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ADMINISTRIVIA

Project #2:

— Feedback Submission: Saturday April 1¢
— Final Submission: Monday May 1%

Project #3

— Status Update Presentation: Wednesday April 5
— Final Presentations: Friday May 5th @ 5:30pm

— Please email me if you want to discuss your project!
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QUERY OPTIMIZATION

For a given query, find a correct execution plan
that has the lowest "cost".

This is the part of a DBMS that is the hardest to
implement well (proven to be NP-Complete).

No optimizer truly produces the "optimal” plan
— Use estimation techniques to guess real plan cost.
— Use heuristics to limit the search space.
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NEXT TWO WEEKS

Optimizer Implementations
Query Rewriting

Plan Enumerations

Cost Models
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TODAY’S AGENDA

Background
Implementation Design Decisions
Optimizer Search Strategies
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LOGICAL VS. PHYSICAL PLANS

The optimizer generates a mapping of a logical
algebra expression to the optimal equivalent
physical algebra expression.

Physical operators define a specific execution

strategy using an access path.

— They can depend on the physical format of the data that
they process (i.e., sorting, compression).

— Not always a 1:1 mapping from logical to physical.
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RELATIONAL ALGEBRA EQUIVALENCES

Two relational algebra expressions are said to be
equivalent if on every legal database instance the
two expressions generate the same set of tuples.

Example: (A P<I (B P<1 C)) = (B P<I (A P C))
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Search

Able

OBSERVATION

they are sargable.

Argument
QMng for OLTP queries is easy because

— [t is usually picking the best index with simple heuristics.
— Joins are almost always on foreign key relationships with a

small cardinality.

CREATE_TABLE foo (

);.

id INT PRIMARY KEY.
name VARCHAR(32), N\

SELECT name FROM foo
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COST ESTIMATION

Generate an estimate of the cost of executing a plan

for the current state of the database.
— Interactions with other work in DBMS
— Size of intermediate results

— Choices of algorithms, access methods

— Resource utilization (CPU, I/O, network)
— Data properties (skew, order, placement)

W e will discuss this more next week...
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DESIGN DECISIONS

Optimization Granularity
Optimization Timing
Prepared Statements

Plan Stability

Search Termination
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OPTIMIZATION GRANULARITY

Choice #1: Single Query

— Much smaller search space.

— DBMS (usually) does not reuse results across queries.

— To account for resource contention, the cost model must
consider what is currently running.

Choice #2: Multiple Queries

— More efficient if there are many similar queries.
— Search space is much larger.

— Useful for data / intermediate result sharing.
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OPTIMIZATION TIMING

Choice #1: Static Optimization

— Select the best plan prior to execution.
— Plan quality is dependent on cost model accuracy.
— Can amortize over executions with prepared statements.

Choice #2: Dynamic Optimization

— Select operator plans on-the-fly as queries execute.
— Will have re-optimize for multiple executions.
— Difficult to implement/debug (non-deterministic)

Choice #3: Adaptive Optimization

— Compile using a static algorithm.
— If the estimate errors > threshold, change or re-optimize.
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PREPARED STATEMENTS

PREPARE myQuery(int, int, int) AS . ,

SELECT A.id, B.val B><18.MFCJd
FROM A, B, C /

WHERE A.id = B.id

AND B.id = C.id AldBld

AND A.val

> ? /
AND B.val > ? \\
AND C.val > ? GA val>? GB.va1>? GC.va1>?

EXECUTE myQuery(100, 99, 5000); ’/’ k\\ \

A B C

What should be the join
order for A, B, and C?
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PREPARED STATEMENTS

Choice #1: Reuse Last Plan
— Use the plan generated for the previous invocation.

Choice #2: Re-Optimize
— Rerun optimizer each time the query is invoked.
— Tricky to reuse existing plan as starting point.

Choice #3: Multiple Plans

— Generate multiple plans for different values of the
parameters (e.g., buckets).

Choice #4: Average Plan

— Choose the average value for a parameter and use that for
all invocations.
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PLAN STABILITY

Choice #1: Hints
— Allow the DBA to provide hints to the optimizer.

Choice #2: Fixed Optimizer Versions

— Set the optimizer version number and migrate queries one-
by-one to the new optimizer.

Choice #3: Backwards-Compatible Plans

— Save query plan from old version and provide it to the new
DBMS.
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PLAN STABILITY

1 /*+
Choice #1: Hint ~ NestLoop(t1 t2)
Allow the DBA 3 MergeJoin(tl t2 t3)
7 aAlowthe 4 Leading(tl t2 t3)
5 [x/
Choice #2: Fixe 6 SELECT * FROM tablel AS t1
S 1 SELECT /*+ LEADING(e2 el) USE NL(el) INDEX(el emp_emp_id_pk)
— 32 USE_MERGE(j) FULL(j) */
b 3 el.first_name, el.last_name, j.job_id, SUM(e2.salary) total sal M
4 FROM employees AS el, employees AS e2, job_history AS j
5 WHERE el.employee id = e2.manager_1id
(:ll 6 AND el.employee_id = j.employee id
7 AND el.hire_date = j.start date
— 8 GROUP BY el.first_name, el.last_name, j.job_id .
9 ORDER BY total sal; ORACLE
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PLAN STABILITY

° °
° SELECT * FROM dbo.tableA AS a i .
ChOlce #1° Hlnts INNER JOIN dbo.tableB AS b ON b.ID = a.ID %MCMSO& Server
OPTION { <

— Allow the DBA to

USE PLAN N'<?xml version="1.0" encoding="utf-16"7>
<ShowPlanXML xmlns:xst="http://www.w3.org/20®1/XMLSchema—instance" xmins:xsd="http://
www.w3.0rg/2001/XMLSchema" Version="1.518" Build="13.0.5026.0" xmlns="http://
schemas.mtcrosoft.com/sqlserver/2®®4/®7/showplan">
<BatchSequence>
<Batch>
<Statements>
<StmtSimple StatementCompId="1" StatementEstRows="1" StatementId="1"
StatementOptmLevel="FULL" StatementOptmEarlyAbortReason="GoodEnoughPlanFound“
CardinalityEstimationModelVersion="70" StatementSubTreeCost="0.00657068"
StatementText="SELECT *&#xD ; &#xA; FROM dbo.tableA a&#xD ; &#xA; INNER LOOP JOIN
dbo.tableB b&#xD;&#xA;0N b.ID = a.ID" StatementType="SELECT"
QueryHash="0x5126A10B217E55B6" QueryPlanHash="0x3700F7E4E3143DF3"
RetrievedFromCache="false" SecurityPolicyApplied="false">
<StatementSetOptions ANSI_NULLS="true" ANSI_PADDING="true"
ANSI_WARNINGS="true" ARITHABORT="true" CONCAT_NULL_YIELDS_NULL="true"
NUMERIC_ROUNDABORT="false" QUOTED_IDENTIFIER="true" />
<QueryPlan CachedPlanSize="16" CompileTime="0" CompileCPU="0"
CompileMemory="152">
<MemoryGrantInfo SerialRequiredMemory="0" SerialDesiredMemory="0" />
<0ptimizerHardwareDependentProperties
EstimatedAvailableMemoryGrant="1056000" EstimatedPagesCached="3168000"
EstimatedAvailableDegreeOfParallelism="8" MaxCompileMemory="364530648" />
<RelOp AvgRowSize="15" EstimateCPU="4.18E-06" EstimateI0="0"
EstimateRebinds="0" EstimateRewinds="0" EstimatedExecutionMode="Row"
EstimateRows="1" LogicalOp="Inner Join" NodeId="@" Parallel="false"
PhysicalOp="Nested Loops" EstimatedTotalSubtreeCost="0.00657068">
<QutputList>
<ColumnReference Database="[TestDB]" Schema="[dbo]" Table="[tableA]"
Alias="[a]" Column="ID" />

Choice #2: Fixed

— Set the optimizer v,
by-one to the new

=

Choice #3: Backw
— Save query plan frg
DBMS.

[y
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SEARCH TERMINATION

Approach #1: Wall-clock Time

— Stop after the optimizer runs for some length of time.

Approach #2: Cost Threshold

— Stop when the optimizer finds a plan that has a lower cost
than some threshold.

Approach #3: Exhaustion

— Stop when there are no more enumerations of the target
plan. Usually done per group.
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OPTIMIZATION SEARCH STRATEGIES

Heuristics

Heuristics + Cost-based Join Order Search
Randomized Algorithms

Stratified Search

Unified Search
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HEURISTIC-BASED OPTIMIZATION

Define static rules that transform logical operators
to a physical plan.

— Perform most restrictive selection early

— Perform all selections before joins

— Predicate/Limit/Projection pushdowns

— Join ordering based on simple rules or cardinality estimates

Examples: INGRES (until the 1980s) and Oracle
(until mid 1990s), MongoDB, most new DBMSs.

UERY PROCESSING IN A RELATIONAL DATABASE
ANAGEMENT SYSTEM
VLDB 1979
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EXAMPLE

DATABASE

CREATE TABLE ARTIST (
ID INT PRIMARY KEY,
NAME VARCHAR(32)

I

CREATE TABLE ALBUM (
ID INT PRIMARY KEY,
NAME VARCHAR(32) UNIQUE

);

CREATE TABLE APPEARS (
ARTIST_ID INT
% REFERENCES ARTIST(ID),
ALBUM_ID INT
% REFERENCES ALBUM(ID),
PRIMARY KEY
% (ARTIST_ID, ALBUM_ID)

g
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INGRES OPTIMIZER

Retrieve the names of people that appear on Andy's
mixtape ordered by their artist id.

SELECT ARTIST.NAME

FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID

AND APPEARS.ALBUM_ID=ALBUM.ID

AND ALBUM.NAME=“Andy’'s Drill Remix”
ORDER BY ARTIST.ID

Step #1: Decompose into single-value queries

$2CMU-DB
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Query #1

SELECT ALBUM.ID AS ALBUM_ID INTO TEMP1
FROM ALBUM
WHERE ALBUM.NAME="Andy's Drill Remix"

Query #2

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, TEMP1
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=TEMP1.ALBUM_ID
ORDER BY APPEARS.ID
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INGRES OPTIMIZER

Retrieve the names of people that appear on Andy's
mixtape ordered by their artist id. Query #1

SELECT ALBUM.ID AS ALBUM_ID INTO TEMP1
FROM ALBUM
WHERE ALBUM.NAME="Andy's Drill Remix"

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.. 1D ‘ Query #3
AND ALBUM.NAME=“Andy’'s Drill Remix”
ORDER BY ARTIST.ID SELECT APPEARS.ARTIST_ID INTO TEMP2
FROM APPEARS, TEMP1

Step #1: Decompose into single-value queries WHERE APPEARS.ALBUM_ID=TEMP1.ALBUM_ID
ORDER BY APPEARS.ARTIST_ID

Query #4
SELECT ARTIST.NAME

FROM ARTIST, TEMP2
WHERE ARTIST.ARTIST_ID=TEMP2.ARTIST_ID
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INGRES OPTIMIZER

Retrieve the names of people that appear on Andy's
mixtape ordered by their artist id. Query #1

SELECT ALBUM.ID AS ALBUM_ID INTO TEMP1
FROM ALBUM
WHERE ALBUM.NAME="Andy's Drill Remix"

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID

AND APPEARS.ALBUM_ID=ALBUM.. 1D ‘ Query #3
AND ALBUM.NAME=“Andy’'s Drill Remix”
ORDER BY ARTIST.ID SELECT APPEARS.ARTIST_ID INTO TEMP2
FROM APPEARS, TEMP1
Step #1: Decompose into single-value queries WHERE APPEARS.ALBUM_ID=TEMP1.ALBUM_ID

ORDER BY APPEARS.ARTIST_ID
Step #2: Substitute the values from Q1-Q3-Q4 Query #4

SELECT ARTIST.NAME
FROM ARTIST, TEMP2
WHERE ARTIST.ARTIST_ID=TEMP2.ARTIST_ID
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INGRES OPTIMIZER

Retrieve the names of people that appear on Andy's
mixtape ordered by their artist id.

SELECT ARTIST.NAME ALBUM_ID
FROM ARTIST, APPEARS, ALBUM 9999

WHERE ARTIST.ID=APPEARS.ARTIST_ID

AND APPEARS.ALBUM_ID=ALBUM.. 1D ‘ Query #3
AND ALBUM.NAME=“Andy’'s Drill Remix”
ORDER BY ARTIST.ID SELECT APPEARS.ARTIST_ID INTO TEMP2
FROM APPEARS, TEMP1
Step #1: Decompose into single-value queries WHERE APPEARS.ALBUM_ID=TEMP1.ALBUM_ID

ORDER BY APPEARS.ARTIST_ID
Step #2: Substitute the values from Q1-Q3-Q4 Query #4

SELECT ARTIST.NAME
FROM ARTIST, TEMP2
WHERE ARTIST.ARTIST_ID=TEMP2.ARTIST_ID
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INGRES OPTIMIZER

Retrieve the names of people that appear on Andy's
mixtape ordered by their artist id.

SELECT ARTIST.NAME ALBUM_ID
FROM ARTIST, APPEARS, ALBUM 9999

WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID

AND ALBUM.NAME=“Andy’'s Drill Remix”
ORDER BY ARTIST.ID SELECT APPEARS.ARTIST_ID

FROM APPEARS
WHERE APPEARS.ALBUM_ID=9999
ORDER BY APPEARS.ARTIST_ID

Step #1: Decompose into single-value queries

Step #2: Substitute the values from Q1-Q3-Q4 Query #4

SELECT ARTIST.NAME
FROM ARTIST, TEMP2
WHERE ARTIST.ARTIST_ID=TEMP2.ARTIST_ID
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INGRES OPTIMIZER

Retrieve the names of people that appear on Andy's
mixtape ordered by their artist id.

SELECT ARTIST.NAME

FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID

AND APPEARS.ALBUM_ID=ALBUM.ID

AND ALBUM.NAME=“Andy’'s Drill Remix”
ORDER BY ARTIST.ID

Step #1: Decompose into single-value queries

Step #2: Substitute the values from Q1-Q3-Q4

$CMU-DB
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ALBUM_ID
9999

ARTIST_ID

123
456

Query #4

SELECT ARTIST.NAME
FROM ARTIST, TEMP2

WHERE ARTIST.ARTIST_ID=TEMP2.ARTIST_ID
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INGRES OPTIMIZER

Retrieve the names of people that appear on Andy's
mixtape ordered by their artist id.

SELECT ARTIST.NAME

FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID

AND APPEARS.ALBUM_ID=ALBUM.ID

AND ALBUM.NAME=“Andy’'s Drill Remix”
ORDER BY ARTIST.ID

Step #1: Decompose into single-value queries

Step #2: Substitute the values from Q1-Q3-Q4
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ALBUM_ID
9999
ARTIST_ID

123
456 k“

SELECT ARTIST.NAME
FROM ARTIST
WHERE ARTIST.ARTIST_ID=123

FROM ARTIST

SELECT ARTIST.NAME /
WHERE ARTIST.ARTIST_ID=456
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INGRES OPTIMIZER

Retrieve the names of people that appear on Andy's
mixtape ordered by their artist id.

SELECT ARTIST.NAME ALBUM_ID
FROM ARTIST, APPEARS, ALBUM 9999
WHERE ARTIST.ID=APPEARS.ARTIST_ID

AND APPEARS.ALBUM_ID=ALBUM.ID

AND ALBUM.NAME=“Andy's Drill Remix”
ORDER BY ARTIST.ID ARTIST_ID
123
Step #1: Decompose into single-value queries 456
Step #2: Substitute the values from Q1-Q3-Q4 m
0.D.B.

‘ DJ Premier \
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HEURISTIC-BASED OPTIMIZATION

Advantages:

— Easy to implement and debug.
— Works reasonably well and is fast for simple queries.

Disadvantages:
— Relies on magic constants that predict the efficacy of a

planning decision.
— Nearly impossible to generate good plans when operators
have complex inter-dependencies.
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HEURISTIC-BASED C

Advantages:
— Easy to implement and debug.

— Works reasonably well and is fast

Disadvantages:

— Relies on magic constants that pre

planning decision.

— Nearly impossible to generate gog
have complex inter-dependencies

PTIMIZATION

Stonebraker gave the story of the query optimizer as an exam-
ple. Relational queries were often highly complex. Let's say you
wanted your database to give you the name, salary, and job title of
everyone in your Chicago office who did the same kind of work as
an employee named Alien. (This example happens to come from Or-
acle's 1981 user guide.) This would require the database to find infor-
mation in the employee table and the department table, then sort the
data. How quickly the database management system did this de-
pended on how cleverly the system was constructed. "If you do it
smart, you get the answer a lot quicker than if you do it stupid,
Stonebraker said.

He continued. "Oracle had a really stupid optimizer. They did
the query in the order that you happened to type in the clauses. Basi-
cally, they blindly did it from left to right. The Ingres program
looked at everything there and tried to figure out the best way to do
it." But Ellison found a way to neutralize this advantage, Stone-
braker said. "Oracle was really shrewd. They said they had a syntac-
tic optimizer, whereas the other guys had a semantic optimizer. The
truth was, they had no optimizer and the other guys had an opti-
mizer. It was very, very, very creative marketing. . . . They were very
good at confusing the market."

"What he's using is semantics himself," Ellison said. Just be-
cause Oracle did things differently, "Stonebraker decided we
didn't have an optimizer. [He seemed to think] the only kind of
optimizer was his optimizer, and our approach to optimization
wasn't really optimization at all. That's an interesting notion, but
I'm not sure I buy that."
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HEURISTICS + COST-BASED JOIN SEARCH

Use static rules to perform initial optimization.
Then use dynamic programming to determine

the best join order for tables.

— First cost-based query optimizer

— Bottom-up planning (forward chaining) using a divide-
and-conquer search method

Selinger

Examples: System R, early IBM DB2, most open-
source DBMS:s.

ACCESS PATH SELECTION IN A RELATIONAL DATABASE
MANAGEMENT SYSTEM
=| SIGMOD 1979
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SYSTEM R OPTIMIZER

Break query up into blocks and generate the logical
operators for each block.

For each logical operator, generate a set of physical

operators that implement it.
— All combinations of join algorithms and access paths

Then iteratively construct a "left-deep” join tree
that minimizes the estimated amount of work to
execute the plan.
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SYSTEM R OPTIMIZER

Retrieve the names of people that appear on Andy's
mixtape ordered by their artist id.

SELECT ARTIST.NAME

FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID

AND APPEARS.ALBUM_ID=ALBUM.ID

AND ALBUM.NAME=“Andy’'s Drill Remix”
ORDER BY ARTIST.ID

Step #1: Choose the best access paths to
each table

Step #2: Enumerate all possible join
orderings for tables

Step #3: Determine the join ordering
with the lowest cost

$2CMU-DB
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ARTIST: Sequential Scan
APPEARS : Sequential Scan
ALBUM: Index Look-up on NAME

ARTIST D APPEARS D] ALBUM
APPEARS D] ALBUM D] ARTIST
ALBUM D] APPEARS D] ARTIST
APPEARS D ARTIST D ALBUM
ARTIST x ALBUM P APPEARS
ALBUM  x ARTIST P APPEARS
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[ ] Logical Op
B Physical Op

ARTISTDIAPPEARS
ALBUM

HASH_JOIN(A1,A3)

MERGE_JOIN(A1,A3)

ALBUM. ID=APPEARS . ALBUM_ID

ARTIST.ID=APPEARS.ARTIST_ID

$CMU-DB
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ARTIST P4 APPEARS P<{ ALBUM

ALBUMPIAPPEARS
ARTIST

HASH_JOIN(A2,A3)

ARTIST ALBUM APPEARS

MERGE_JOIN(A2,A3)

SYSTEM R OPTIMIZER

APPEARSP<IALBUM
ARTIST

HASH_JOIN(A3,A2) MERGE_JOIN(A3,A2) XX )

APPEARS . ALBUM_ID=ALBUM. ID
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[ ] Logical Op

B Physical Op SYSTEM R OPTIMIZER

ARTIST P4 APPEARS P<{ ALBUM

ARTISTPAPPEARS ALBUMPIAPPEARS APPEARSP<IALBUM
ALBUM ARTIST ARTIST

HASH_JOIN(A1,A3) HASH_JOIN(A2,A3)

ALBUM. ID=APPEARS . ALBUM_ID

MERGE_JOIN(A3,A2) FX X

ARTIST. ID=APPEARS . ARTIST_ID \ / APPEARS . ALBUM_ID=ALBUM. ID

ARTIST ALBUM APPEARS

$2CMU-DB
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[ ] Logical Op

B Physical Op SYSTEM R OPTIMIZER

ARTIST P4 APPEARS P<{ ALBUM

4___——’1::_—f’}‘ ‘gi“-___

HASH_JOIN(A11<IA3,A2) |MERGE_JOIN(A11A3,A2) |HASH_JOIN(A21<IA3, A1)

MERGE_JOIN(A21<IA3, A1) |HASH_JOIN(A3<A2, A1)

MERGE_JOIN(A3D<IA2,A1) KAl

APPEARS . ALBUM_ID=ALBUM. ID APPEARS . ARTIST_ID=ARTIST.ID APPEARS . ARTIST_ID=ARTIST.ID

ARTISTPAPPEARS ALBUMPIAPPEARS
ALBUM ARTIST

APPEARSP<IALBUM
ARTIST

HASH_JOIN(A1,A3) HASH_JOIN(A2,A3)

ALBUM. ID=APPEARS . ALBUM_ID

MERGE_JOIN(A3,A2) FX X

ARTIST.ID=APPEARS.ARTIST_ID \ /

ARTIST ALBUM APPEARS

$CMU-DB
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[ ] Logical Op

B Physical Op SYSTEM R OPTIMIZER

ARTIST P4 APPEARS P<{ ALBUM

4__———””

HASH_JOIN(A1I<IA3,A2)

HASH_JOIN(A21<IA3,A1)

HASH_JOIN(A3D<IA2,A1) XK

APPEARS . ALBUM_ID=ALBUM. ID APPEARS . ARTIST_ID=ARTIST.ID APPEARS . ARTIST_ID=ARTIST.ID

ARTISTPAPPEARS ALBUMPIAPPEARS
ALBUM ARTIST

APPEARSP<IALBUM
ARTIST

HASH_JOIN(A1,A3) HASH_JOIN(A2,A3)

ALBUM. ID=APPEARS . ALBUM_ID

MERGE_JOIN(A3,A2) FX X

ARTIST.ID=APPEARS.ARTIST_ID \ /

ARTIST ALBUM APPEARS
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[ ] Logical Op

B Physical Op SYSTEM R OPTIMIZER

ARTIST P4 APPEARS P<{ ALBUM

HASH_JOIN(A21<IA3,A1)

APPEARS . ARTIST_ID=ARTIST.ID

ALBUMPIAPPEARS
ARTIST

HASH_JOIN(A2,A3)

ALBUM. ID=APPEARS . ALBUM_ID

ARTIST ALBUM APPEARS
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[ ] Logical Op

B Physical Op SYSTEM R OPTIMIZER

ARTIST P4 APPEARS P<{ ALBUM

The query has ORDER BY on
HASH_JOIN(A2<IA3,A1) ARTIST.ID but the logical plans
do not contain sorting properties.

APPEARS . ARTIST_ID=ARTIST.ID

ALBUMPIAPPEARS
ARTIST

Hack: Give plans that do not
HASH_JOTN(A2, A3) put data in proper physical form

ALBUM. ID=APPEARS . ALBUM_ID \ a hig her COSt'

ARTIST ALBUM APPEARS

$2CMU-DB
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TOP-DOWN VS. BOTTOM-UP

Top-down Optimization

— Start with the outcome that the query wants, and then
work down the tree to find the optimal plan that gets you
to that goal.

— Examples: Volcano, Cascades

Bottom-up Optimization

— Start with nothing and then build up the plan to get to the
outcome that you want.

— Examples: System R, Starburst
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POSTGRES OPTIMIZER

Imposes a rigid workflow for query optimization:

— First stage performs initial rewriting with heuristics

— [t then executes a cost-based search to find optimal join
ordering.

— Everything else is treated as an “add-on”.

— Then recursively descends into sub-queries.

Difficult to modify or extend because the
transformation ordering must be preserved in the
source code.

$2CMU-DB

15-721 (Spring 2023)
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HEURISTICS + COST-BASED JOIN SEARCH 1

Advantages:

— Usually finds a reasonable plan without having to perform
an exhaustive search.

Disadvantages:

— All the same problems as the heuristic-only approach.

— Left-deep join trees are not always optimal.

— Must take in consideration the physical properties of data
in the cost model (e.g., sort order).

$2CMU-DB

15-721 (Spring 2023 )
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RANDOMIZED ALGORITHMS

Perform a random walk over a solution space of all
possible (valid) plans for a query.

Continue searching until a cost threshold is reached
or the optimizer runs for a length of time.

Examples: Postgres’ genetic algorithm.

$2CMU-DB
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SIMULATED ANNEALING

Start with a query plan that is generated using the
heuristic-only approach.

Compute random permutations of operators (e.g.,

swap the join order of two tables):

— Always accept a change that reduces cost.

— Only accept a change that increases cost with some
probability.

— Reject any change that violates correctness (e.g., sort
ordering).

i

w:% UERY OPTIMIZATION BY SIMULATED ANNEALING
&8 SIGMOD 1987

TR

it
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POSTGRES GENETIC OPTIMIZER

More complicated queries use a genetic algorithm
that selects join orderings (GEQO).

At the beginning of each round, generate different
variants of the query plan.

Select the plans that have the lowest cost and

permute them with other plans. Repeat.
— The mutator function only generates valid plans.

Source: Postgres Documentation

$2CMU-DB
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POSTGRES GENETIC OPTIMIZER

Ist Generation

Cost:
300

Cost:
200

Cost:
100
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POSTGRES GENETIC OPTIMIZER -

Best:100

Ist Generation

Cost:
300
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POSTGRES GENETIC OPTIMIZER [s7|

Best:100

Ist Generation

Cost:
300

Cost:
200

=
Cost:
i T o
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POSTGRES GENETIC OPTIMIZER [s7|

. . Best:100
Ist Generation ~ 2nd Generation
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) o 100 LM 110
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POSTGRES GENETIC OPTIMIZER

Ist Generation

Cost:

300

Cost:

200

Cost:

100

2nd Generation

Cost:

Cost:
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Cost:
110
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POSTGRES GENETIC OPTIMIZER

Ist Generation

Cost:

300

Cost:

200

Cost:

100

2nd Generation
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s
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Cost:
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POSTGRES GENETIC OPTIMIZER | = 1

S R
. . Best:80
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300 HJ 80 : EM | 90
R_S
Cost: S Cost: ‘} Cost: °*°
200 j 200 i j 1 | 160
T R S
Z N 2 w : b
lﬂ T Cost: » " S Cost: » S 'h Cost:
L) 100 L | 110 8 120
-odlS_R : T R : R T



https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

$2CMU-DB

15-721 (Spring 2023)

RANDOMIZED ALGORITHMS

Advantages:

— Jumping around the search space randomly allows the
optimizer to get out of local minimums.

— Low memory overhead (if no history is kept).

Disadvantages:

— Difficult to determine why the DBMS may have chosen a
plan.

— Must do extra work to ensure that query plans are
deterministic.

— Still must implement correctness rules.
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RANDOMIZED ALGORITHMS

Advantages:
— Jumping arour

optimizer to g
— Low memory
Disadvantage
— Difficult to de

plan.
— Must do extra

deterministic.
— Still must imp

Still Not Efficient

The work that we’re performing per “relation” is not a constant! We consider many possibilities per
“relation,” throw away the ones that are clearly inferior, and keep the ones that look most promising.

* Still doesn’t scale to large join problems. We're avoiding recomputation, but still searching a very
large problem space.

* When the number of tables exceeds geqgo_threshold (by default, 12), we switch to GEQO, the
“genetic query optimizer.” It essentially tries’a bunch of join orders at random and picks the best
one. If you're lucky, it won’t be too bad.
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OBSERVATION

Writing query transformation rules in a procedural

language is hard and error-prone.

— No easy way to verify that the rules are correct without
running a lot of fuzz tests.

— Generation of physical operators per logical operator is
decoupled from deeper semantics about query.

A better approach is to use a declarative DSL to
write the transformation rules and then have the
optimizer enforce them during planning.
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OPTIMIZER GENERATORS

Framework to allow a DBMS implementer to write

the declarative rules for optimizing queries.

— Separate the search strategy from the data model.

— Separate the transformation rules and logical operators
from physical rules and physical operators.

Implementation can be independent of the

optimizer's search strategy.

Examples: Starburst, Exodus, Volcano, Cascades,
OPT++, Calcite

$2CMU-DB
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OPTIMIZER GENERATORS

Use a rule engine that allows transformations to
modify the query plan operators.

The physical properties of data is embedded with
the operators themselves.

Choice #1: Stratified Search

— Planning is done in multiple stages (heuristics then cost-
based search).

Choice #2: Unified Search

— Perform query planning all at once.

$2CMU-DB
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STRATIFIED SEARCH

First rewrite the logical query plan using

transformation rules.

— The engine checks whether the transformation is allowed
before it can be applied.

— Cost is never considered in this step.

Then perform a cost-based search to map the logical
plan to a physical plan.

$2CMU-DB
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STARBURST OPTIMIZER

Better implementation of the System R optimizer
that uses declarative rules.
Stage #1: Query Rewrite

— Compute a SQL-block-level, relational calculus-like
representation of queries.

Lohman

Stage #2: Plan Optimization
— Execute a System R-style dynamic programming phase
once query rewrite has completed.

Example: Latest version of IBM DB2

| GRAMMAR-LIKE FUNCTIONAL RULES FOR REPRESENTING
UERY OPTIMIZATION ALTERNATIVES
SIGMOD 1988

$CMU-DB
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STARBURST OPTIMIZER

Advantages:
— Works well in practice with fast performance.

Disadvantages:

— Difficult to assign priorities to transformations

— Some transformations are difficult to assess without
computing multiple cost estimations.

— Rules maintenance is a huge pain.
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UNIFIED SEARCH

Unify the notion of both logical-logical and

logical»physical transformations.
— No need for separate stages because everything is
transformations.

This approach generates many transformations, so
it makes heavy use of memoization to reduce
redundant work.

$2CMU-DB
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VOLCANO OPTIMIZER

General purpose cost-based query optimizer, based

on equivalence rules on algebras.

— Easily add new operations and equivalence rules.

— Treats physical properties of data as first-class entities
during planning. Gre it

— Top-down approach (backward chaining) using branch-
and-bound search.

Example: Academic prototypes

72| THE VOLCANO OPTIMIZER GENERATOR:
= %(D-I—E{\IQ%EILITY AND EFFICIENT SEARCH

$2CMU-DB
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[ ] Logical Op

B Physical Op TOP-DOWN OPTIMIZATION

Start with a logical plan of what
we want the query to be.

£=CMU-DB

15-721 (Spring 2023 )

ARTIST P APPEARS DX ALBUM
ORDER-BY (ARTIST.ID)
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[ ] Logical Op

B Physical Op TOP-DOWN OPTIMIZATION

Start with a logical plan of what ARTIST b APPEARS >t ALGLY
we want the query to be. .

Invoke rules to create new nodes
and traverse tree.
— Logical-Logical:
JOIN(CA,B) to JOIN(B,A)
— Logical->Physical:

JOIN (A ! B) to HASH_JOIN (A , B) ARTISTPAPPEARS ALBUMPAPPEARS ARTISTPALBUM

ARTIST ALBUM APPEARS

££CMU-DB

15-721 (Spring 2023)
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[ ] Logical Op

B Physical Op TOP-DOWN OPTIMIZATION

Start with a logical plan of what » ARTIST b APPEARS >t ALGLY
we want the query to be. .

Invoke rules to create new nodes

and traverse tree.

RN Logical_)Logical: MERGE_JOIN(A1P<IA2,A3)
JOIN(CA,B) to JOIN(B,A)

— Logical->Physical:

JOIN (A ! B) to HASH_JOIN (A , B) ARTISTPAPPEARS ALBUMPAPPEARS ARTISTPALBUM

ARTIST ALBUM APPEARS

$2CMU-DB
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[ ] Logical Op

B Physical Op TOP-DOWN OPTIMIZATION

Start with a logical plan of what ARTIST b APPEARS >t ALGLY
we want the query to be. .

Invoke rules to create new nodes
and traverse tree.

— Logical—>LogicaI; MERGE_JOIN(A1P<A2,A3)
JOIN(A,B) to JOIN(B,A) /

— Logical->Physical:
JOIN(A B) to HASH J’OIN(A B) ARTISTP<IAPPEARS ALBUMPAPPEARS ARTISTP<ALBUM

ARTIST ALBUM APPEARS
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[ ] Logical Op

B Physical Op TOP-DOWN OPTIMIZATION

Start with a logical plan of what
we want the query to be.

Invoke rules to create new nodes
and traverse tree.
— Logical-Logical:

JOIN(CA,B) to JOIN(B,A)

ARTIST P APPEARS DX ALBUM

ORDER-BY (ARTIST.ID)

|

MERGE_JOIN(A1DA2,A3)

4

— Logical->Physical:
JOIN(A,B) to HASH_JOIN(A,B) »‘

ARTISTP<IAPPEARS ALBUMPAPPEARS ARTISTI<IALBUM
ARTIST ALBUM APPEARS

$2CMU-DB
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[ ] Logical Op

B Physical Op TOP-DOWN OPTIMIZATION

Start with a logical plan of what ARTIST b APPEARS >t ALGLY
we want the query to be. ] .

Invoke rules to create new nodes
and traverse tree.

— Logical—>Logical; MERGE_JOIN(A1P<A2,A3)
JOIN(A,B) to JOIN(B,A) /

— Logical->Physical:
JOIN(A B) to HASH J’OIN(A B) ARTISTP<IAPPEARS ALBUMPAPPEARS ARTISTP<ALBUM

» HASH_JOIN(A1,A2)
—

ARTIST ALBUM APPEARS

$2CMU-DB
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[ ] Logical Op

B Physical Op TOP-DOWN OPTIMIZATION

Start with a logical plan of what
we want the query to be.

Invoke rules to create new nodes
and traverse tree.
— Logical-Logical:
JOIN(CA,B) to JOIN(B,A)
— Logical->Physical:
JOIN(A,B) to HASH_JOIN(A,B)

ARTIST P APPEARS DX ALBUM

ORDER-BY (ARTIST.ID)

|

MERGE_JOIN(A1DA2,A3)

4

»‘ ARTISTPAPPEARS ALBUMPIAPPEARS

$CMU-DB
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ARTISTP<IALBUM
HASH_JOIN(A1,A2) 0
—
ARTIST ALBUM APPEARS
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[ ] Logical Op

B Physical Op TOP-DOWN OPTIMIZATION

Start with a logical plan of what ARTIST b APPEARS >t ALGLY
we want the query to be. ] .

Invoke rules to create new nodes
and traverse tree.

— Logical—>Logical; MERGE_JOIN(A1P<A2,A3)
JOIN(A,B) to JOIN(B,A) /

— Logical->Physical:
JOIN(A B) to HASH J’OIN(A B) ARTISTP<IAPPEARS ALBUMPAPPEARS ARTISTP<ALBUM

HASH_JOIN(A1,A2) : 0

—

ARTIST ALBUM APPEARS
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[ ] Logical Op

B Physical Op TOP-DOWN OPTIMIZATION

Start with a logical plan of what » ARTIST bd APPEARS >d ALBUM

ORDER-BY (ARTIST.ID)

we want the query to be. i
Invoke rules to create new nodes
and traverse tree.
L Logical—>Logical: MERGE_JOIN(A1P<IA2,A3)
JOIN(A,B) to JOIN(B, A) /
— Logical->Physical:
JOIN(A B) to HASH JOIN(A B) ARTISTP<IAPPEARS ALBUMP<IAPPEARS ARTISTPALBUM
Can create "enforcer" rules S S, O
that require input to have \

certain properties.

ARTIST ALBUM APPEARS
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[ ] Logical Op

B Physical Op TOP-DOWN OPTIMIZATION

Start with a logical plan of what » ARTIST b APPEARS b ALBUN
we want the query to be. t :
Invoke rules to create new nodes HASH_JOINI  tA2,A3)
and traverse tree.
L Logical—>Logical: MERGE_JOIN(A1P<IA2,A3)
JOINCA,B) to JOIN(B, A) /
— Logical->Physical:
JOIN(A B) to HASH JOIN(A B) ARTISTP<IAPPEARS ALBUMP<IAPPEARS ARTISTPALBUM
Can create "enforcer" rules S S, O
that require input to have \

certain properties.

ARTIST ALBUM APPEARS
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[ ] Logical Op

B Physical Op TOP-DOWN OPTIMIZATION

Start with a logical plan of what » ARTIST bd APPEARS >d ALBUM

ORDER-BY (ARTIST.ID)

we want the query to be. i
Invoke rules to create new nodes HASH_JOIN/  ~A2,A3)
and traverse tree.
L Logical—>Logical: MERGE_JOIN(A1P<IA2,A3)
JOIN(A,B) to JOIN(B, A) /
— Logical->Physical:
JOIN(A B) to HASH JOIN(A B) ARTISTP<IAPPEARS ALBUMP<IAPPEARS ARTISTPALBUM
Can create "enforcer" rules S ST T
that require input to have \

certain properties.

ARTIST ALBUM APPEARS
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[ ] Logical Op

B Physical Op TOP-DOWN OPTIMIZATION

Start with a logical plan of what ARTIST b< APPEARS >4 ALBUM
ORDER-BY (ARTIST.ID)

we want the query to be. i
Invoke rules to create new nodes » HASH_JOIN!  ~iA2,A3)
and traverse tree.
— Logical-Logical:
HASH_JOIN(A1P<IA2,A3)

MERGE_JOIN(A1DA2,A3)

JOIN(A,B) to JOIN(B,A) /
— Logical->Physical:

JOIN(A B) to HASH J’OIN(A B) ARTISTP<IAPPEARS ALBUMPAPPEARS ARTISTP<IALBUM
Can create "enforcer" rules T —

that require input to have \

certain properties.

ARTIST ALBUM APPEARS
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[ ] Logical Op

B Physical Op TOP-DOWN OPTIMIZATION

Start with a logical plan of what ARTIST b< APPEARS >4 ALBUM
ORDER- BY(ARTIST.ID)

we want the query to be.
Invoke rules to create new nodes » HASH_JOIN!  ~iA2,A3)
and traverse tree.
L Logical—>Logical: MERGE_JOIN(A1P<IA2,A3)
HASH_JOI} 1[><1A2 A3)

JOIN(A,B) to JOIN(B, A) /
— Logical->Physical:

JOIN(A B) to HASH JOIN(A B) ARTISTP<IAPPEARS ALBUMP<IAPPEARS ARTISTPALBUM
Can create "enforcer" rules S S, O
that require input to have \

certain properties.

ARTIST ALBUM APPEARS
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VOLCANO OPTIMIZER

Advantages:

— Use declarative rules to generate transformations.
— Better extensibility with an efficient search engine. Reduce
redundant estimations using memoization.

Disadvantages:

— All equivalence classes are completely expanded to generate
all possible logical operators before the optimization
search.

— Not easy to modify predicates.
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PARTING THOUGHTS

Query optimization is hard.

This difficulty is why NoSQL systems didn't
implement optimizers (at first).

Playlist of CMU-DB Query Optimizer talks:

— https://cmudb.io/youtube-optimizers

$2CMU-DB

15-721 (Spring 2023 )


https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://cmudb.io/youtube-optimizers

Quer
This
impl € Lascaae

Play

&
> ht 0B 0 - |
e
eSd a ao-Legaria s: o

) (15.0 Ry

$CMU-DB

15-721 (Spring 2023)


https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://cmudb.io/youtube-optimizers
https://youtu.be/pQe1LQJiXN0

NEXT CLASS

Optimizers! First Blood, Part II
Dynamic Programming vs. Cascades

£=CMU-DB

15-721 (Spring 2023 )


https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

	Introduction
	Slide 1: Optimizer Implementation (Part 1)
	Slide 2: ADMINISTRIVIA
	Slide 3: QUERY OPTIMIZATION
	Slide 4: NEXT TWO WEEKS
	Slide 5: TODAY’S AGENDA
	Slide 6: ARCHITECTURE OVERVIEW
	Slide 7: LOGICAL VS. PHYSICAL PLANS
	Slide 8: RELATIONAL ALGEBRA EQUIVALENCES
	Slide 9: OBSERVATION
	Slide 10: COST ESTIMATION

	Design Decisions
	Slide 11: DESIGN DECISIONS
	Slide 12: OPTIMIZATION GRANULARITY
	Slide 13: OPTIMIZATION TIMING
	Slide 14: PREPARED STATEMENTS
	Slide 15: PREPARED STATEMENTS
	Slide 16: PLAN STABILITY
	Slide 17: PLAN STABILITY
	Slide 18: PLAN STABILITY
	Slide 19: SEARCH TERMINATION

	Search Strategies
	Slide 20: OPTIMIZATION SEARCH STRATEGIES
	Slide 21: HEURISTIC-BASED OPTIMIZATION
	Slide 22: EXAMPLE DATABASE
	Slide 23: INGRES OPTIMIZER
	Slide 24: INGRES OPTIMIZER
	Slide 25: INGRES OPTIMIZER
	Slide 26: INGRES OPTIMIZER
	Slide 27: INGRES OPTIMIZER
	Slide 28: INGRES OPTIMIZER
	Slide 29: INGRES OPTIMIZER
	Slide 30: INGRES OPTIMIZER
	Slide 31: HEURISTIC-BASED OPTIMIZATION
	Slide 32: HEURISTIC-BASED OPTIMIZATION
	Slide 33: HEURISTICS + COST-BASED JOIN SEARCH
	Slide 34: SYSTEM R OPTIMIZER
	Slide 35: SYSTEM R OPTIMIZER
	Slide 36: SYSTEM R OPTIMIZER
	Slide 37: SYSTEM R OPTIMIZER
	Slide 38: SYSTEM R OPTIMIZER
	Slide 39: SYSTEM R OPTIMIZER
	Slide 40: SYSTEM R OPTIMIZER
	Slide 41: SYSTEM R OPTIMIZER
	Slide 42: TOP-DOWN VS. BOTTOM-UP
	Slide 43: POSTGRES OPTIMIZER
	Slide 44: HEURISTICS + COST-BASED JOIN SEARCH
	Slide 45: RANDOMIZED ALGORITHMS
	Slide 46: SIMULATED ANNEALING
	Slide 47: POSTGRES GENETIC OPTIMIZER
	Slide 48: POSTGRES GENETIC OPTIMIZER
	Slide 49: POSTGRES GENETIC OPTIMIZER
	Slide 50: POSTGRES GENETIC OPTIMIZER
	Slide 51: POSTGRES GENETIC OPTIMIZER
	Slide 52: POSTGRES GENETIC OPTIMIZER
	Slide 53: POSTGRES GENETIC OPTIMIZER
	Slide 54: POSTGRES GENETIC OPTIMIZER
	Slide 55: RANDOMIZED ALGORITHMS
	Slide 56: RANDOMIZED ALGORITHMS

	Optimizer Generators
	Slide 57: OBSERVATION
	Slide 58: OPTIMIZER GENERATORS
	Slide 59: OPTIMIZER GENERATORS
	Slide 60: STRATIFIED SEARCH
	Slide 61: STARBURST OPTIMIZER
	Slide 62: STARBURST OPTIMIZER
	Slide 63: UNIFIED SEARCH
	Slide 64: VOLCANO OPTIMIZER
	Slide 65: TOP-DOWN OPTIMIZATION
	Slide 66: TOP-DOWN OPTIMIZATION
	Slide 67: TOP-DOWN OPTIMIZATION
	Slide 68: TOP-DOWN OPTIMIZATION
	Slide 69: TOP-DOWN OPTIMIZATION
	Slide 70: TOP-DOWN OPTIMIZATION
	Slide 71: TOP-DOWN OPTIMIZATION
	Slide 72: TOP-DOWN OPTIMIZATION
	Slide 73: TOP-DOWN OPTIMIZATION
	Slide 74: TOP-DOWN OPTIMIZATION
	Slide 75: TOP-DOWN OPTIMIZATION
	Slide 76: TOP-DOWN OPTIMIZATION
	Slide 77: TOP-DOWN OPTIMIZATION
	Slide 78: VOLCANO OPTIMIZER

	Conclusion
	Slide 79: PARTING THOUGHTS
	Slide 80: PARTING THOUGHTS
	Slide 81: NEXT CLASS


