Spring 2023)

DATA SERIALIZATION

Approach #1: Binary Encoding

— Client handles endian conversion.

— The closer the serialized format is to the DBMS's binary
format, then the lower the overhead to serialize.

— DBMS can implement its own format or rely on existing

libraries (ProtoBuffers, Thrift, FlatBuffers).
! ProfaneDB<+—

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://developers.google.com/protocol-buffers
https://en.wikipedia.org/wiki/Apache_Thrift
https://google.github.io/flatbuffers/

$CMU-DB

15-721 (Spring 2023)

DATA SERIALIZATION

Approach #1: Binary Encoding

— Client handles endian conversion.

— The closer the serialized format is to the DBMS's binary
format, then the lower the overhead to serialize.

— DBMS can implement its own format or rely on existing
libraries (ProtoBuffers, Thrift, FlatBuffers).
¢ ProfaneDB <+

Approach #2: Text Encoding

— Convert all binary values into strings (atoi).
— Do not have to worry about endianness.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://developers.google.com/protocol-buffers
https://en.wikipedia.org/wiki/Apache_Thrift
https://google.github.io/flatbuffers/
http://www.cplusplus.com/reference/cstdlib/atoi/

$CMU-DB

15-721 (Spring 2023)

DATA SERIALIZATION

Approach #1: Binary Encoding

— Client handles endian conversion.

— The closer the serialized format is to the DBMS's binary
format, then the lower the overhead to serialize.

— DBMS can implement its own format or rely on existing
libraries (ProtoBuffers, Thrift, FlatBuffers).

£ ProfaneDB<«—
Approach #2: Text Encoding 123456
— Convert all binary values into strings (atoi). ‘

— Do not have to worry about endianness.

"123456"

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://developers.google.com/protocol-buffers
https://en.wikipedia.org/wiki/Apache_Thrift
https://google.github.io/flatbuffers/
http://www.cplusplus.com/reference/cstdlib/atoi/

$2CMU-DB

15-721 (Spring 2023)

STRING HANDLING

Approach #1: Null Termination

— Store a null byte (' \@"') to denote the end of a string.
— Client scans the entire string to find end.

Approach #2: Length-Prefixes
— Add the length of the string at the beginning of the bytes.

Approach #3: Fixed Width

— Pad every string to be the max size of that attribute.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

NETWORK PROTOCOL PERFORMANCE

Transfer One Tuple from TCP-H LINEITEM

B MySQL+GZIP B MySQL B MonetDB B Postgres
M Oracle M MongoDB W DB2 M Hive
10 ;

S | Lower is Better
\:' o 1080
g |

= .

3 Text Encoding

12

§.. 0.1

3

o

)

p—
|

All Other Protocols Use Binary Encoding

Source: Hannes Muhleisen

£2CMU-DB

15721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://hannes.muehleisen.org/

NETWORK PROTOCOL PERFORMANCE

Transfer Im Tuples from TCP-H LINEITEM

[+-MySQL+GZIP -a=MySQL | -e-MonetDB —>Postgres
=¥=Oracle =¢-MongoDB -#-DB2 --Hive
o .

S lLower is Better
N
¥ 100
5
~ Compression overhead is bad
~ tradeof f when network is
2 10
=
83

1 [I I 1

0.1 1 10 100
Network Latency (ms)

Source: Hannes Muhleisen

£2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://hannes.muehleisen.org/

NETWORK PROTOCOL PERFORMANCE

Transfer Im Tuples from TCP-H LINEITEM

Verb !
—4=MySQL+GZIP =&MySQL - MonetDB ~ =<PoStares gperhoad ismore
d
=*=Qracle =¢-MongoDB -2-DB2 -¢-Hive ﬁ';‘il’é’,f‘ ,ﬁ'ﬁfwf,’fk
o .
S lLower is Better
N~
% 100
R
~
~ /
S 10 -’
S —
= e
1 | I I |
0.1 1 10 100
Network Latency (ms)
Source: Hannes Muhleisen

£2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://hannes.muehleisen.org/

APACHE ARROM

Standardized column-oriented format (PAX) >> ARROW

memory representation of tables.
— Think of it like Parquet/ORC but for in-memory data.
— Initial Java implementation from Apache Drill.

Allows systems to exchange data without having to
(de)serialize into proprietary formats.

Arrow project includes components around format:
— Wire Protocols (ADBC, Arrow Flight)
— Execution Engine (DataFusion)

$CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://drill.apache.org/
https://arrow.apache.org/blog/2023/01/05/introducing-arrow-adbc/
https://arrow.apache.org/blog/2019/10/13/introducing-arrow-flight/
https://github.com/apache/arrow-datafusion

OBSERVATION

The DBMS's network protocol implementation is
not the only source of slowdown.

The OS's TCP/IP stack is slow...

— Expensive context switches / interrupts
— Data copying
— Lots of latches in the kernel

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

KERNEL BYPASS METHODS

Allows the system to get data directly from the NIC
into the DBMS address space.

— No unnecessary data copying.
— No OS TCP/IP stack.

Approach #1: Data Plane Development Kit
Approach #2: Remote Direct Memory Access
Approach #3: 10_uring

£=CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

DATA PLANE DEVELOPMENT KIT (DPDK)

Set of libraries that allows programs to access NIC
directly. Treat the NIC as a bare metal device.

Requires the DBMS code to do more to manage

network stack (layers 3+4), memory, and buffers.
— TCP/IP in usercode (e.g., F-Stack).

— No data copying.

— No system calls.

Example: ScyllaDB's Seastar, Yellowbrick's ypRPC

s=CMU-DB DATA PLANE DEVELOPMENT KIT

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dpdk.org/
http://www.f-stack.org/
https://seastar.io/
https://yellowbrick.com/resources/executive-overviews/engineered-for-extreme-efficiency/
https://www.dpdk.org/

DATA PLANE DEVELOPMENT KIT (DPDK)

Set of libraries that allow “ o .

directly. Treat the NIC g revying o esoumsers @amy saio anga o

Requires the DBMS cod{ A nasty analogy is that spdk is like peeing
your pants to keep warm. It works great for a

network stack (layers 34 few minutes, then you start regretting it.
— TCP/IP in usercode (e.g.| 1720am-6nov2017

— No data copying. 2 0 QOPVOODE @

— No system calls. Gz e

Q 10 [}

Example: ScyllaDB's Seastar, Yellowbrick's ypRPC ™

9 DATA PLANE DEVELOPMENT KIT

$CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dpdk.org/
http://www.f-stack.org/
https://seastar.io/
https://yellowbrick.com/resources/executive-overviews/engineered-for-extreme-efficiency/
https://twitter.com/axboe/status/927571366085246976
https://www.dpdk.org/

REMOTE DIRECT MEMORY ACCESS

Read and write memory directly on a remote host
without going through OS.

— The client needs to know the correct address of the data
that it wants to access.

— The server is unaware that memory is being accessed
remotely (i.e., no callbacks).

Example: Oracle RAC, Microsoft FaRM

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://en.wikipedia.org/wiki/Oracle_RAC
https://www.microsoft.com/en-us/research/publication/farm-fast-remote-memory/

I0_URING

Linux system call interface for zero-copy

asynchronous I/O operations.

— Originally added in 2019 for accessing storage devices.
— Expanded in 2022 to support network devices.

— Windows has something similar called ICOP.

OS exposes two circular buffers (queues) to store

submission and completion I/O requests.

— DBMS submits requests for the kernel to perform
read/write operations to DBMS-provided buffers.

— When OS completes request, it puts the event on the
competition queue and invokes callback.

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://lwn.net/Articles/810414/
https://github.com/axboe/liburing/wiki/io_uring-and-networking-in-2023
https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports

NG

T TigerBeetie Docs Blog g5 Slack € GitHub (Subscribe

A Program \1ll* ClickHouse Product v UseCases Company v Learn v Pricing @ Signin | Get Started
e - Abstractio
: and kqueue . o
o post, QuestoBe e« S VP A journey to lo_uring, AlO

: e : and modern storage

o AP and e-series datab Consider this tale of /0 and perfd

.
lo_uring and kqueue, and take ho deVICGS

may find familiar.

This is a twist on King's talk at So

Ruslan Savchenko
D & Mar 8, 2021
S & open source time series database co Classical approacH
a d convenie anne porta
e decided to dedicate o ew release Que When you want 1o read from a file) White main memory is considered to be rather cheap by some systems designers it is not
d at paralle - = T times as neces sary to fill a buffer Ell - everything in the main memory. When data is stored in external
direction carefully how to access the data. There are several kind of storage
ece ouse tea be ark helped

€ system call to read from them. We performed experiments to find
stem calls perform for available devices. In total HDD, SATA $sD,
Ne were accessed via single-threaded and muiti-threaded pread,

interfaces. Full report is available in PDF format: . We give one
5 4 n example.

: ely, it p ore Read

S = o oma block devices which means data transfer between a device and
o T than single bytes. Typically 512 bytes or 4 kilobytes blocks are
€ been chosen by manufactures long time ago and may be not the
0 ies. By requesing larger amount of contigious data we can
€asE s find out how modern devices perform with larger blocks.

ck size for a random read. An application (or filesystem) can
Kk any block size and access data with respect to this block size. We vary block size from 4
kilobytes up to 32 megabytes. For each block size we make some random reads Among these
reads we calculate average, minimum and maximum latency as well as 99,0 and 99,9
_ percentiles. We use system call pread(2} in this experiment. We believe that Iseek(2) foliowed
£2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://lwn.net/Articles/810414/
https://github.com/axboe/liburing/wiki/io_uring-and-networking-in-2023
https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports
https://questdb.io/blog/2022/09/12/importing-300k-rows-with-io-uring/
https://tigerbeetle.com/blog/a-friendly-abstraction-over-iouring-and-kqueue/
https://clickhouse.com/blog/a-journey-to-io_uring-aio-and-modern-storage-devices
https://github.com/ClickHouse/ClickHouse/issues/10787#issuecomment-1249939496

I0_URING

Linux system call interface for zero-copy

asynchronous I/O operations.

— Originally added in 2019 for accessing storage devices.
— Expanded in 2022 to support network devices.

— Windows has something similar called ICOP.

OS exposes two circular buffers (queues) to store

submission and completion I/O requests.

— DBMS submits requests for the kernel to perform
read/write operations to DBMS-provided buffers.

— When OS completes request, it puts the event on the
competition queue and invokes callback.

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://lwn.net/Articles/810414/
https://github.com/axboe/liburing/wiki/io_uring-and-networking-in-2023
https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports

DATA EXPORT PERFORMANCE

Transfer 7GB of Tuples from TPC-C ORDER_LINE

B Postgres M Vectorized Postgres M Arrow Flight B RDMA

~1200 : : 1057
S T Higher is Better

R

= 800

N~

)

S

£ 400

z 150
£ 38

~ o0 -

Transport Method

“ |MAINLINING DATABASES: SUPPORTING FAST TRANSACTIONAL
W_(BBRIEI(_)(Z)&DS ON UNIVERSAL COLUMNAR DATA FILE FORMATS

££CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://www.vldb.org/pvldb/vol14/p534-li.pdf
https://www.vldb.org/pvldb/vol14/p534-li.pdf

USER BYPASS METHODS

Execute logic inside of the OS kernel when packets
arrive instead of copying it into the DBMS via
extended-Berkeley Packet Filters (eBPF).

— eBPF programs are written in a DSL and then compiled
into bytecode, verified, then JIT-ed at runtime.
— Programming model is limited (no malloc, # of instrs.).

Only useful for parts of the DBMS that operate on
I/Os that the system does not retain for long
periods of time.

- | TASTES GREAT! LESS FILLING! HIGH PERFORMANCE

AND ACCURATE TRAINING DATA COLLECTION FOR
SELF-DRIVING DATABASE MANAGEMENT SYSTEMS aw P F

= |SIGMOD 2022
£CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://en.wikipedia.org/wiki/EBPF
https://ebpf.io/
https://dl.acm.org/doi/10.1145/3514221.3517845
https://dl.acm.org/doi/10.1145/3514221.3517845

$2CMU-DB

15-721 (Spring 2023)

PARTING THOUGHTS

A DBMS's networking protocol is an often-
overlooked bottleneck for performance.

Kernel bypass methods greatly improve

performance but require more bookkeeping.
— Probably more useful for internal DBMS communication.

User bypass is an interesting direction for
ephemeral I/Os in DBMSs.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

NEXT CLASS

Query Optimizer

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

	Introduction
	Slide 1: Database Networking
	Slide 2: ADMINISTRIVIA
	Slide 3: ARCHITECTURE OVERVIEW
	Slide 4: TODAY'S AGENDA

	Access APIs
	Slide 5: DATABASE ACCESS
	Slide 6: DATABASE ACCESS
	Slide 7: DATABASE ACCESS
	Slide 8: DATABASE ACCESS
	Slide 9: OPEN DATABASE CONNECTIVITY
	Slide 10: OPEN DATABASE CONNECTIVITY
	Slide 11: JAVA DATABASE CONNECTIVITY
	Slide 12: JAVA DATABASE CONNECTIVITY

	Network Protocols
	Slide 13: DATABASE NETWORKING PROTOCOLS
	Slide 14: EXISTING PROTOCOLS
	Slide 15: EXISTING PROTOCOLS
	Slide 16: PROTOCOL DESIGN SPACE
	Slide 17: ROW VS. COLUMN LAYOUT
	Slide 18: COMPRESSION
	Slide 19: DATA SERIALIZATION
	Slide 20: DATA SERIALIZATION
	Slide 21: DATA SERIALIZATION
	Slide 22: DATA SERIALIZATION
	Slide 23: DATA SERIALIZATION
	Slide 24: DATA SERIALIZATION
	Slide 25: STRING HANDLING
	Slide 26: NETWORK PROTOCOL PERFORMANCE
	Slide 27: NETWORK PROTOCOL PERFORMANCE
	Slide 28: NETWORK PROTOCOL PERFORMANCE

	Apache Arrow
	Slide 29: APACHE ARROW

	Kernel Bypass Methods
	Slide 30: OBSERVATION
	Slide 31: KERNEL BYPASS METHODS
	Slide 32: DATA PLANE DEVELOPMENT KIT (DPDK)
	Slide 33: DATA PLANE DEVELOPMENT KIT (DPDK)
	Slide 34: REMOTE DIRECT MEMORY ACCESS
	Slide 35: IO_URING
	Slide 36: IO_URING
	Slide 37: IO_URING
	Slide 38: DATA EXPORT PERFORMANCE
	Slide 39: USER BYPASS METHODS

	Conclusion
	Slide 40: PARTING THOUGHTS
	Slide 41: NEXT CLASS

