
ADVANCED DATABASE SYSTEMS

Andy Pavlo // 15 - 721 // Spring 2023

Databricks
Spark SQL / Photon

L
e

c
tu

re
 #

2
0

https://15721.courses.cs.cmu.edu/spring2023
http://db.cs.cmu.edu/


15-721 (Spring 2023)

CORRECTIONS

BigQuerydoessupport multi-
statement transactions.
Ÿ INSERT/UPDATE/DELETE queries.
Ÿ DDL operations on temp tables.
Ÿ Provides snapshot isolation via OCC.

Hadoop does not write map tasks 
shuffle output to HDFS.
Ÿ Shuffledataiswritten to local disk on the 

data node.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://cloud.google.com/bigquery/docs/reference/standard-sql/transactions


15-721 (Spring 2023)

ADVENT OF SPARK

High-performance and more expressive 
replacement for Hadoop from Berkeley.
Ÿ Separate compute / storage
Ÿ Support for iterative algorithms that make multiple passes 

on the same data set.

Written in Scala (the hot language in 2010), 
meaning that it ran on the JVM.

Originally only supported a low-level RDD API.

Added DataFrameAPI for higher-level abstraction.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://en.wikipedia.org/wiki/Pandas_(software)#DataFrames


15-721 (Spring 2023)

SHARK (2013)

Modified version of Facebook's Hive middleware 
that converted SQL into Spark API programs.

Only supported SQL on data files registered in 
Hive's catalog. Spark programs could not execute 
SQL in between API calls.

Shark relied on the Hive query optimizer that was 
designed for running map-reduce jobs on Hadoop.
Ÿ Spark has a more feature-rich native API.

4

SHARK: SQL AND RICH ANALYTICS AT SCALE
SIGMOD 2013

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/doi/10.1145/2463676.2465288
https://dl.acm.org/doi/10.1145/2463676.2465288


15-721 (Spring 2023)

SPARK SQL (2015)

Row-based SQL engine natively inside of the Spark 
runtime with Scala-based query codegen.
Ÿ In-memory columnar representation for intermediate 

results as raw byte buffers.
Ÿ Dictionary encoding, RLE, bitpackingcompressions.
Ÿ In-memory shuffle between query stages.

DBMS converts a query's WHEREclause expression 
trees into Scala ASTs. It then compiles these ASTs 
to generate JVM bytecode.

5

SPARK SQL: RELATIONAL DATA 
PROCESSING IN SPARK
SIGMOD 2015

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/doi/10.1145/2723372.2742797
https://dl.acm.org/doi/10.1145/2723372.2742797


15-721 (Spring 2023)

SPARK SQL (2015)

Row-based SQL engine natively inside of the Spark 
runtime with Scala-based query codegen.
Ÿ In-memory columnar representation for intermediate 

results as raw byte buffers.
Ÿ Dictionary encoding, RLE, bitpackingcompressions.
Ÿ In-memory shuffle between query stages.

DBMS converts a query's WHEREclause expression 
trees into Scala ASTs. It then compiles these ASTs 
to generate JVM bytecode.

5

SPARK SQL: RELATIONAL DATA 
PROCESSING IN SPARK
SIGMOD 2015

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/doi/10.1145/2723372.2742797
https://dl.acm.org/doi/10.1145/2723372.2742797


15-721 (Spring 2023)

JVM PROBLEMS

Databricks' workloads were becoming CPU bound.
Ÿ Fewer disk stalls because of NVMe SSD caching and 

adaptive shuffling.
Ÿ Better filtering to skip reading data

They found it difficult to optimize their JVM-based 
Spark SQL execution engine further:
Ÿ GC slowdown for heaps larger than 64GB
Ÿ JIT codegenlimitations for large methods

6

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023


15-721 (Spring 2023)

DATABRICKS PHOTON (2022)

Single-threaded C++ execution engine embedded 
into Databricks Runtime (DBR) via JNI.
Ÿ Overrides existing engine when appropriate.
Ÿ Support both Spark's earlier SQL engine and Spark's 

DataFrame API.
Ÿ Seamlessly handle impedance mismatch between row-

oriented DBR and column-oriented Photon.

Accelerate execution of query plans over "raw / 
uncurated" files in a data lake.

7

PHOTON: A FAST QUERY ENGINE 
FOR LAKEHOUSE SYSTEMS
SIGMOD 2022

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://en.wikipedia.org/wiki/Java_Native_Interface
https://dl.acm.org/doi/10.1145/3514221.3526054
https://dl.acm.org/doi/10.1145/3514221.3526054


15-721 (Spring 2023)

DATABRICKS PHOTON (2022)

Single-threaded C++ execution engine embedded 
into Databricks Runtime (DBR) via JNI.
Ÿ Overrides existing engine when appropriate.
Ÿ Support both Spark's earlier SQL engine and Spark's 

DataFrame API.
Ÿ Seamlessly handle impedance mismatch between row-

oriented DBR and column-oriented Photon.

Accelerate execution of query plans over "raw / 
uncurated" files in a data lake.

7

PHOTON: A FAST QUERY ENGINE 
FOR LAKEHOUSE SYSTEMS
SIGMOD 2022

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://en.wikipedia.org/wiki/Java_Native_Interface
https://dl.acm.org/doi/10.1145/3514221.3526054
https://dl.acm.org/doi/10.1145/3514221.3526054
https://twitter.com/andy_pavlo/status/1536843474925981697


15-721 (Spring 2023)

DATABRICKS PHOTON

Shared-Disk / Disaggregated Storage

Pull-based Vectorized Query Processing

Precompiled Primitives + Expression Fusion

Shuffle-based Distributed Query Execution

Sort-Merge + Hash Joins

Unified Query Optimizer + Adaptive Optimizations

8

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023


15-721 (Spring 2023)

SPARK: QUERY EXECUTION

9

Distributed
File System

SELECTlanguage, MAX(views)
FROMwikipedia

WHEREtitle LIKE "%Pavlo%"
GROUPBY 1 ORDERBY 2 DESC
LIMIT 100

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023


15-721 (Spring 2023)

Stage #1
Partial Group By

Stage #2
Group By, Sort, Limit

Stage #3
Sort, Limit

SPARK: QUERY EXECUTION

9

Distributed
File System

Executor

Executor

Executor

Executor

Executor

Executor

Executor

Local In-Memory
Shuffle Store

SELECTlanguage, MAX(views)
FROMwikipedia

WHEREtitle LIKE "%Pavlo%"
GROUPBY 1 ORDERBY 2 DESC
LIMIT 100

Executor

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023


15-721 (Spring 2023)

PHOTON: VECTORIZED QUERY PROCESSING

Photon is a pull-based vectorized engine that uses 
precompiled primitives for operator kernels.
Ÿ Converts physical plan into a list of pointers to functions 

that perform low-level operations on column batches.

Databricks: It is easier to build/maintain a 
vectorized engine than a JIT engine.
Ÿ Engineers spend more time creating specialized codepaths

to get closer to JIT performance.
Ÿ With codegen, engineers write tooling and observability 

hooks instead of writing the engine.

10

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023


15-721 (Spring 2023)

PHOTON: VECTORIZED QUERY PROCESSING

Each GetNextinvocation on a Photon operator 
produces a column batch.
Ÿ One or more column vectorswith a position listvector.
Ÿ Each column vector includes a null bitmap.

Databricks: Position list vectors performs better 
than "active row" bitmap despite indirection.

11

col0: int32

55
66
77
??

data
0
0
0
1

null?

col1: varchar

aa
bbb
??
XXX

data
0
0
1
1

null?

position list

1
3

offset

C
o

lu
m

n
 B

a
tc

h

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023


15-721 (Spring 2023)

PHOTON: VECTORIZED QUERY PROCESSING

Each GetNextinvocation on a Photon operator 
produces a column batch.
Ÿ One or more column vectorswith a position listvector.
Ÿ Each column vector includes a null bitmap.

Databricks: Position list vectors performs better 
than "active row" bitmap despite indirection.

11

col0: int32

55
66
77
??

data
0
0
0
1

null?

col1: varchar

aa
bbb
??
XXX

data
0
0
1
1

null?

position list

1
3

offset

C
o

lu
m

n
 B

a
tc

h

active rows

0
1
0
1

set

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023


15-721 (Spring 2023)

PHOTON: VECTORIZED QUERY PROCESSING

Each GetNextinvocation on a Photon operator 
produces a column batch.
Ÿ One or more column vectorswith a position listvector.
Ÿ Each column vector includes a null bitmap.

Databricks: Position list vectors performs better 
than "active row" bitmap despite indirection.

11

col0: int32

55
66
77
??

data
0
0
0
1

null?

col1: varchar

aa
bbb
??
XXX

data
0
0
1
1

null?

position list

1
3

offset

C
o

lu
m

n
 B

a
tc

h

active rows

0
1
0
1

set

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023


15-721 (Spring 2023)

PHOTON: VECTORIZED QUERY PROCESSING

Each GetNextinvocation on a Photon operator 
produces a column batch.
Ÿ One or more column vectorswith a position listvector.
Ÿ Each column vector includes a null bitmap.

Databricks: Position list vectors performs better 
than "active row" bitmap despite indirection.

11

col0: int32

55
66
77
??

data
0
0
0
1

null?

col1: varchar

aa
bbb
??
XXX

data
0
0
1
1

null?

position list

1
3

offset

C
o

lu
m

n
 B

a
tc

h

active rows

0
1
0
1

set

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023


15-721 (Spring 2023)

PHOTON: VECTORIZED QUERY PROCESSING

Each GetNextinvocation on a Photon operator 
produces a column batch.
Ÿ One or more column vectorswith a position listvector.
Ÿ Each column vector includes a null bitmap.

Databricks: Position list vectors performs better 
than "active row" bitmap despite indirection.

11

col0: int32

55
66
77
??

data
0
0
0
1

null?

col1: varchar

aa
bbb
??
XXX

data
0
0
1
1

null?

position list

1
3

offset

C
o

lu
m

n
 B

a
tc

h

active rows

0
1
0
1

set

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/doi/abs/10.1145/3465998.3466009

