
ADVANCED DATABASE SYSTEMS

Andy Pavlo // 15-721 // Spring 2023

Databricks
Spark SQL / Photon

L
e

c
tu

re
 #

2
0

https://15721.courses.cs.cmu.edu/spring2023
http://db.cs.cmu.edu/

15-721 (Spring 2023)

CORRECTIONS

BigQuery does support multi-
statement transactions.
→ INSERT/UPDATE/DELETE queries.
→ DDL operations on temp tables.
→ Provides snapshot isolation via OCC.

Hadoop does not write map tasks
shuffle output to HDFS.
→ Shuffle data is written to local disk on the

data node.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://cloud.google.com/bigquery/docs/reference/standard-sql/transactions

15-721 (Spring 2023)

ADVENT OF SPARK

High-performance and more expressive
replacement for Hadoop from Berkeley.
→ Separate compute / storage
→ Support for iterative algorithms that make multiple passes

on the same data set.

Written in Scala (the hot language in 2010),
meaning that it ran on the JVM.

Originally only supported a low-level RDD API.

Added DataFrame API for higher-level abstraction.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://en.wikipedia.org/wiki/Pandas_(software)#DataFrames

15-721 (Spring 2023)

SHARK (2013)

Modified version of Facebook's Hive middleware
that converted SQL into Spark API programs.

Only supported SQL on data files registered in
Hive's catalog. Spark programs could not execute
SQL in between API calls.

Shark relied on the Hive query optimizer that was
designed for running map-reduce jobs on Hadoop.
→ Spark has a more feature-rich native API.

4

SHARK: SQL AND RICH ANALYTICS AT SCALE
SIGMOD 2013

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/doi/10.1145/2463676.2465288
https://dl.acm.org/doi/10.1145/2463676.2465288

15-721 (Spring 2023)

SPARK SQL (2015)

Row-based SQL engine natively inside of the Spark
runtime with Scala-based query codegen.
→ In-memory columnar representation for intermediate

results as raw byte buffers.
→ Dictionary encoding, RLE, bitpacking compressions.
→ In-memory shuffle between query stages.

DBMS converts a query's WHERE clause expression
trees into Scala ASTs. It then compiles these ASTs
to generate JVM bytecode.

5

SPARK SQL: RELATIONAL DATA
PROCESSING IN SPARK
SIGMOD 2015

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/doi/10.1145/2723372.2742797
https://dl.acm.org/doi/10.1145/2723372.2742797

15-721 (Spring 2023)

SPARK SQL (2015)

Row-based SQL engine natively inside of the Spark
runtime with Scala-based query codegen.
→ In-memory columnar representation for intermediate

results as raw byte buffers.
→ Dictionary encoding, RLE, bitpacking compressions.
→ In-memory shuffle between query stages.

DBMS converts a query's WHERE clause expression
trees into Scala ASTs. It then compiles these ASTs
to generate JVM bytecode.

5

SPARK SQL: RELATIONAL DATA
PROCESSING IN SPARK
SIGMOD 2015

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/doi/10.1145/2723372.2742797
https://dl.acm.org/doi/10.1145/2723372.2742797

15-721 (Spring 2023)

JVM PROBLEMS

Databricks' workloads were becoming CPU bound.
→ Fewer disk stalls because of NVMe SSD caching and

adaptive shuffling.
→ Better filtering to skip reading data

They found it difficult to optimize their JVM-based
Spark SQL execution engine further:
→ GC slowdown for heaps larger than 64GB
→ JIT codegen limitations for large methods

6

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

DATABRICKS PHOTON (2022)

Single-threaded C++ execution engine embedded
into Databricks Runtime (DBR) via JNI.
→ Overrides existing engine when appropriate.
→ Support both Spark's earlier SQL engine and Spark's

DataFrame API.
→ Seamlessly handle impedance mismatch between row-

oriented DBR and column-oriented Photon.

Accelerate execution of query plans over "raw /
uncurated" files in a data lake.

7

PHOTON: A FAST QUERY ENGINE
FOR LAKEHOUSE SYSTEMS
SIGMOD 2022

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://en.wikipedia.org/wiki/Java_Native_Interface
https://dl.acm.org/doi/10.1145/3514221.3526054
https://dl.acm.org/doi/10.1145/3514221.3526054

15-721 (Spring 2023)

DATABRICKS PHOTON (2022)

Single-threaded C++ execution engine embedded
into Databricks Runtime (DBR) via JNI.
→ Overrides existing engine when appropriate.
→ Support both Spark's earlier SQL engine and Spark's

DataFrame API.
→ Seamlessly handle impedance mismatch between row-

oriented DBR and column-oriented Photon.

Accelerate execution of query plans over "raw /
uncurated" files in a data lake.

7

PHOTON: A FAST QUERY ENGINE
FOR LAKEHOUSE SYSTEMS
SIGMOD 2022

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://en.wikipedia.org/wiki/Java_Native_Interface
https://dl.acm.org/doi/10.1145/3514221.3526054
https://dl.acm.org/doi/10.1145/3514221.3526054
https://twitter.com/andy_pavlo/status/1536843474925981697

15-721 (Spring 2023)

DATABRICKS PHOTON

Shared-Disk / Disaggregated Storage

Pull-based Vectorized Query Processing

Precompiled Primitives + Expression Fusion

Shuffle-based Distributed Query Execution

Sort-Merge + Hash Joins

Unified Query Optimizer + Adaptive Optimizations

8

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

SPARK: QUERY EXECUTION

9

Distributed
File System

SELECT language, MAX(views)
FROM wikipedia
WHERE title LIKE "%Pavlo%"
GROUP BY 1 ORDER BY 2 DESC
LIMIT 100

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

Stage #1
Partial Group By

Stage #2
Group By, Sort, Limit

Stage #3
Sort, Limit

SPARK: QUERY EXECUTION

9

Distributed
File System

Executor

Executor

Executor

Executor

Executor

Executor

Executor

Local In-Memory
Shuffle Store

SELECT language, MAX(views)
FROM wikipedia
WHERE title LIKE "%Pavlo%"
GROUP BY 1 ORDER BY 2 DESC
LIMIT 100

Executor

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

PHOTON: VECTORIZED QUERY PROCESSING

Photon is a pull-based vectorized engine that uses
precompiled primitives for operator kernels.
→ Converts physical plan into a list of pointers to functions

that perform low-level operations on column batches.

Databricks: It is easier to build/maintain a
vectorized engine than a JIT engine.
→ Engineers spend more time creating specialized codepaths

to get closer to JIT performance.
→ With codegen, engineers write tooling and observability

hooks instead of writing the engine.

10

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

PHOTON: VECTORIZED QUERY PROCESSING

Each GetNext invocation on a Photon operator
produces a column batch.
→ One or more column vectors with a position list vector.
→ Each column vector includes a null bitmap.

Databricks: Position list vectors performs better
than "active row" bitmap despite indirection.

11

col0: int32

55
66
77
??

data
0
0
0
1

null?

col1: varchar

aa
bbb
??
XXX

data
0
0
1
1

null?

position list

1
3

offset

C
ol

u
m

n
 B

at
ch

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

PHOTON: VECTORIZED QUERY PROCESSING

Each GetNext invocation on a Photon operator
produces a column batch.
→ One or more column vectors with a position list vector.
→ Each column vector includes a null bitmap.

Databricks: Position list vectors performs better
than "active row" bitmap despite indirection.

11

col0: int32

55
66
77
??

data
0
0
0
1

null?

col1: varchar

aa
bbb
??
XXX

data
0
0
1
1

null?

position list

1
3

offset

C
ol

u
m

n
 B

at
chactive rows

0
1
0
1

set

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

PHOTON: VECTORIZED QUERY PROCESSING

Each GetNext invocation on a Photon operator
produces a column batch.
→ One or more column vectors with a position list vector.
→ Each column vector includes a null bitmap.

Databricks: Position list vectors performs better
than "active row" bitmap despite indirection.

11

col0: int32

55
66
77
??

data
0
0
0
1

null?

col1: varchar

aa
bbb
??
XXX

data
0
0
1
1

null?

position list

1
3

offset

C
ol

u
m

n
 B

at
chactive rows

0
1
0
1

set

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

PHOTON: VECTORIZED QUERY PROCESSING

Each GetNext invocation on a Photon operator
produces a column batch.
→ One or more column vectors with a position list vector.
→ Each column vector includes a null bitmap.

Databricks: Position list vectors performs better
than "active row" bitmap despite indirection.

11

col0: int32

55
66
77
??

data
0
0
0
1

null?

col1: varchar

aa
bbb
??
XXX

data
0
0
1
1

null?

position list

1
3

offset

C
ol

u
m

n
 B

at
chactive rows

0
1
0
1

set

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

PHOTON: VECTORIZED QUERY PROCESSING

Each GetNext invocation on a Photon operator
produces a column batch.
→ One or more column vectors with a position list vector.
→ Each column vector includes a null bitmap.

Databricks: Position list vectors performs better
than "active row" bitmap despite indirection.

11

col0: int32

55
66
77
??

data
0
0
0
1

null?

col1: varchar

aa
bbb
??
XXX

data
0
0
1
1

null?

position list

1
3

offset

C
ol

u
m

n
 B

at
chactive rows

0
1
0
1

set

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/doi/abs/10.1145/3465998.3466009

15-721 (Spring 2023)

PHOTON: VECTORIZED QUERY PROCESSING

Photon does not support HyPer-style operator
fusion so that the DBMS can collect metrics per
operator to help users understand query behavior.
→ Vertical fusion over multiple operators in a pipeline.

Instead, Photon's engineers fuse expression
primitives to avoid excessive function calls.
→ Horizontal fusion within a single operator.

12

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

HYPER: OPERATOR FUSION

13

Generated Query Plan

#1

#4

#2

#3

SELECT *
FROM A, C,
(SELECT B.id, COUNT(*)

FROM B
WHERE B.val = ? + 1
GROUP BY B.id) AS B

WHERE A.val = 123
AND A.id = C.a_id
AND B.id = C.b_id

for t in A:
if t.val == 123:

Materialize t in HashTable ⨝(A.id=C.a_id)

for t in B:
if t.val == <param> + 1:

Aggregate t in HashTable Γ(B.id)

for t in Γ(B.id):
Materialize t in HashTable ⨝(B.id=C.b_id)

for t3 in C:
for t2 in ⨝(B.id=C.b_id):

for t1 in ⨝(A.id=C.a_id):
emit(t1⨝t2⨝t3)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

SELECT * FROM foo
WHERE cdate BETWEEN '2023-01-01' AND '2023-04-01';

VECTORWISE: PRECOMPILED PRIMITIVES

14

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

SELECT * FROM xxx
WHERE cdate >= '2023-01-01'
AND cdate <= '2023-04-01';

VECTORWISE: PRECOMPILED PRIMITIVES

14

xxx

cdate >= '2023-01-01'
AND

cdate <= '2023-04-01'
s

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

SELECT * FROM xxx
WHERE cdate >= '2023-01-01'
AND cdate <= '2023-04-01';

VECTORWISE: PRECOMPILED PRIMITIVES

14

xxx

cdate >= '2023-01-01'
AND

cdate <= '2023-04-01'
s

vec<offset> sel_geq_date(vec<date> batch, date val) {
vec<offset> positions;
for (offset i = 0; i < batch.size(); i++)

if (batch[i] >= val) positions.append(i);
return (positions);

}

vec<offset> sel_leq_date(vec<date> batch, date val) {
vec<offset> positions;
for (offset i = 0; i < batch.size(); i++)

if (batch[i] <= val) positions.append(i);
return (positions);

}

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

SELECT * FROM xxx
WHERE cdate >= '2023-01-01'
AND cdate <= '2023-04-01';

VECTORWISE: PRECOMPILED PRIMITIVES

14

xxx

cdate >= '2023-01-01'
AND

cdate <= '2023-04-01'
s

vec<offset> sel_between_dates(vec<date> batch,
date low, date high) {

vec<offset> positions;
for (offset i = 0; i < batch.size(); i++)

if (batch[i] >= low && batch[i] <= high)
positions.append(i);

return (positions);
}

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

MEMORY MANAGEMENT

All memory allocations go to memory pool
managed by the DBR in the JVM.
→ Single source of truth for runtime memory usage.

Because there are no data statistics, the DBMS has
to be more dynamic in its memory allocations.
→ Instead of operators spilling its own memory to disk when

it runs out of space, operators request for more memory
from the manager who then decides what operators to
release memory.

→ Simple heuristic that releases memory from the operator
that has the least allocated but enough to satisfy request.

15

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

CATALYST QUERY OPTIMIZER

Cascades-style query optimizer for Spark SQL
written in Scala that executes transformations in
pre-defined stages similar to Microsoft SQL Server.

Three type of transformations:
→ Logical→Logical ("Analysis & Optimization Rules")
→ Logical→Physical ("Strategies")
→ Physical→Physical ("Preparation Rules")

16

Source: Cheng Lian

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://youtu.be/Xb2zm4-F1HI

15-721 (Spring 2023)

PHOTON: PHYSICAL PLAN TRANSFORMATION

Traverse the original query plan bottoms-up to
convert it into a new Photon-specific physical plan.
→ New Goal: Limit the number of runtime switches between

old engine and new engine.

17

Original Plan

File Scan

Filter

Shuffle

Output

New Plan

JVM C++

File Scan

Output

Adapter

PhotonFilter

PhotonShuffle

Transition
JNI

JNI

Source: Alex Behm

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/doi/10.1145/3514221.3526054

15-721 (Spring 2023)

RUNTIME ADAPTIVITY

Query-Level Adaptivity (Macro)
→ Re-evaluate query plan decisions at the end of each shuffle

stage.
→ Similar to the Dremel approach we discussed last class.
→ This is provided by DBR wrapper.

Batch-Level Adaptivity (Micro)
→ Specialized code paths inside of an operator to handle the

contents of a single tuple batch.
→ This is done by Photon during query execution.

18

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

SPARK: DYNAMIC QUERY OPTIMIZATION

Spark changes the query plan before a stages starts
based on observations from the preceding stage.
→ Avoids the problem of optimizer making decisions with

inaccurate (or non-existing) data statistics.

Optimization Examples:
→ Dynamically switch between shuffle vs. broadcast join.
→ Dynamically coalesce partitions
→ Dynamically optimize skewed joins

19

Source: Maryann Xue

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://youtu.be/Xb2zm4-F1HI

15-721 (Spring 2023)

SPARK: PARTITION COALESCING

Spark (over-)allocates a large number
of shuffle partitions for each stage.
→ Number needs to be large enough to avoid

one partitioning from filling up too much.

After the shuffle completes, the
DBMS then combines partitions that
are underutilized using heuristics.

20

Worker

Source: Maryann Xue

Partition #1 Partition #3 Partition #4Partition #2 Partition #5

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://youtu.be/Xb2zm4-F1HI

15-721 (Spring 2023)

SPARK: PARTITION COALESCING

Spark (over-)allocates a large number
of shuffle partitions for each stage.
→ Number needs to be large enough to avoid

one partitioning from filling up too much.

After the shuffle completes, the
DBMS then combines partitions that
are underutilized using heuristics.

20

Worker

Source: Maryann Xue

Partition #1 Partition #3 Partition #4Partition #2 Partition #5

Partition #1

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://youtu.be/Xb2zm4-F1HI

15-721 (Spring 2023)

SPARK: PARTITION COALESCING

Spark (over-)allocates a large number
of shuffle partitions for each stage.
→ Number needs to be large enough to avoid

one partitioning from filling up too much.

After the shuffle completes, the
DBMS then combines partitions that
are underutilized using heuristics.

20

Worker

Source: Maryann Xue

Partition #1 Partition #3 Partition #4Partition #2 Partition #5

Partition #1 Partition #2 Partition #5

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://youtu.be/Xb2zm4-F1HI

15-721 (Spring 2023)

PHOTON: BATCH-LEVEL ADAPTIVITY

Separate primitives for ASCII vs. UTF-8 data
→ ASCII encoded data is always 1-byte characters, whereas

UTF-8 data could use 1 to 4-byte characters.

No NULL values in a column vector
→ Elide branching to checking null vector

No inactive rows in column batch
→ Elide indirect lookups in position lists

21

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

TPC-H COMPARISON

22

1

500001

1000001

1500001

2000001

R
un

ti
m

e
(s

ec
)

Spark SQL Photon

Databricks 8 nodes + 1 driver
Scale Factor = 3000

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

DATABRICKS TPC-DS (2021)

Databricks announced audited TPC-DS results in
late 2021.

23

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

DATABRICKS TPC-DS (2021)

Databricks announced audited TPC-DS results in
late 2021.

23

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://www.tpc.org/tpcds/results/tpcds_results5.asp

15-721 (Spring 2023)

DATABRICKS TPC-DS (2021)

Databricks announced audited TPC-DS results in
late 2021.

23

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://www.tpc.org/tpcds/results/tpcds_results5.asp
https://www.protocol.com/enterprise/databricks-snowflake-data-warehouse-tpc
https://www.protocol.com/enterprise/databricks-snowflake-data-warehouse-tpc

15-721 (Spring 2023)

OBSERVATION

The lack of statistics makes query optimization
harder for queries on data lakes.

Adaptivity helps for some things, but the DBMS can
always do a better job if it knows something about
the data.

What if there was a storage service for data lakes
that supported incremental changes so that the
DBMS could compute statistics?

24

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

DELTA LAKE (2019)

25

DELTA LAKE: HIGH-PERFORMANCE ACID TABLE
STORAGE OVER CLOUD OBJECT STORES
VLDB 2020

Transactional CRUD interface for
incremental data ingestion of
structured data on top of object stores.

DBMS appends writes to a JSON-oriented log.

Background worker periodically convert log into
Parquet files (with computed statistics).

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/doi/10.14778/3415478.3415560
https://dl.acm.org/doi/10.14778/3415478.3415560

15-721 (Spring 2023)

KUDU (2015)

26

KUDU: STORAGE FOR FAST
ANALYTICS ON FAST DATA
WHITE PAPER 2015

Storage engine for low-latency random access on
structured data files in distributed file system.
→ Started at Cloudera in 2015 to complement Impala.

No SQL interface (must use Impala). Only supports
low-level CRUD operations.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://kudu.apache.org/kudu.pdf
https://kudu.apache.org/kudu.pdf

15-721 (Spring 2023)

PARTING THOUGHTS

The interesting parts of Photon is in it use of
precompiled primitives and its integration with an
existing JVM-based runtime infrastructure.

Andy does not recommend building a Java OLAP
engine from scratch.

27

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

15-721 (Spring 2023)

NEXT CLASS

Snowflake

28

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

	Introduction
	Slide 1: Databricks Spark SQL / Photon
	Slide 2: CORRECTIONS

	History
	Slide 3: ADVENT OF SPARK
	Slide 4: SHARK (2013)
	Slide 5: SPARK SQL (2015)
	Slide 6: SPARK SQL (2015)
	Slide 7: JVM PROBLEMS

	Architecture
	Slide 8: DATABRICKS PHOTON (2022)
	Slide 9: DATABRICKS PHOTON (2022)
	Slide 10: DATABRICKS PHOTON
	Slide 11: SPARK: QUERY EXECUTION
	Slide 12: SPARK: QUERY EXECUTION
	Slide 13: PHOTON: VECTORIZED QUERY PROCESSING
	Slide 14: PHOTON: VECTORIZED QUERY PROCESSING
	Slide 15: PHOTON: VECTORIZED QUERY PROCESSING
	Slide 16: PHOTON: VECTORIZED QUERY PROCESSING
	Slide 17: PHOTON: VECTORIZED QUERY PROCESSING
	Slide 18: PHOTON: VECTORIZED QUERY PROCESSING
	Slide 19: PHOTON: VECTORIZED QUERY PROCESSING
	Slide 20: HYPER: OPERATOR FUSION
	Slide 21: VECTORWISE: PRECOMPILED PRIMITIVES
	Slide 22: VECTORWISE: PRECOMPILED PRIMITIVES
	Slide 23: VECTORWISE: PRECOMPILED PRIMITIVES
	Slide 24: VECTORWISE: PRECOMPILED PRIMITIVES
	Slide 25: MEMORY MANAGEMENT
	Slide 26: CATALYST QUERY OPTIMIZER
	Slide 27: PHOTON: PHYSICAL PLAN TRANSFORMATION

	Adaptivity
	Slide 28: RUNTIME ADAPTIVITY
	Slide 29: SPARK: DYNAMIC QUERY OPTIMIZATION
	Slide 30: SPARK: PARTITION COALESCING
	Slide 31: SPARK: PARTITION COALESCING
	Slide 32: SPARK: PARTITION COALESCING
	Slide 33: PHOTON: BATCH-LEVEL ADAPTIVITY

	Benchmarks
	Slide 34: TPC-H COMPARISON
	Slide 35: DATABRICKS TPC-DS (2021)
	Slide 36: DATABRICKS TPC-DS (2021)
	Slide 37: DATABRICKS TPC-DS (2021)

	Delta Lake
	Slide 38: OBSERVATION
	Slide 39: DELTA LAKE (2019)
	Slide 40: KUDU (2015)

	Conclusion
	Slide 41: PARTING THOUGHTS
	Slide 42: NEXT CLASS

