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15-721 (Spring 2023)

ADMINISTRIVIA

Project #2:
→ Feedback Submission: Saturday April 1st

→ Final Submission: Monday May 1st

Project #3
→ Status Update Presentation: Wednesday April 5th

→ Final Presentations: Friday May 5th @ 5:30pm
→ Please email me if you want to discuss your project!
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QUERY OPTIMIZATION

For a given query, find a correct execution plan 
that has the lowest "cost".

This is the part of a DBMS that is the hardest to 
implement well (proven to be NP-Complete).

No optimizer truly produces the "optimal" plan
→ Use estimation techniques to guess real plan cost.
→ Use heuristics to limit the search space.
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QUERY OPTIMIZATION STRATEGIES

Choice #1: Heuristics
→ INGRES, Oracle (until mid 1990s)

Choice #2: Heuristics + Cost-based Join Search
→ System R, early IBM DB2, most open-source DBMSs

Choice #3: Randomized Search
→ Academics in the 1980s, current Postgres

Choice #4: Stratified Search
→ IBM’s STARBURST (late 1980s), now IBM DB2 + Oracle

Choice #5: Unified Search
→ Volcano/Cascades in 1990s, now MSSQL + Greenplum
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STRATIFIED SEARCH

First rewrite the logical query plan using 
transformation rules.
→ The engine checks whether the transformation is allowed 

before it can be applied.
→ Cost is never considered in this step.

Then perform a cost-based search to map the logical 
plan to a physical plan.
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UNIFIED SEARCH

Unify the notion of both logical→logical and 
logical→physical transformations.
→ No need for separate stages because everything is 

transformations.

This approach generates many transformations, so 
it makes heavy use of memoization to reduce 
redundant work.
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TOP-DOWN VS. BOTTOM-UP

Top-down Optimization
→ Start with the outcome that the query wants, and then 

work down the tree to find the optimal plan that gets you 
to that goal.

→ Examples: Volcano, Cascades

Bottom-up Optimization
→ Start with nothing and then build up the plan to get to the 

outcome that you want.
→ Examples: System R, Starburst
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TODAY’S AGENDA

Logical Query Optimization

Cascades

Real-World Implementations

2
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LOGICAL QUERY OPTIMIZATION

Transform a logical plan into an equivalent logical 
plan using pattern matching rules.

The goal is to increase the likelihood of 
enumerating the optimal plan in the search.

Cannot compare plans because there is no cost 
model but can "direct" a transformation to a 
preferred side.
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LOGICAL QUERY OPTIMIZATION

Split Conjunctive Predicates

Predicate Pushdown

Replace Cartesian Products with Joins

Projection Pushdown
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Source: Thomas Neumann
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SPLIT CONJUNCTIVE PREDICATES
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SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID 
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

×
ARTIST

ARTIST.ID=APPEARS.ARTIST_ID AND
APPEARS.ALBUM_ID=ALBUM.ID AND
ALBUM.NAME="Andy's OG Remix"

s

APPEARS ALBUM

×

Decompose predicates into their 
simplest forms to make it easier 
for the optimizer to move them 
around.

ARTIST.NAMEp
ARTIST.ID=APPEARS.ARTIST_IDs

ALBUM.NAME="Andy's OG Remix"s
APPEARS.ALBUM_ID=ALBUM.IDs

https://db.cs.cmu.edu/
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PREDICATE PUSHDOWN
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SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID 
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

ARTIST APPEARS ALBUM

Move the predicate to the lowest 
point in the plan after Cartesian 
products.

×

ARTIST.NAMEp

×

ARTIST.ID=APPEARS.ARTIST_IDs

ALBUM.NAME="Andy's OG Remix"s
APPEARS.ALBUM_ID=ALBUM.IDs

ARTIST.ID=APPEARS.ARTIST_IDs
ALBUM.NAME="Andy's OG Remix"s

APPEARS.ALBUM_ID=ALBUM.IDs
×

https://db.cs.cmu.edu/
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REPLACE CARTESIAN PRODUCTS
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SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID 
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

Replace all Cartesian Products 
with inner joins using the join 
predicates.

ARTIST APPEARS ALBUM

ARTIST.NAMEp

ALBUM.NAME="Andy's OG Remix"s

×
ARTIST.ID=APPEARS.ARTIST_IDs

APPEARS.ALBUM_ID=ALBUM.IDs
×

ARTIST.ID=APPEARS.ARTIST_ID⨝

APPEARS.ALBUM_ID=ALBUM.ID⨝

https://db.cs.cmu.edu/
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PROJECTION PUSHDOWN
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SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID 
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

Eliminate redundant attributes 
before pipeline breakers to 
reduce materialization cost.

ARTIST APPEARS ALBUM

ARTIST.NAMEp

ARTIST.ID=APPEARS.ARTIST_ID⨝

APPEARS.ALBUM_ID=ALBUM.ID⨝

ALBUM.NAME="Andy's OG Remix"s

IDpARTIST.NAME,
APPEARS.ALBUM_IDp

ID,NAMEp ARTIST_ID,
ALBUM_IDp

ARTIST.ID=
APPEARS.ARTIST_ID⨝

APPEARS.ALBUM_ID=ALBUM.ID⨝

https://db.cs.cmu.edu/
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PHYSICAL QUERY OPTIMIZATION

Transform a query plan's logical operators into 
physical operators.
→ Add more execution information
→ Select indexes / access paths
→ Choose operator implementations
→ Choose when to materialize (i.e., temp tables).

This stage must support cost model estimates.
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OBSERVATION

All the queries we have looked at so far have had 
the following properties:
→ Equi/Inner Joins
→ Simple join predicates that reference only two tables.
→ No cross products

Real-world queries are more complex / nasty:
→ Outer Joins
→ Semi Joins
→ Anti Joins
→ Lateral Joins

16
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REORDERING LIMITATIONS

No valid reordering is possible!

The A⟕B operator is not 
commutative with B⟗C. 
→ The DBMS does not know the value 

of B.val until after computing the 
join with A.
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SELECT * FROM A
LEFT OUTER JOIN B
ON A.id = B.id

FULL OUTER JOIN C
ON B.val = C.id;

B

⟕

B.val=C.id⟗

A C

A.id=B.id

Source: Pit Fender
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PLAN ENUMERATION

Approach #1: Transformation
→ Modify some part of an existing query plan to transform it 

into an alternative plan that is equivalent.
→ Top-Down Search

Approach #2: Generative
→ Iteratively assemble and add building blocks to generate a 

query plan.
→ Bottom-Up Search
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ON THE CORRECT AND COMPLETE ENUMERATION 
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SIGMOD 2013
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DYNAMIC PROGRAMMING OPTIMIZER

Model the query as a hypergraph and then 
incrementally expand to enumerate new plans.

Algorithm Overview:
→ Iterate connected sub-graphs and incrementally add new 

edges to other nodes to complete query plan.
→ Use rules to determine which nodes the traversal is allowed 

to visit and expand.
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DYNAMIC PROGRAMMING STRIKES BACK
SIGMOD 2008
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CASCADES OPTIMIZER

Object-oriented implementation of the Volcano 
query optimizer.
→ Top-down approach (backward chaining) using branch-

and-bound search.

Supports simplistic expression re-writing through a 
direct mapping function rather than an exhaustive 
search.
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THE CASCADES FRAMEWORK FOR 
QUERY OPTIMIZATION
IEEE DATA ENGINEERING BULLETIN 1995

Graefe

EFFICIENCY IN THE COLUMBIA 
DATABASE QUERY OPTIMIZER
PORTLAND STATE UNIVERSITY MS THESIS 1998
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CASCADES OPTIMIZER

Optimization tasks as data structures.

Rules to place property enforcers.

Ordering of moves by promise.

Predicates as logical/physical operators.

21

EFFICIENCY IN THE COLUMBIA 
DATABASE QUERY OPTIMIZER
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CASCADES – EXPRESSIONS

An expression represents some operation in the 
query with zero or more input expressions.
→ Optimizer needs to be able to quickly determine whether 

two expressions are equivalent.

Logical Expression: (A ⨝ B) ⨝ C

Physical Expression: (ASeq ⨝HJ BSeq) ⨝NL CIdx
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SELECT * FROM A
JOIN B ON A.id = B.id
JOIN C ON C.id = A.id;

https://db.cs.cmu.edu/
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CASCADES – GROUPS

A group is a set of logically equivalent logical and 
physical expressions that produce the same output.
→ All logical forms of an expression.
→ All physical expressions that can be derived from selecting 

the allowable physical operators for the corresponding 
logical forms.
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Output:
[ABC]

Logical Exps
1. (A⨝B)⨝C
2. (B⨝C)⨝A
3. (A⨝C)⨝B
4. A⨝(B⨝C)
⋮

Physical Exps
1.(ASeq⨝NLBSeq)⨝NLCSeq
2.(BSeq⨝NLCSeq)⨝NLASeq
3.(ASeq⨝NLCSeq)⨝NLBSeq
4.ASeq⨝NL(CSeq⨝NLBSeq)
⋮

Equivalent
Expressions

G
ro

u
p
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CASCADES – MULTI-EXPRESSION

Instead of explicitly instantiating all possible 
expressions in a group, the optimizer implicitly 
represents redundant expressions in a group as a 
multi-expression.
→ This reduces the number of transformations, storage 

overhead, and repeated cost estimations.
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Output:
[ABC]

Logical Multi-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [A]⨝[BC]
⋮

Physical Multi-Exps
1. [AB]⨝SM[C]
2. [AB]⨝HJ[C]
3. [AB]⨝NL[C]
4. [BC]⨝SM[A]
⋮

https://db.cs.cmu.edu/
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CASCADES – RULES

A rule is a transformation of an expression to a 
logically equivalent expression.
→ Transformation Rule: Logical to Logical
→ Implementation Rule: Logical to Physical

Each rule is represented as a pair of attributes:
→ Pattern: Defines the structure of the logical expression 

that can be applied to the rule.
→ Substitute: Defines the structure of the result after 

applying the rule.
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Pattern

CASCADES – RULES

26

EQJOIN

EQJOIN

GROUP 1 GROUP 2

GROUP 3

Transformation Rule
Rotate Left-to-Right

Implementation Rule
EQJOIN→SORTMERGE

A⨝[BC]

GET(A)

GET(B) GET(C)

B⨝C

[AB]⨝SMC

A⨝SMB

GET(A) GET(B)

GET(C)

[AB]⨝C

A⨝B

GET(A) GET(B)

GET(C)

Matching Plan
Group

Logical Expr

Physical Expr

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
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CASCADES – MEMO TABLE

Stores all previously explored alternatives in a 
compact graph structure / hash table.

Equivalent operator trees and their corresponding 
plans are stored together in groups.

Provides memoization, duplicate detection, and 
property + cost management.

27
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PRINCIPLE OF OPTIMALITY

Every sub-plan of an optimal plan is itself optimal.

This allows the optimizer to restrict the search 
space to a smaller set of expressions.
→ The optimizer never has to consider a plan containing sub-

plan P1 that has a greater cost than equivalent plan P2 with 
the same physical properties.
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EXPLOITING UPPER AND LOWER BOUNDS IN 
TOP-DOWN QUERY OPTIMIZATION
IDEAS 2001
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CASCADES – MEMO TABLE

29

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝SM[B]
3. [B]⨝NL[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Output:
[C]

Logical M-Exps
1. GET(C)

Physical M-Exps
1. SeqScan(C)
2. IdxScan(C)

Cost: 10 Cost: 20

Cost: 50+(10+20) Cost: 5

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

Cost: 40+(80+5)

SeqScan(A) 10

SeqScan(B) 20

IdxScan(C) 5

[A]⨝SM[B] 80

([A]⨝SM[B])⨝HJ[C] 125

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
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SEARCH TERMINATION

Approach #1: Transformation Exhaustion
→ Stop when there are no more ways to transform the target 

plan. Usually done per group.

Approach #2: Wall-clock Time
→ Stop after the optimizer runs for some length of time.

Approach #3: Transformation Count
→ Stop after a certain number of transformations have been 

considered.

Approach #4: Cost Threshold
→ Stop when the optimizer finds a plan that has a lower cost 

than some threshold.

30
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CASCADES IMPLEMENTATIONS

Standalone:
→ Wisconsin OPT++ (1990s)
→ Portland State Columbia (1990s)
→ Greenplum Orca (2010s)
→ Apache Calcite (2010s)

Integrated:
→ Microsoft SQL Server (1990s)
→ Tandem NonStop SQL (1990s)
→ Clustrix (2000s)
→ CockroachDB (2010s)

31
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REAL-WORLD IMPLEMENTATIONS

Microsoft SQL Server

Apache Calcite

Greenplum Orca

CockroachDB

SingleStore

32
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MICROSOFT SQL SERVER

First Cascades implementation started in 1995.
→ Derivatives are used in many MSFT database products.
→ All transformations are written in C++. No DSL.
→ Scalar / expression transformations are written in 

procedural code and not rules.

DBMS applies transformations in multiple stages 
with increasing scope and complexity.
→ The goal is to leverage domain knowledge to apply 

transformations that you always want to do first to reduce 
the search space.

33
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Tree-to-Tree
Transformations

Cost-based Search
Initialization

Multi-Stage
Cost-Based Search

Engine-Specific
Transformations

Sub-Query Removal
Outer Joins to Inner Joins
Predicate Pushdown
Empty Result Pruning

Stage1: Trivial Plan
Stage2: Quick Plan (Parallel)
Stage3: Full Plan (Parallel)

MICROSOFT SQL SERVER

34

Simplification / 
Normalization

Pre-Exploration Exploration Post-Optimization

Trivial Plan Short-circuit
Projection Normalization
Statistics Identification/Collection
Initial Cardinality Estimates
Join Collapsing

Source: Nico Bruno + Cesar Galindo-Legaria
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MICROSOFT SQL SERVER

Optimization #1: Timeouts are based on the 
number of transformations not wallclock time.
→ Ensures that overloaded systems do not generate different 

plans than under normal operations.

Optimization #2: Pre-populate the Memo Table 
with potentially useful join orderings.
→ Heuristics that consider relationships between tables.
→ Syntactic appearance in query.

35
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APACHE CALCITE

Standalone extensible query optimization 
framework for data processing systems.
→ Support for pluggable query languages, cost models, and 

rules.
→ Does not distinguish between logical and physical 

operators. Physical properties are provided as annotations.

Originally part of LucidDB.

36

APACHE CALCITE: A FOUNDATIONAL FRAMEWORK FOR OPTIMIZED 
QUERY PROCESSING OVER HETEROGENEOUS DATA SOURCES
SIGMOD 2018
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GREENPLUM ORCA

Standalone Cascades implementation in C++.
→ Originally written for Greenplum.
→ Extended to support HAWQ.

A DBMS integrates Orca by implementing API to 
send catalog + stats + logical plans and then retrieve 
physical plans.

Supports multi-threaded search.

37

ORCA: A MODULAR QUERY OPTIMIZER 
ARCHITECTURE FOR BIG DATA
SIGMOD 2014
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GREENPLUM ORCA – ENGINEERING 

Issue #1: Remote Debugging
→ Automatically dump the state of the optimizer (with 

inputs) whenever an error occurs.
→ The dump is enough to put the optimizer back in the exact 

same state later for further debugging.

Issue #2: Optimizer Accuracy
→ Automatically check whether the ordering of the estimate 

cost of two plans matches their actual execution cost.

38
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COCKROACHDB

Custom Cascades implementation written in 2018.

All transformation rules are written in a custom 
DSL (OptGen) and then codegen into Go-lang.
→ Can embed Go logic in rule to perform more complex 

analysis and modifications.

Also considers scalar expression (predicates) 
transformations together with relational operators.

39

Source:Source: Rebecca Taft
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SINGLESTORE OPTIMIZER

Rewriter
→ Logical-to-logical transformations with access to the cost-

model.

Enumerator
→ Logical-to-physical transformations.
→ Mostly join ordering.

Planner
→ Convert physical plans back to SQL.
→ Contains SingleStore-specific commands for moving data.

40

THE MEMSQL QUERY OPTIMIZER
VLDB 2017
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SINGLESTORE OPTIMIZER

41

Parser
Abstract

Syntax
Tree

Logical 
Plan

Physical 
Plan

Cost
Estimates

SQL Query

Binder

Rewriter

Enumerator

Planner

Physical 
Plan

SQL
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PARTING THOUGHTS

All of this relies on a good cost model.
A good cost model needs good statistics.

42
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NEXT CLASS

Cost Models

43
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