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CORRECTIONS

BigQuery does support multi-
statement transactions.
→ INSERT/UPDATE/DELETE queries.
→ DDL operations on temp tables.
→ Provides snapshot isolation via OCC.

Hadoop does not write map tasks 
shuffle output to HDFS.
→ Shuffle data is written to local disk on the 

data node.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://cloud.google.com/bigquery/docs/reference/standard-sql/transactions
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ADVENT OF SPARK

High-performance and more expressive 
replacement for Hadoop from Berkeley.
→ Separate compute / storage
→ Support for iterative algorithms that make multiple passes 

on the same data set.

Written in Scala (the hot language in 2010), 
meaning that it ran on the JVM.

Originally only supported a low-level RDD API.

Added DataFrame API for higher-level abstraction.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://en.wikipedia.org/wiki/Pandas_(software)#DataFrames
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SHARK (2013)

Modified version of Facebook's Hive middleware 
that converted SQL into Spark API programs.

Only supported SQL on data files registered in 
Hive's catalog. Spark programs could not execute 
SQL in between API calls.

Shark relied on the Hive query optimizer that was 
designed for running map-reduce jobs on Hadoop.
→ Spark has a more feature-rich native API.
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SHARK: SQL AND RICH ANALYTICS AT SCALE
SIGMOD 2013

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/doi/10.1145/2463676.2465288
https://dl.acm.org/doi/10.1145/2463676.2465288
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SPARK SQL (2015)

Row-based SQL engine natively inside of the Spark 
runtime with Scala-based query codegen.
→ In-memory columnar representation for intermediate 

results as raw byte buffers.
→ Dictionary encoding, RLE, bitpacking compressions.
→ In-memory shuffle between query stages.

DBMS converts a query's WHERE clause expression 
trees into Scala ASTs. It then compiles these ASTs 
to generate JVM bytecode.
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SPARK SQL: RELATIONAL DATA 
PROCESSING IN SPARK
SIGMOD 2015

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/doi/10.1145/2723372.2742797
https://dl.acm.org/doi/10.1145/2723372.2742797
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JVM PROBLEMS

Databricks' workloads were becoming CPU bound.
→ Fewer disk stalls because of NVMe SSD caching and 

adaptive shuffling.
→ Better filtering to skip reading data

They found it difficult to optimize their JVM-based 
Spark SQL execution engine further:
→ GC slowdown for heaps larger than 64GB
→ JIT codegen limitations for large methods
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https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
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DATABRICKS PHOTON (2022)

Single-threaded C++ execution engine embedded 
into Databricks Runtime (DBR) via JNI.
→ Overrides existing engine when appropriate.
→ Support both Spark's earlier SQL engine and Spark's 

DataFrame API.
→ Seamlessly handle impedance mismatch between row-

oriented DBR and column-oriented Photon.

Accelerate execution of query plans over "raw / 
uncurated" files in a data lake.
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PHOTON: A FAST QUERY ENGINE 
FOR LAKEHOUSE SYSTEMS
SIGMOD 2022
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DATABRICKS PHOTON

Shared-Disk / Disaggregated Storage

Pull-based Vectorized Query Processing

Precompiled Primitives + Expression Fusion

Shuffle-based Distributed Query Execution

Sort-Merge + Hash Joins

Unified Query Optimizer + Adaptive Optimizations
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SPARK: QUERY EXECUTION

9

Distributed
File System

SELECT language, MAX(views)
FROM wikipedia
WHERE title LIKE "%Pavlo%"
GROUP BY 1 ORDER BY 2 DESC
LIMIT 100

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
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Stage #1
Partial Group By

Stage #2
Group By, Sort, Limit

Stage #3
Sort, Limit

SPARK: QUERY EXECUTION
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Distributed
File System

Executor

Executor

Executor

Executor

Executor

Executor

Executor

Local In-Memory
Shuffle Store

SELECT language, MAX(views)
FROM wikipedia
WHERE title LIKE "%Pavlo%"
GROUP BY 1 ORDER BY 2 DESC
LIMIT 100

Executor
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PHOTON: VECTORIZED QUERY PROCESSING

Photon is a pull-based vectorized engine that uses 
precompiled primitives for operator kernels.
→ Converts physical plan into a list of pointers to functions 

that perform low-level operations on column batches.

Databricks: It is easier to build/maintain a 
vectorized engine than a JIT engine.
→ Engineers spend more time creating specialized codepaths

to get closer to JIT performance.
→ With codegen, engineers write tooling and observability 

hooks instead of writing the engine.
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PHOTON: VECTORIZED QUERY PROCESSING

Each GetNext invocation on a Photon operator 
produces a column batch.
→ One or more column vectors with a position list vector.
→ Each column vector includes a null bitmap.

Databricks: Position list vectors performs better 
than "active row" bitmap despite indirection.
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PHOTON: VECTORIZED QUERY PROCESSING

Photon does not support HyPer-style operator 
fusion so that the DBMS can collect metrics per 
operator to help users understand query behavior.
→ Vertical fusion over multiple operators in a pipeline.

Instead, Photon's engineers fuse expression 
primitives to avoid excessive function calls.
→ Horizontal fusion within a single operator.
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https://db.cs.cmu.edu/
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HYPER: OPERATOR FUSION

13

Generated Query Plan

#1

#4

#2

#3

SELECT *
FROM A, C, 
(SELECT B.id, COUNT(*)

FROM B
WHERE B.val = ? + 1
GROUP BY B.id) AS B

WHERE A.val = 123 
AND A.id = C.a_id
AND B.id = C.b_id

for t in A:
if t.val == 123:

Materialize t in HashTable ⨝(A.id=C.a_id)

for t in B:
if t.val == <param> + 1:

Aggregate t in HashTable Γ(B.id)

for t in Γ(B.id):
Materialize t in HashTable ⨝(B.id=C.b_id)

for t3 in C:
for t2 in ⨝(B.id=C.b_id):

for t1 in ⨝(A.id=C.a_id):
emit(t1⨝t2⨝t3)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
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SELECT * FROM foo
WHERE cdate BETWEEN '2023-01-01' AND '2023-04-01';

VECTORWISE: PRECOMPILED PRIMITIVES

14
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SELECT * FROM xxx
WHERE cdate >= '2023-01-01'
AND cdate <= '2023-04-01';

VECTORWISE: PRECOMPILED PRIMITIVES

14

xxx
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xxx
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s

vec<offset> sel_geq_date(vec<date> batch, date val) {
vec<offset> positions;   
for (offset i = 0; i < batch.size(); i++)

if (batch[i] >= val) positions.append(i);
return (positions);

}

vec<offset> sel_leq_date(vec<date> batch, date val) {
vec<offset> positions;   
for (offset i = 0; i < batch.size(); i++)

if (batch[i] <= val) positions.append(i);
return (positions);

}

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
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SELECT * FROM xxx
WHERE cdate >= '2023-01-01'
AND cdate <= '2023-04-01';

VECTORWISE: PRECOMPILED PRIMITIVES

14

xxx

cdate >= '2023-01-01'
AND

cdate <= '2023-04-01'
s

vec<offset> sel_between_dates(vec<date> batch,
date low, date high) {

vec<offset> positions;   
for (offset i = 0; i < batch.size(); i++)

if (batch[i] >= low && batch[i] <= high)
positions.append(i);

return (positions);
}

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
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MEMORY MANAGEMENT

All memory allocations go to memory pool 
managed by the DBR in the JVM.
→ Single source of truth for runtime memory usage.

Because there are no data statistics, the DBMS has 
to be more dynamic in its memory allocations.
→ Instead of operators spilling its own memory to disk when 

it runs out of space, operators request for more memory
from the manager who then decides what operators to 
release memory.

→ Simple heuristic that releases memory from the operator 
that has the least allocated but enough to satisfy request.
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CATALYST QUERY OPTIMIZER

Cascades-style query optimizer for Spark SQL 
written in Scala that executes transformations in 
pre-defined stages similar to Microsoft SQL Server.

Three type of transformations:
→ Logical→Logical ("Analysis & Optimization Rules")
→ Logical→Physical ("Strategies")
→ Physical→Physical ("Preparation Rules")

16

Source: Cheng Lian

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://youtu.be/Xb2zm4-F1HI
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PHOTON: PHYSICAL PLAN TRANSFORMATION

Traverse the original query plan bottoms-up to 
convert it into a new Photon-specific physical plan.
→ New Goal: Limit the number of runtime switches between 

old engine and new engine.
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https://db.cs.cmu.edu/
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RUNTIME ADAPTIVITY

Query-Level Adaptivity (Macro)
→ Re-evaluate query plan decisions at the end of each shuffle 

stage.
→ Similar to the Dremel approach we discussed last class.
→ This is provided by DBR wrapper.

Batch-Level Adaptivity (Micro)
→ Specialized code paths inside of an operator to handle the 

contents of a single tuple batch.
→ This is done by Photon during query execution.

18
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SPARK: DYNAMIC QUERY OPTIMIZATION

Spark changes the query plan before a stages starts 
based on observations from the preceding stage. 
→ Avoids the problem of optimizer making decisions with 

inaccurate (or non-existing) data statistics.

Optimization Examples:
→ Dynamically switch between shuffle vs. broadcast join.
→ Dynamically coalesce partitions
→ Dynamically optimize skewed joins

19

Source: Maryann Xue

https://db.cs.cmu.edu/
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SPARK: PARTITION COALESCING

Spark (over-)allocates a large number 
of shuffle partitions for each stage.
→ Number needs to be large enough to avoid 

one partitioning from filling up too much.

After the shuffle completes, the 
DBMS then combines partitions that 
are underutilized using heuristics.

20

Worker

Source: Maryann Xue

Partition #1 Partition #3 Partition #4Partition #2 Partition #5
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PHOTON: BATCH-LEVEL ADAPTIVITY

Separate primitives for ASCII vs. UTF-8 data
→ ASCII encoded data is always 1-byte characters, whereas 

UTF-8 data could use 1 to 4-byte characters.

No NULL values in a column vector
→ Elide branching to checking null vector

No inactive rows in column batch
→ Elide indirect lookups in position lists
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TPC-H COMPARISON
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DATABRICKS TPC-DS (2021)

Databricks announced audited TPC-DS results in 
late 2021.

23
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OBSERVATION

The lack of statistics makes query optimization 
harder for queries on data lakes.

Adaptivity helps for some things, but the DBMS can 
always do a better job if it knows something about 
the data.

What if there was a storage service for data lakes 
that supported incremental changes so that the 
DBMS could compute statistics?

24
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DELTA LAKE (2019)

25

DELTA LAKE: HIGH-PERFORMANCE ACID TABLE 
STORAGE OVER CLOUD OBJECT STORES
VLDB 2020

Transactional CRUD interface for
incremental data ingestion of
structured data on top of object stores.

DBMS appends writes to a JSON-oriented log.

Background worker periodically convert log into 
Parquet files (with computed statistics).

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/doi/10.14778/3415478.3415560
https://dl.acm.org/doi/10.14778/3415478.3415560
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KUDU (2015)

26

KUDU: STORAGE FOR FAST 
ANALYTICS ON FAST DATA
WHITE PAPER 2015

Storage engine for low-latency random access on 
structured data files in distributed file system.
→ Started at Cloudera in 2015 to complement Impala.

No SQL interface (must use Impala). Only supports 
low-level CRUD operations.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://kudu.apache.org/kudu.pdf
https://kudu.apache.org/kudu.pdf
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PARTING THOUGHTS

The interesting parts of Photon is in it use of 
precompiled primitives and its integration with an 
existing JVM-based runtime infrastructure.

Andy does not recommend building a Java OLAP 
engine from scratch.

27
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NEXT CLASS

Snowflake

28
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