Lecture #20

Carnegie Mellon University

ADVANCED DATABASE SYSTEMS

Databricks
Spark SQL / Photon

Andy Pavlo // 15-721 // Spring 2023

https://15721.courses.cs.cmu.edu/spring2023
http://db.cs.cmu.edu/

CORRECTIONS

BigQuery does support multi-

statement transactions.

— INSERT/UPDATE/DELETE queries.
— DDL operations on temp tables.

— Provides snapshot isolation via OCC.

Hadoop does not write map tasks
shuffle output to HDFS.

— Shuffle data is written to local disk on the
data node.

££CMU-DB

15-721 (Spring 2023)

BigQuery > Documentation > Guides Was this helpful? 5 GJ

Multi-statement transactions Send feedback

BigQuery supports multi-statement transactions inside a single query, or across multiple queries when using sessions. A
multi-statement transaction lets you perform mutating operations, such as inserting or deleting rows on one or more
tables, and either commit or roll back the changes atomically.

Uses for multi-statement transactions include:

« Performing DML mutations on multiple tables as a single transaction. The tables can span multiple datasets or
projects.

« Performing mutations on a single table in several stages, based on intermediate computations.

T i gl ACID [Z properties and support snapshot isolation. During a ion, all reads return a

consistent hot of the tables d in the ion. If a ina d ifies a table, the
hanges are visible to within the same transaction.

Y Note: Reads from external data sources are not tobe within a if the ing data source

changes during the transaction.

Transaction scope

A transaction must be contained in a single SQL query, except when in Session mode . A query can contain multiple
transactions, but they cannot be nested. You can run multi-statement transactions over multiple queries in a session.

To start a transaction, use the BEGIN TRANSACTION statement. The transaction ends when any of the following occur:

* The query executes a COMMIT TRANSACTION statement. This i all changes made
inside the transaction.

« The query executes a ROLLBACK TRANSACTION This all changes made inside the
transaction.

« The query ends before reaching either of these two statements. In that case, BigQuery automatically rolls back the
transaction.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://cloud.google.com/bigquery/docs/reference/standard-sql/transactions

ADVENT OF SPARK

High-performance and more expressive

replacement for Hadoop from Berkeley.

— Separate compute / storage

— Support for iterative algorithms that make multiple passes
on the same data set.

Written in Scala (the hot language in 2010),
meaning that it ran on the JVM.

Originally only supported a low-level RDD API.
Added DataFrame API for higher-level abstraction.

£=CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://en.wikipedia.org/wiki/Pandas_(software)#DataFrames

SHARK (2013)

Modified version of Facebook's Hive middleware
that converted SQL into Spark API programs.

Only supported SQL on data files registered in

Hive's catalog. Spark programs could not execute
SQL in between API calls.

Shark relied on the Hive query optimizer that was

designed for running map-reduce jobs on Hadoop.
— Spark has a more feature-rich native API.

SHARK: SQL AND RICH ANALYTICS AT SCALE

SIGMOD 2013

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/doi/10.1145/2463676.2465288
https://dl.acm.org/doi/10.1145/2463676.2465288

SPARK SQL (2615)

Row-based SQL engine natively inside of the Spark

runtime with Scala-based query codegen.

— In-memory columnar representation for intermediate
results as raw byte buffers.

— Dictionary encoding, RLE, bitpacking compressions.

— In-memory shuffle between query stages.

DBMS converts a query's WHERE clause expression
trees into Scala ASTs. It then compiles these AST's
to generate JVM bytecode.

~—— |SPARK SOL: RELATIONAL DATA
PROCESSING IN SPARK
SIGMOD 2015

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/doi/10.1145/2723372.2742797
https://dl.acm.org/doi/10.1145/2723372.2742797

SPARK SQL (2615)

Row-based SQL engine natively inside of the Spark

runtime with Scala-base
H —
In-memory columnar rep y il emain it 1 12P OU°
results as raw byte buffers, exia sysiem catls s 1} praciice,
— Dictionary encoding, RLE head. In addition, the ingpipor 0 m2lin
Y g; » the l_naf?lllty to control when buffer caches are

— In- : - .
In memory shuftle betweq is determined by the last task to finish, and thus the jn i
’ : creasing vari-

ability leads to lon i
n g-tail latency, which sjop;
fe - > 1Ch significant]
performance. We modified the shuffle phase tonm{a,t:nq;tl? e

DBMS converts a query/|_ P! in memory, with the option to spill them g 41
trees into Scala ASTs. It then compiles theSe ASTS

to generate JVM bytecode.

ze map

- |SPARK SQL: RELATIONAL DATA
PROCESSING IN SPARK
SIGMOD 2015

$CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/doi/10.1145/2723372.2742797
https://dl.acm.org/doi/10.1145/2723372.2742797

JVM PROBLEMS

Databricks' workloads were becoming CPU bound.

— Fewer disk stalls because of NVMe SSD caching and
adaptive shuffling.

— Better filtering to skip reading data

They found it difficult to optimize their JVM-based

Spark SQL execution engine further:
— GC slowdown for heaps larger than 64GB
— JIT codegen limitations for large methods

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

DATABRICKS PHOTON (2622)

Single-threaded C++ execution engine embedded
into Databricks Runtime (DBR) via JNI.

— Overrides existing engine when appropriate.

— Support both Spark's earlier SQL engine and Spark's
DataFrame API.

— Seamlessly handle impedance mismatch between row-
oriented DBR and column-oriented Photon.

Accelerate execution of query plans over "raw /
uncurated" files in a data lake.

PHOTON: A FAST QUERY ENGINE
FOR LAKEHOUSE SYSTEMS
SIGMOD 2022

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://en.wikipedia.org/wiki/Java_Native_Interface
https://dl.acm.org/doi/10.1145/3514221.3526054
https://dl.acm.org/doi/10.1145/3514221.3526054

DATABRICKS PHOTON (2622)

Photon: A Fast Query Engine for Lakehouse Systems

Alexander Behm, Shoumik Palkar, Utkarsh Agarwal, Timothy Armstrong, David Cashman, Ankur
Dave, Todd Greenstein, Shant Hovsepian, Ryan Johnson, Arvind Sai Krishnan, Paul Leventis, Ala
Luszczak, Prashanth Menon, Mostafa Mokhtar, Gene Pang, Sameer Paranjpye, Greg Rahn, Bart

Samwel, Tom van Bussel, Herman van Hovell, Maryann Xue, Reynold Xin, Matei Zaharia
photon-paper-authors@databricks.com
Databricks Inc.

ABSTRACT from SQL to machine learning. Traditionally, for the most demand-
Many organizations are shifting to a data management paradigm ing SQL workloads, enterprises have also moved a curated subset
called the “Lakehouse,” which implements the functionality of struc- of their data into data warehouses to get high performance, gov-
tiired data wareholices An tan of unctructired data lakec Thig ernance and Concurrency. HOWCVCI', thlS two—tier arChiteCture iS

PHOTON: A FAST QUERY ENGINE
FOR LAKEHOUSE SYSTEMS
SIGMOD 2022

$CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://en.wikipedia.org/wiki/Java_Native_Interface
https://dl.acm.org/doi/10.1145/3514221.3526054
https://dl.acm.org/doi/10.1145/3514221.3526054
https://twitter.com/andy_pavlo/status/1536843474925981697

DATABRICKS PHOTON

Shared-Disk / Disaggregated Storage

Pull-based Vectorized Query Processing

Precompiled Primitives + Expression Fusion
Shuffle-based Distributed Query Execution
Sort-Merge + Hash Joins

Unified Query Optimizer + Adaptive Optimizations

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

SPARK: QUERY EXECUTION

SELECT language, MAX(views)
FROM wikipedia

WHERE title LIKE "%Pavlo%"
GROUP BY 1 ORDER BY 2 DESC
LIMIT 100

(0 [0 [[@

Distributed
File System

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

SPARK: QUERY EXECUTION

Local In-Memory SELECT language, MAX(views)
FROM wikipedia

T : WHERE title LIKE "%Pavlo%"
i : GROUP BY 1 ORDER BY 2 DESC
LIMIT 100

Executor

Executor

(0 [0 [[@

* et Stage #1 Stage #2 Stage #3
D :lStrtbuted Partial Group By Group By, Sort, Limit Sort, Limit
File System
$CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

PHOTON: VECTORIZED QUERY PROCESSING

Photon is a pull-based vectorized engine that uses

precompiled primitives for operator kernels.
— Converts physical plan into a list of pointers to functions
that perform low-level operations on column batches.

Databricks: It is easier to build/maintain a

vectorized engine than a JIT engine.

— Engineers spend more time creating specialized codepaths
to get closer to JIT performance.

— With codegen, engineers write tooling and observability
hooks instead of writing the engine.

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

PHOTON: VECTORIZED QUERY PROCESSING

Each GetNext invocation on a Photon operator

produces a column batch.
— One or more column vectors with a position list vector.
— Each column vector includes a null bitmap.

Databricks: Position list vectors performs better
than "active row" bitmap despite indirection.

= col0: int32 coll: varchar position list

=

S
55 0 aa 0 1

S

g 66 |[o Y e

= 77 || e 22 || 1 /

S 22 | 1 xxx J[1

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

PHOTON: VECTORIZED QUERY PROCESSING

Each GetNext invocation on a Photon operator

produces a column batch.
— One or more column vectors with a position list vector.
— Each column vector includes a null bitmap.

Databricks: Position list vectors performs better
than "active row" bitmap despite indirection.

active rows = . col0: int32 coll: varchar position list

=

= 4

0 —>| 55 || o aa || @ 1
S

1 &> 66 |[o e I

0 N: —> 77 || © 22 11 /

1 S22 L xxx || 1

£2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

PHOTON: VECTORIZED QUERY PROCESSING

Each GetNext invocation on a Photon operator

produces a column batch.
— One or more column vectors with a position list vector.
— Each column vector includes a null bitmap.

Databricks: Position list vectors performs better
than "active row" bitmap despite indirection.

active rows = . col0: int32 coll: varchar position list
g
st S
v =—>[55 |[o oflo) —11
> &——>{ 66 || © bbb || o 3
AN = 7l e 22 || 1 /
|1 F S22] xxx |1
£2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

PHOTON: VECTORIZED QUERY PROCESSING

Each GetNext invocation on a Photon operator
produces a column batch.

" . " ate over O(batch size) elem i
than "active row" b Recent work confy . ents instead of O(active rows) elements,

active rows = . col0: int32 coll: varchar ~ position list

g

~7 =
: =»| 55) aa 0 /- 1

’ s—> 66 |[o bbb || o 3

A ,g > 77 0 7 1 /

| 1 F S22] xxx][

£=CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

$=CM

15-721 (Sp:

Filter Representation in Vectorized Query Execution

Amadou Ngom‘, Prashanth Menon
Matthew Butrovich, Lin Ma, Wan Shen Lim, Todd C. Mowry. Andrew Pavlo
S \assachusetts Institute of Technology, Carnegie Mellon University
{ngom@mi t.edu, pmenongdes.cmi edu}

Abstract

advances in memory technology bave made i feasible for database
management systems (DBMS) to stare their working data set in
mgin memory. This trend shifts the Botileneck for query execution
from disk accesses Lo CPU efficiency. One technigue to Improve
CPU efficiency 15 hatch-oriented processing, oF veclorization, as it
reduces interpretation overhead, For each vector {batch) of tuples,
Ihe DBMS must rack the set of valid {visible) tuples thar survive all
previous processing steps. Tothat end, existing sysiems employ one
of two data structures, O filter representations: selection vectors
or bitmaps. B this work, we analyze each approech’s strengths
and weaknesses and offer recommendations on how (o implement
vactorized operations. Through a wide range of micro-henchmarks,
we determine that the optimal srategy 53 Function of many factors:
The cost of iersting, through tuples, the cost of the operation iself,
and how amenableitis to SIMD vectorization. Our analysis shows
that bitmaps perform better for operations that can be vectorized
using SIMD instructions and that selection vectors perform better
on all other operations due (& cheaper iteration logic.

ACM Reference Format:

Amadou Ngom®, Prashanth Menan nd Matthew Butravich, Lin Ma, Wan
‘hen Lisn, Tadd C. Movry, fndsews Pavio 2021 Filter Representation i
Yecterized Query Execution.in nternationa] Workshop on Data Management
o New Hardware (DAMON 21}, Jun 20-25, 2021, Virtual Event, China. ACM,
New York, NY, USA, 7 pages. hitps/dotorg/10 1145/3465908 3466009

1 Introduction
Modern DBMSs utilize the vecterized processing imodel pioneered
by Vectorwise (17] to improve quesy execution pesformance. In
(his model, relational uperators implement & uniform interface 1o
iterate over il results in @ Volcano-style manner (3]. However, un-
like the original Voleano rmodel, in a vectorized engine, velational
operators exchange anall Seclore of typically 1-2k tuples in cach iz
yocation of the iterator This simple enb seement (1) amortizes the
iteration oveshead actoss all tuples in the vector and (2) ma:
computation on tuple data while it is in the CPU's cache.
Vectorized relational operators exchange batches of tuple where
cach ple attribute is stored separately ina compact vector. For
instance, » filier pperator applies a predicate of cach input tuple
and coples is atteibutes into an output vector if successful. This

nizes

This v
DAMON 21, June 20-25, 021, Virtual Event Ching
o 3021 Copyright beld by the ownexfanthor(z)
ACHM KEN 9786-1-4303-8536-521/06

oty idoiorg /10 11453465998 HAGKS

e ensed uadera Creative Commons Atirbution (et patioral 40 License.

i P atid supaal hadausl P sl

2100

ctor (ns
"
=
=1
[=]

Time per Ve
~
2
2

04 0.6 1.0
Selectivity

Figure 1: Motivating Example - e evaluate the time to apply a smple
predicate fitering an arithmetic column with a eonstant value.

approach incurs memory overbead due to dats COpYINE. A com-
toon technique lo overcome this is to augment hatehes with s data
atructure hat logically msks out invalid tuples (ie.a logical filter).
‘We refer to this data structure as a filter representasion. Two com”
mon representations are (1) Selection Vectors (V) and 2) Bitmaps
{BMs). A SV isadense sorted list of wple identifiers (TID) indicating
which tuples in the ‘atch are valid during processing. With BMs,
cach tuple in the batch is assigned a positionally aligned bit valid
tples bave their bit sel to 1. The DBMS smarks tuples as invvalid by
modifying the filter representation alone without copying data.

Interestingly, previons works choose a representation stralegy
without providing & clear {or empirical) justification. Vectorwise
and its derivatives rely selection vectors (6, 14, 15, 17]. BM DR2's
BLU [12] and the mose recent VIP [11] rely on bitmaps for the
inlermediary resultsofa Lable scan’s filters and selection vectors for
otherrelational operators. I {his work, we find that supporting both
representations and dynamically choosing between them resulls
in better performance than static implementations Depending on
{he specific primitive and the selectivity (Le. the ratio of selected
teples) of its input vector, seleclion vectors can out perfonu bilmaps
and viee-versa.

To illustrate the need for a deeper exploration of the impact of 2
chosen filter represeniation strategy, we present an experiment that
measutes the performance of evaluating 3 WHERE dusing & sequential
pable scan over a table composed of a single o4-bit inleget column.
For this experiment, we penerate the column's data using 3 unl iform
disteibution, and vary (he input flter's selectivity between & and 1
‘We defer the full description of our experimental setup 1o Section 3

We implement and measure five different execntion siralegles.
BMPartial, BMFull, and RiFull Manual all use bilmaps BhPartial
applies the operation only on selected tuples, while BMFull applies
it on all tuples. Likewise, BMFullManual uses & hand-written SIMD
Kernel to apply the operation 10 all tuples in each veclor SVPartial

coll: varchar

’ED QUERY PROCESSING

ion on a Photon operator

aa 0

bbb)
77 1
1

XXX

position list
1

3

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/doi/abs/10.1145/3465998.3466009

PHOTON: VECTORIZED QUERY PROCESSING

Photon does not support HyPer-style operator
fusion so that the DBMS can collect metrics per

operator to help users understand query behavior.
— Vertical fusion over multiple operators in a pipeline.

Instead, Photon's engineers fuse expression

primitives to avoid excessive function calls.
— Horizontal fusion within a single operator.

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

HYPER: OPERATOR FUSION

SELECT *
FROM A, C,
(SELECT B.id, COUNT(*)
FROM B
WHERE B.val = 2 + 1
GROUP BY B.id) AS B
WHERE A.val = 123

AND A.id = C.a_id
AND B.id = C.b_id
g Py

MB-id=c.b,id

$CMU-DB

15-721 (Spring 2023)

Generated Query Plan

#4

#34

if t.val == 123: 5
Materialize t in HashTable P<I(A.1id=C.a_id) :

for t in B:
if t.val == <param> + 1:
Aggregate t in HashTable I'(B. id)

--

for t in (B.id):
Materialize t in HashTable P<(B.id=C.b_id)
fameémiﬁmé?"m"m"m"m"m"m"m"m"m"m"m"m"m"m"m"mq
i for t2 in D(B.id=C.b_id):
for t1 in PA(A.id=C.a_id):
emit(t1D<It2p<t3)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

VECTORWISE: PRECOMPILED PRIMITIVES

SELECT * FROM foo
WHERE cdate BETWEEN '2023-01-01' AND '2023-04-01';

£=CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

VECTORWISE: PRECOMPILED PRIMITIVES

SELECT * FROM xxx
WHERE cdate >= '2023-01-01"
AND cdate <= '2023-04-01"';

cdate >= '2023-01-01'
AND
I cdate <= '2023-04-01'

XXX

£=CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

VECTORWISE: PRECOMPILED PRIMITIVES

SELECT * FROM xXX vec<offset> sel_geq_date(vec<date> batch, date val) {

WHERE cdate >= '2023-01-01" vec<offset> positions;
AND cdate <= '2023-04-01"'; for (offset i = 0; i < batch.size(); i++)
if (batch[i] >= val) positions.append(i);
return (positions);

3

cdate >= '2023-01-01'

o

cdate <= '2023-04-01'

vec<offset> sel_leq_date(vec<date> batch, date val) {
vec<offset> positions;
xxx for (offset i = 0; i < batch.size(); i++)

if (batch[i] <= val) positions.append(i);
return (positions);

}

$CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

VECTORWISE: PRECOMPILED PRIMITIVES

SELECT * FROM xxx
WHERE cdate >= '2023-01-01"
AND cdate <= '2023-04-01"';

vec<offset> sel_between_dates(vec<date> batch,
date low, date high)|{

cdate >= '2023-01-01" vec<offset> positions;
AND T for (offset i = 0; i < batch.size(); i++)
cdate <= '2023-04-01° if (batch[i] >= low && batch[i] <= high)
positions.append(i);
return (positions);

}

XXX

£CMU-DB
111111 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

$2CMU-DB

15-721 (Spring 2023)

MEMORY MANAGEMENT

All memory allocations go to memory pool
managed by the DBR in the JVM.

— Single source of truth for runtime memory usage.

Because there are no data statistics, the DBMS has

to be more dynamic in its memory allocations.

— Instead of operators spilling its own memory to disk when
it runs out of space, operators request for more memory
from the manager who then decides what operators to
release memory.

— Simple heuristic that releases memory from the operator
that has the least allocated but enough to satisfy request.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

CATALYST QUERY OPTIMIZER

Cascades-style query optimizer for Spark SQL
written in Scala that executes transformations in
pre-defined stages similar to Microsoft SQL Server.

Three type of transformations:
— Logical-Logical ("Analysis & Optimization Rules")
— Logical-Physical ("Strategies")

— IThysical—>_Physicai ("T’reparation Rules")

Source: Cheng Lian
$=CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://youtu.be/Xb2zm4-F1HI

PHOTON: PHYSICAL PLAN TRANSFORMATION

Traverse the original query plan bottoms-up to

convert it into a new Photon-specific physical plan.
— New Goal: Limit the number of runtime switches between
old engine and new engine.

Original Plan New Plan

JNI
oup - T
»p /M W
PhotonFilter

JNI

C++

Source: Alex Behm

£=CMU-DB
111111 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/doi/10.1145/3514221.3526054

RUNTIME ADAPTIVITY

Query-Level Adaptivity (Macro)

— Re-evaluate query plan decisions at the end of each shuffle
stage.

— Similar to the Dremel approach we discussed last class.

— This is provided by DBR wrapper.

Batch-Level Adaptivity (Micro)

— Specialized code paths inside of an operator to handle the
contents of a single tuple batch.

— This is done by Photon during query execution.

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

SPARK: DYNAMIC QUERY OPTIMIZATION

Spark changes the query plan before a stages starts

based on observations from the preceding stage.
— Avoids the problem of optimizer making decisions with
inaccurate (or non-existing) data statistics.

Optimization Examples:

— Dynamically switch between shuffle vs. broadcast join.
— Dynamically coalesce partitions

— Dynamically optimize skewed joins

Source: Maryann Xue
$=CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://youtu.be/Xb2zm4-F1HI

SPARK: PARTITION COALESCING

Spark (over-)allocates a large number

of shuffle partitions for each stage.
— Number needs to be large enough to avoid
one partitioning from filling up too much.

Partition #1 Partition #2 Partition #3 Partition #4 Partition #5

After the shuffle completes, the
DBMS then combines partitions that
are underutilized using heuristics.

Source: Maryann Xue
$=CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://youtu.be/Xb2zm4-F1HI

SPARK: PARTITION COALESCING

Spark (over-)allocates a large number _—

of shuffle partitions for each stage.
— Number needs to be large enough to avoid
one partitioning from filling up too much.

Partition #1 Partition #2 Partition #3 Partition #4 Partition #5

After the shuffle completes, the
DBMS then combines partitions that
are underutilized using heuristics.

Source: Maryann Xue
£ CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://youtu.be/Xb2zm4-F1HI

SPARK: PARTITION COALESCING

Spark (over-)allocates a large number Parisonst Partition2 Parsion 5

of shuffle partitions for each stage. . I

— Number needs to be large enough to avoid
Partition #1 Partition #2 Partition #3 Partition #4 Partition #5

one partitioning from filling up too much.

After the shuffle completes, the
DBMS then combines partitions that
are underutilized using heuristics.

Source: Maryann Xue
£ CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://youtu.be/Xb2zm4-F1HI

PHOTON: BATCH-LEVEL ADAPTIVITY

Separate primitives for ASCII vs. UTF-8 data

— ASCII encoded data is always 1-byte characters, whereas
UTF-8 data could use 1 to 4-byte characters.

No NULL values in a column vector
— Elide branching to checking null vector

No inactive rows in column batch
— Elide indirect lookups in position lists

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

= 2000001
3
N
WV
=
-
S
S
=4

500001

1

££CMU-DB

15-721 (Spring 2023)

TPC-H COMPARISON

Databricks 8 nodes + 1 driver

Scale Factor = 3000

B Spark SQL Bl Photon

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

DATABRICKS TPC-DS (26021)

Databricks announced audited TPC-DS results in
late 2021.

£=CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

$2CMU-DB

15-721 (Spring 2023)

DATABRICKS TPC-DS (26021)

HITACHI %

Nettrix$H NUTANDS — <od
nviDiA.

Home About the TPC~ Benchmarks/Results * mloads * TPCTC Contact ~

TPC-DS V3 All Results - Sorted by Performance

Version 3 Results As of 12-Apr-2023 at 3:50 PM [GMT]

Note 1: TPC-DS Version 2 and TPC-DS Version 3 are NOT comparable.

Note 2: The TPC believes it is NOT valid to compare prices or price/performance of results in different currencies.

Note 3: The TPC believes that comparisons of TPC-DS results measured against different database sizes are misleading and discourages such comparisons. The TPC-DS results shown below are grouped by database size

to emphasize that only results within each group are comparable.

10,000 GB Results

I R T

opersng sysem -M

. o abhfbal]l
I ACTIAN Aliﬁ;um AMDZT T Hstor c||sclo

e Wonspur R enovo!

ORACLE o RedHat

Miscellaneous

DL Fufitsu

Technologies

S Microsoft

—
Hewlett Packard
Enterprise

rmAneykane T'rl.\ vmware

Member Login

L

J Alibaba Cloud Alibaba Group Enterprise
.«.—ﬁ Alibaba Cloud AnalyticDB 18,998,559 59.27 CNY os7i20 | e 2 Lt oo s S tee, 06/17/20
Alibaba Cloud E- i Alibaba Cloud E-) e
il MacRedue 11,569,838 237.03 CNY NR OaTI2D | e uon 4.0.1 CentOS Linux Release 7.4 04/1620
H3C | H2CUniServer R4900 8.944478 | 42313 CNY NR 12123020 | GBase 8aVa Red Hat Enterprise Linux 12/23/20
- G3 Server 7.8

s Supermicro A+ Server Transwarp ArgoDB Red Hat Enterprise Linux

éurmw:n_n TR 4,418,054 110.29 USD NR 083119 | 0% s 08/07/19

100,000 GB Resulis

Company s v Perfarmance

“{GphDS) Price/kQphDS | Watts/KQphDS

Databricks SQL 8.3 32,941,245 157.57 USD NR

Sustam
Availabilitw

1102121

Databricks Photon Engine
B3

Operating System

Ubuntu 18.04.5 LTS

Data
Submitted

11/0221

Alibaba Cloud E-

14,861,137 175.23 USD NR
Alibaba cor MapReduce

09/16/19

3212

Alibaba Cloud E-MapReduce CentOS Linux

Release 7.4

09/16/19

'NR' in the Watts/KQphDS column indicates that no energy data was reported for that benchmark.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://www.tpc.org/tpcds/results/tpcds_results5.asp

$CMU-DB

15-721 (Spring 2023)

DATABRICKS

2 A

Alibaba com

HITACHI

A ACTIAN

NeEErixsM NUTANIDC

Downloads * TPCTC

About the TPCr Benchmarks/Results *

Home

TPC-DS V3 All Results - Sorted by Performance
Version 3 Results As of 12-Apr-2023 at 3:50 PM [GMT]

Note 1: TPC-DS Version 2 and TPC-DS Version 3 are NOT comparable.

Note 2: The TPC believes it is NOT valid to compare prices or price/performance of results in differ
Note 3: The TPC believes that comparisons of TPC-DS results measured against different databas
b

b " the st

"At the enterprise level, maybe some CIO is going to care about what your official TPC

ranking is, but they don't make sales that way," said Carnegie Mellon University

associate professor Andy Pavlo.

fcx;

‘ELJ'HLM.IL'RI

Supermicro A+ Server 110.29 USD

2123BT-HNCOR

4,418,054

32,941,245 157.57 USD

Databricks SQL 8.3

e2 £libaba Cloud E- 14,861,137 175.23 USD

MapReduce

'NR' in the Watts/KQphDS column indicates that no energy data was reported for that benchm:

ENTERPRISE

Databricks is
core business

In a shot across the bow to Snowfl

roduct h o
Product has achieved record performance levels

By Joe Williams November 2, 2021

———————

The rivalry betweer Databricks a OW e

I : .)l IcKs and Sn /flake is about to become ever

more hostile. And the outcon € Co Vi T Ationce far
me could have monumental ramificatin. Y.

TR RS R

ake, Databricks is Set to announce o

protocol a

gunning for Snowflake’s

n Tuesday that its flagship data w arehouse

Most Popular

Desllnaer

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://www.tpc.org/tpcds/results/tpcds_results5.asp
https://www.protocol.com/enterprise/databricks-snowflake-data-warehouse-tpc
https://www.protocol.com/enterprise/databricks-snowflake-data-warehouse-tpc

OBSERVATION

The lack of statistics makes query optimization
harder for queries on data lakes.

Adaptivity helps for some things, but the DBMS can
always do a better job if it knows something about
the data.

What if there was a storage service for data lakes
that supported incremental changes so that the
DBMS could compute statistics?

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

DELTA LAKE (2019)

Transactional CRUD interface for A DELTA LAKE

incremental data ingestion of
structured data on top of object stores.

DBMS appends writes to a JSON-oriented log.

Background worker periodically convert log into
Parquet files (with computed statistics).

DELTA LAKE: HIGH-PERFORMANCE ACID TABLE
\S/EISDBRZA(%% OVER CLOUD OBJECT STORES

$CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/doi/10.14778/3415478.3415560
https://dl.acm.org/doi/10.14778/3415478.3415560

KUDU (2015)

: APACHE
Storage engine for low-latency random access on i
structured data files in distributed file system. :
— Started at Cloudera in 2015 to complement Impala. ll"-.
\

No SQL interface (must use Impala). Only supports
low-level CRUD operations.

KUDU: STORAGE FOR FAST
ANALYTICS ON FAST DATA
WHITE PAPER 2015

$2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://kudu.apache.org/kudu.pdf
https://kudu.apache.org/kudu.pdf

$2CMU-DB

15-721 (Spring 2023)

PARTING THOUGHTS

The interesting parts of Photon is in it use of
precompiled primitives and its integration with an
existing JVM-based runtime infrastructure.

Andy does not recommend building a Java OLAP
engine from scratch.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

NEXT CLASS

Snowflake

£2CMU-DB

15-721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

	Introduction
	Slide 1: Databricks Spark SQL / Photon
	Slide 2: CORRECTIONS

	History
	Slide 3: ADVENT OF SPARK
	Slide 4: SHARK (2013)
	Slide 5: SPARK SQL (2015)
	Slide 6: SPARK SQL (2015)
	Slide 7: JVM PROBLEMS

	Architecture
	Slide 8: DATABRICKS PHOTON (2022)
	Slide 9: DATABRICKS PHOTON (2022)
	Slide 10: DATABRICKS PHOTON
	Slide 11: SPARK: QUERY EXECUTION
	Slide 12: SPARK: QUERY EXECUTION
	Slide 13: PHOTON: VECTORIZED QUERY PROCESSING
	Slide 14: PHOTON: VECTORIZED QUERY PROCESSING
	Slide 15: PHOTON: VECTORIZED QUERY PROCESSING
	Slide 16: PHOTON: VECTORIZED QUERY PROCESSING
	Slide 17: PHOTON: VECTORIZED QUERY PROCESSING
	Slide 18: PHOTON: VECTORIZED QUERY PROCESSING
	Slide 19: PHOTON: VECTORIZED QUERY PROCESSING
	Slide 20: HYPER: OPERATOR FUSION
	Slide 21: VECTORWISE: PRECOMPILED PRIMITIVES
	Slide 22: VECTORWISE: PRECOMPILED PRIMITIVES
	Slide 23: VECTORWISE: PRECOMPILED PRIMITIVES
	Slide 24: VECTORWISE: PRECOMPILED PRIMITIVES
	Slide 25: MEMORY MANAGEMENT
	Slide 26: CATALYST QUERY OPTIMIZER
	Slide 27: PHOTON: PHYSICAL PLAN TRANSFORMATION

	Adaptivity
	Slide 28: RUNTIME ADAPTIVITY
	Slide 29: SPARK: DYNAMIC QUERY OPTIMIZATION
	Slide 30: SPARK: PARTITION COALESCING
	Slide 31: SPARK: PARTITION COALESCING
	Slide 32: SPARK: PARTITION COALESCING
	Slide 33: PHOTON: BATCH-LEVEL ADAPTIVITY

	Benchmarks
	Slide 34: TPC-H COMPARISON
	Slide 35: DATABRICKS TPC-DS (2021)
	Slide 36: DATABRICKS TPC-DS (2021)
	Slide 37: DATABRICKS TPC-DS (2021)

	Delta Lake
	Slide 38: OBSERVATION
	Slide 39: DELTA LAKE (2019)
	Slide 40: KUDU (2015)

	Conclusion
	Slide 41: PARTING THOUGHTS
	Slide 42: NEXT CLASS

