Lecture #20

Carnegie Mellon University

ADVANCED DATABASE STEMS

Databricks
Spark SOL / Photon

Andy Pavio // 15 -721 // Spring 2023

https://15721.courses.cs.cmu.edu/spring2023
http://db.cs.cmu.edu/

CORRECTIONS

BigQuenydoessupport mult

statement transactions.

Y INSERT/UPDATE/DELETE queries.
Y DDL operations on temp tables.

Y Provides snapshot isolation via OCC.

Hadoop doesot write map tasks

shuffle output to HDES
Y Shuffledatais written to local disk on the
data node.

££CMU-DB

15721 (Spring 2023)

BigQuery > Documentation > Guides Was this helpful? 5 GJ

Multi-statement transactions Send feedback

BigQuery supports multi-statement transactions inside a single query, or across multiple queries when using sessions. A
multi-statement transaction lets you perform mutating operations, such as inserting or deleting rows on one or more
tables, and either commit or roll back the changes atomically.

Uses for multi-statement transactions include:

« Performing DML mutations on multiple tables as a single transaction. The tables can span multiple datasets or
projects.

« Performing mutations on a single table in several stages, based on intermediate computations.

Ti ions g ACID [prop! and support snap isolation. During a ion, all reads return a

consistent hot of the tables d in the Ifa ina d ifies a table, the
hanges are visible to within the same transaction.

Y Note: Reads from external data sources are not tobe within a if the ing data source

changes during the transaction.

Transaction scope

A transaction must be contained in a single SQL query, except when in Session mode . A query can contain multiple
transactions, but they cannot be nested. You can run multi-statement transactions over multiple queries in a session.

To start a transaction, use the BEGIN TRANSACTION statement. The transaction ends when any of the following occur:

* The query executes a COMMIT TRANSACTION statement. This all changes made
inside the transaction.

« The query executes a ROLLBACK TRANSACTION This all changes made inside the
transaction.

« The query ends before reaching either of these two statements. In that case, BigQuery automatically rolls back the
transaction.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://cloud.google.com/bigquery/docs/reference/standard-sql/transactions

ADVENT OF SPARK

High-performance and more expressive

replacement for Hadoop from Berkeley.

Y Separate compute / storage
Y Support for iterative algorithms that make multiple passes

on the same data set.

Written in Scala (the hot language in 2010),
meaning that it ran on the JVM.

Originally only supported a leevel RDD API.
AddedDataFram@PI for highetlevel abstraction.

$2CMU-DB

15721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://en.wikipedia.org/wiki/Pandas_(software)#DataFrames

SHARK (2013)

Modified version of Facebook's Hive middleware
that converted SQL into Spark API programs.

Only supported SQL on data files registered in
Hive's catalog. Spark programs could not execute
SQL in between API calls.

Shark relied on the Hive query optimizer that was

designed for running mapduce jobs on Hadoop.
Y Spark has a more featuieh native API.

SHARK: SQL AND RICH ANALYTICS AT SCALE
SIGMOD 2013

$2CMU-DB

11111 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/doi/10.1145/2463676.2465288
https://dl.acm.org/doi/10.1145/2463676.2465288

SPARK SQL (2015)

Row-based SQL engine natively inside of the Spark

runtime with Scaldased guergodegen

Y In-memory columnar representation for intermediate
results as raw byte buffers.

Y Dictionary encoding, RLEitpackingcompressions.

Y In-memory shuffle between query stages.

DBMS converts a quer\\8HERilause expression
trees into Scala ASTs. It then compiles these ASTs
to generate JVM bytecode.

—— | SPARK SQL: RELATIONAL DATA
PROCESSING IN SPARK
SIGMOD 2015

$2CMU-DB

15721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/doi/10.1145/2723372.2742797
https://dl.acm.org/doi/10.1145/2723372.2742797

SPARK SQL (2015)

Row-based SQL engine natively inside of the Spark

runtime with ScamaseW

} t files to disk, hoping that they will remain in the OS buffer cache
- lumnar re pu .
Y In-memory co

W b e bUf €xtra system calls and file system joumali;l

) re-St!ltS aarsy reanCOé/in g R head. In addition, the inability to contro] when buffer caches are
Diction ’ . iability i sks. ’ se ti

¥ In- memory shuffle bet is determined by the Iast task to finish, and thus the increasing vari-

ability leads to long-tail latency, which significantly hyrts shuffle
performance. We modified the shuffie phase to materialj

LI ©UtPuts in memory, with the Option to spill them to disk.
rees o Seals AST [ESeserAoro—
trees into Scala ASTs. It then compIle

to generate JVM bytecode.

ze map

DATA
~ K SQL: RELATIONAL
PROCESSING IN SPARK
SIGMOD 2015

$CMU-DB

15721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/doi/10.1145/2723372.2742797
https://dl.acm.org/doi/10.1145/2723372.2742797

JVM PROBLEMS

Databricks' workloads were becoming CPU bound.

Y Fewer disk stalls becaushl\éfe SSD caching and
adaptive shuffling.

Y Better filtering to skip reading data

They found it difficult to optimize their JV¥based

Spark SQL execution engine further:
Y GC slowdown for heaps larger than 64GB
Y JIT codegemmitations for large methods

$2CMU-DB

15721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

DATABRICKS PHOTON (2022)

Singlethreaded C++ execution engine embedded

iInto Databricks Runtime (DBR) Vil

Y Overrides existing engine when appropriate.

Y Support both Spark's earlier SQL engine and Spark's
DataFrame API.

Y Seamlessly handle impedance mismatch between row
oriented DBR and colururiented Photon.

Accelerate execution of query plans over "raw /
uncuratetfiles in a data lake.

PHOTON: A FAST QUERY ENGINE
FOR LAKEHOUSE SYSTEMS
SIGMOD 2022

$2CMU-DB

15721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://en.wikipedia.org/wiki/Java_Native_Interface
https://dl.acm.org/doi/10.1145/3514221.3526054
https://dl.acm.org/doi/10.1145/3514221.3526054

DATABRICKS PHOTON (2022)

Photon: A Fast Query Engine for Lakehouse Systems

Alexander Behm, Shoumik Palkar, Utkarsh Agarwal, Timothy Armstrong, David Cashman, Ankur
Dave, Todd Greenstein, Shant Hovsepian, Ryan Johnson, Arvind Sai Krishnan, Paul Leventis, Ala
Luszczak, Prashanth Menon, Mostafa Mokhtar, Gene Pang, Sameer Paranjpye, Greg Rahn, Bart

Samwel, Tom van Bussel, Herman van Hovell, Maryann Xue, Reynold Xin, Matei Zaharia
photon-paper-authors@databricks.com
Databricks Inc.

ABSTRACT from SQL to machine learning. Traditionally, for the most demand-
Many organizations are shifting to a data management paradigm ing SQL workloads, enterprises have also moved a curated subset
called the “Lakehouse,” which implements the functionality of struc- of their data into data warehouses to get high performance, gov-
tiired data wareholices An tan of unctructired data lakec Thig ernance and Concurrency. HOWCVCI', thlS two—tier arChiteCture iS

PHOTON: A FAST QUERY ENGINE
FOR LAKEHOUSE SYSTEMS
SIGMOD 2022

$CMU-DB

15721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://en.wikipedia.org/wiki/Java_Native_Interface
https://dl.acm.org/doi/10.1145/3514221.3526054
https://dl.acm.org/doi/10.1145/3514221.3526054
https://twitter.com/andy_pavlo/status/1536843474925981697

DATABRICKS PHOTON

ShareeDisk / Disaggregated Storage

Pulkbased Vectorized Query Processing|

$2CMU-DB

11111 (Spring 2023)

Precompiled Primitives + Expression Fusion
Shufflebased Distributed Query Execution
SortMerge + Hash Joins

Unified Query Optimizer + Adaptive Optimizations

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

SPARK: QUERY EXECUTION

SELECTanguage, MAK/iews)
FROMVikipedia

WHERf#le LIKE "%Pavlo%"
GROUBY 1 ORDERY 2 DESC
LIMIT 100

(0 [0 [[@

Distributed
File System

$2CMU-DB

15721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

SPARK: QUERY EXECUTION

SELECTanguage, MAK/iews)
LOSCI?]U #EMESTOI'Y FRONVvikipedia
——1 1 | UTTIE SIOTE e, : WHERfle LIKE "%Pavlo%"
: GROUBY 1 ORDERY 2 DESC
5 LIMIT 100
Executo :

Executo

Executo

(0 [0 [[@

ictri Stage #1 Stage #2 Stage #3
D_IStrIbUted Partial group By Group Byg,’ Sort, Limit Sort,gLimit
File System

$2CMU-DB

15721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

PHOTON: VECTORIZED QUERY PROCESgﬁ

Photon is a pulbased vectorized engine that uses

precompiled primitives for operator kernels.
Y Converts physical plan into a list of pointers to functions
that perform lowlevel operations on column batches.

Databricks: lts easier to build/maintain a

vectorized engine than a JIT engine.

Y Engineers spend more time creating speciatiegaths
to get closer to JIT performance.

Y With codegenengineers write tooling and observability
hooks instead of writing the engine.

$CMU-DB

15721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

PHOTON: VECTORIZED QUERY PROCESﬁ

EachGetNextinvocation on a Photon operator

produces aolumn batch
Y One or moreolumn vectorsvith aposition listvector.
Y Each column vector includes a null bitmap.

Databricks: Position list vectors performs better
than "active row" bitmap despite indirection.

col0: int32 coll: varchar position list

55 aa 0

0 1
66 || 0 bbb || 0 I 3
77 1 0 22 | 1 /
22 || 1 XA 1

Column Batch

£2CMU-DB e

15721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

PHOTON: VECTORIZED QUERY PROCESﬁ

EachGetNextinvocation on a Photon operator

produces aolumn batch
Y One or moreolumn vectorsvith aposition listvector.
Y Each column vector includes a null bitmap.

Databricks: Position list vectors performs better
than "active row" bitmap despite indirection.

B
active rows < col0:int32 coll: varchar position list
@
0 Lyl 55 |[O aa || 0 1
1 § » 66 |[0 bbb |0 3
0 S+][0 22][1 /
1 o201 XX 1
£2CMU-DB S

15721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

PHOTON: VECTORIZED QUERY PROCESﬁ

EachGetNextinvocation on a Photon operator

produces aolumn batch
Y One or moreolumn vectorsvith aposition listvector.
Y Each column vector includes a null bitmap.

Databricks: Position list vectors performs better
than "active row" bitmap despite indirection.

. col0:int32 coll: varchar position list
55 |[0 aa || 0 1
— 1

active rows

—

—> 66 || O bbb]| 0
» 771l 0 2| 1 /
» 2| 1 XXX| 1

dojump Batch

£2CMU-DB e

15721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

PHOTON: VECTORIZED QUERY PROCESﬁ

EachGetNextinvocation on a Photon operator

produces aolumn batch
Y One or moreolu
Y Each column vec

Databricks: Posi
than "active row"

Rec
ent work confirms oyr conclusions [42]

CE

active rows < col0:int32 coll: varchar position list
o
! 55 || O aa [[O 1
E—{ 66 |[0 oo o T+ 3
=— 7]l o 22 || 1 /
e B | I oA 1

£2CMU-DB e

15721 (Spring 2023)

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

ZED QUERY PROCESSI

n on a Photon operator

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/doi/abs/10.1145/3465998.3466009

