
ADVANCED DATABASE SYSTEMS

Andy Pavlo // 15-721 // Spring 2023

Snowflake

L
e

c
tu

re
 #

2
1

https://15721.courses.cs.cmu.edu/spring2023
http://db.cs.cmu.edu/


15-721 (Spring 2023)

ADMINISTRIVIA

Project #2:
→ Final Submission: Monday May 1st

→ I will send feedback later this week.

Project #3
→ Final Presentations: Friday May 5th @ 5:30pm

DuckDB Guest Lecture (In-Class)
→ Wednesday April 19th @ 2:00pm ET

Amazon Redshift Guest Lecture (In-Class)
→ Wednesday April 26th @ 2:00pm ET 

2

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023


15-721 (Spring 2023)

HISTORICAL CONTEXT

The 2000s saw the rise of several special-purpose 
relational OLAP engines.
→ Vertica, Greenplum, MonetDB, Vectorwise, ParAccel

There many organizations trying to use SQL on top 
of Hadoop/HDFS in the early 2010s.
→ Hive, Presto, Impala, Stinger

All these systems were self-managed / on-prem…

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023


15-721 (Spring 2023)

HISTORICAL CONTEXT

Google's Dremel paper came out in 2011.

Facebook started building Presto in 2012.

Amazon licensed ParAccel in 2011 and released in 
on AWS as Redshift in 2013.

SutterHill VCs recruited two Oracle engineers 
(Dageville, Cruanes) and Vectorwise co-founder 
(Żukowski) to build Snowflake in 2012.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://www.linkedin.com/in/benoit-dageville-3011845
https://www.linkedin.com/in/thierry-cruanes-3927363
https://www.linkedin.com/in/marcinzukowski/


15-721 (Spring 2023)

SNOWFLAKE

Managed OLAP DBMS written in C++.
→ Shared-disk architecture with aggressive compute-side 

local caching.
→ Written from scratch. Did not borrow components from 

existing systems.
→ Custom SQL dialect and client-server network protocols.

Disclaimer: Snowflake sponsored this course in 
Spring 2018. You can watch the guest lecture!

5

THE SNOWFLAKE ELASTIC DATA 
WAREHOUSE
SIGMOD 2016

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://youtu.be/dABd7JQz0A8
https://dl.acm.org/doi/10.1145/2882903.2903741
https://dl.acm.org/doi/10.1145/2882903.2903741


15-721 (Spring 2023)

SNOWFLAKE

Shared-Disk / Disaggregated Storage

Push-based Vectorized Query Processing

Precompiled Primitives

Separate Table Data from Meta-Data

No Buffer Pool

PAX Columnar Storage
→ Supports both proprietary + open-source formats

Sort-Merge(?) + Hash Joins

Unified Query Optimizer + Adaptive Optimizations

6

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023


15-721 (Spring 2023)

SNOWFLAKE: ARCHITECTURE

Data Storage: Cloud-hosted object store
→ Amazon S3, MSFT Azure Store, Google Cloud Storage

Virtual Warehouses: Worker Nodes
→ VM instances running Snowflake software with locally 

attached disks for caching.
→ Customer specifies the compute capacity.
→ Added support for serverless deployments in 2022 (?).

Cloud Services: Coordinator/Scheduler/Catalog
→ Transactional key-value store (FoundationDB)

8

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023


15-721 (Spring 2023)

SNOWFLAKE: EXECUTION ARCHITECTURE

Worker Node (e.g., EC2 Instance)
→ Maintains a local cache of files + columns that previous 

Worker Processes have retrieved from storage.
→ Simple LRU replacement policy.
→ Optimizer assigns individual table files to worker nodes 

based on consistent hashing. This ensures that files are 
only cached in one location.

Worker Process (e.g., Unix Process)
→ Spawned for the duration of a query.
→ Can push intermediate results to other Worker Processes 

or write to storage.

9

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023


15-721 (Spring 2023)

SNOWFLAKE: VECTORIZED QUERY PROCESSING

Snowflake is a push-based vectorized engine that 
uses precompiled primitives for operator kernels.
→ Pre-compile variants using C++ templates for different 

vector data types.
→ Only uses codegen (via LLVM) for tuple 

serialization/deserialization between workers.

Does not rely on shuffle step between stages
→ Worker processes push data to each other.

Does not support partial query retries
→ If a worker fails, then the entire query has to restart.

10

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023


15-721 (Spring 2023)

SNOWFLAKE: WORK STEALING

Optimizer determines which files workers will 
retrieve for processing a query before execution.

When a worker process completes scanning its 
input files, it can request from peer worker 
processes that it scans their files for them.

The requestor always downloads from storage 
instead of the peer to avoid additional burden.

11

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023


15-721 (Spring 2023)

SNOWFLAKE: FLEXIBLE COMPUTE

If a query plan fragment will process a 
large amount of data, then the DBMS 
can temporarily deploy additional 
worker nodes to accelerate its 
performance.

Flexible compute worker nodes write 
results to storage as if it was a table.

12

Source: Libo Wang

TableScan

Filter

HashJoinBuild

HashJoinProbe

Filter

JoinFilter

GroupBy

TableScan

Large
Scan

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://youtu.be/xnuv6vr8USE


15-721 (Spring 2023)

SNOWFLAKE: FLEXIBLE COMPUTE

If a query plan fragment will process a 
large amount of data, then the DBMS 
can temporarily deploy additional 
worker nodes to accelerate its 
performance.

Flexible compute worker nodes write 
results to storage as if it was a table.

12

Source: Libo Wang

Filter

JoinFilter

GroupBy

TableScan

Insert

TableScan

Filter

HashJoinBuild

HashJoinProbe

Filter

JoinFilter

GroupBy

TableScan

TableScan

GroupBy

UnionAll

Scale Out on
Flexible Compute

Materialize 
Result to Storage

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://youtu.be/xnuv6vr8USE


15-721 (Spring 2023)

SNOWFLAKE: DATA STORAGE

Cloud object storage (AWS S3) is slower than local 
disk. And each I/O has higher CPU overhead 
because of HTTPS API calls.

But cloud storage supports fetching offsets from 
files. This allows the DBMS to fetch headers and 
then determine what portions of a file it needs.

Snowflake decided to instead invest heavily on 
building its own caching layer to hide latencies.

14

BUILDING AN ELASTIC QUERY ENGINE 
ON DISAGGREGATED STORAGE
NSDI 2020

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/doi/10.5555/3388242.3388275
https://dl.acm.org/doi/10.5555/3388242.3388275


15-721 (Spring 2023)

SNOWFLAKE: STORAGE FORMAT

Snowflakes (mostly) stores all tables in their 
internal columnar format by breaking them up into 
micropartition files.
→ Immutable files using PAX storage format
→ Original data for each micropartition is 50-500MB but 

these get compressed down to ~16MB per file

Snowflake automatically clusters and re-arranges 
micropartitions in the background based on query 
access patterns.

15

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://docs.snowflake.com/en/user-guide/tables-clustering-micropartitions#clustering-information-maintained-for-micro-partitions


15-721 (Spring 2023)

SNOWFLAKE: STORAGE FORMAT

Snowflake provides custom data types to store
semi-structured data.
→ VARIANT, ARRAY, OBJECT types.

Instead of determining data types of JSON/XML 
fields during reads, the DBMS automatically infers 
format and breaks them out into binary columns.
→ Example: Convert string "2023-04-17" into 4-byte DATE.
→ Always keep the original unparsed data in case the 

inference is incorrect.

16

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023


15-721 (Spring 2023)

SNOWFLAKE: CONSISTENT HASHING

DBMS uses consistent hashing to map 
micropartition files to worker nodes.
→ The mapping is transactional so that all workers are in 

sync on which node is responsible for which files.
→ Ensures query fragments (tasks) that access the same 

micropartition are assigned to same worker nodes.

Allows Snowflake to add new compute nodes 
without changing micropartition assignments
→ Avoid having to wipe all locally cached files.

17

BUILDING AN ELASTIC QUERY ENGINE 
ON DISAGGREGATED STORAGE
NSDI 2020

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://dl.acm.org/doi/10.5555/3388242.3388275
https://dl.acm.org/doi/10.5555/3388242.3388275


15-721 (Spring 2023)

SNOWFLAKE: QUERY OPTIMIZER

Unified Cascades-style top-down optimization.
→ Snowflake refers to their optimizer as the "compiler".

Optimizer checks catalog to identify what 
micropartitions it can prune / skip before the query 
starts executing.
→ Determining how many micropartitions a pipeline will 

access helps determine the complexity of the query.

DBMS also supports query plan hints and runtime 
adaptivity.

18

Source: Jiaqi Yan

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://youtu.be/CPWn1SZUZqE


15-721 (Spring 2023)

SNOWFLAKE: STATISTICS COLLECTION

DBMS maintains statistics for data store in 
Snowflake's proprietary table format.
→ Only simple zone maps. No histograms/sketches.
→ Statistics are in sync with data when using internal file

format (micropartitions).

Table + Micropartitions:
→ # of rows, size in bytes with compression information

Columns:
→ Min/Max, Null/Distinct counts

19

Source: Jiaqi Yan

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://youtu.be/CPWn1SZUZqE


15-721 (Spring 2023)

SNOWFLAKE: PRUNING

Optimizer uses statistics to determine 
what micropartitions to skip.
→ Statistics are cached locally to ensure fast 

evaluation during optimization.

Supports evaluating complex 
expressions during pruning pass.
→ Requires specialized expression evaluators 

that operate on zone map information.
→ Also need to consider null indicators.

20

SELECT * FROM xxx
WHERE col1 + col2 > 1234;

SELECT * FROM xxx WHERE
DATE_TRUNC('YEAR',cdate) = 2023;

SELECT * FROM xxx WHERE
cdate BETWEEN '2023-01-01'

AND '2023-12-31';

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023


15-721 (Spring 2023)

DATABRICKS VS. SNOWFLAKE (2021)

21

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://www.databricks.com/blog/2021/11/02/databricks-sets-official-data-warehousing-performance-record.html


15-721 (Spring 2023)

DATABRICKS VS. SNOWFLAKE (2021)

21

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://www.databricks.com/blog/2021/11/02/databricks-sets-official-data-warehousing-performance-record.html
https://www.snowflake.com/blog/industry-benchmarks-and-competing-with-integrity/


15-721 (Spring 2023)

DATABRICKS VS. SNOWFLAKE (2021)

21

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://www.databricks.com/blog/2021/11/02/databricks-sets-official-data-warehousing-performance-record.html
https://www.snowflake.com/blog/industry-benchmarks-and-competing-with-integrity/
https://www.databricks.com/blog/2021/11/15/snowflake-claims-similar-price-performance-to-databricks-but-not-so-fast.html


15-721 (Spring 2023)

OBSERVATION

Like Dremel and Databricks, Snowflake has the 
problem that the DBMS does not have statistics if 
data files are created outside of the DBMS.
→ Snowflake originally required users to load all data files 

into the DBMS before they can be queried.

Snowflake expanded its architecture to support 
additional methods for ingesting data.
→ Snowpipe (via Apache Arrow)
→ External Tables (2019)
→ Hybrid Tables (2022)

24

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://docs.snowflake.com/en/user-guide/tables-external-intro


15-721 (Spring 2023)

APACHE ICEBERG (2017)

Infrastructure and file format extension
to Parquet for maintaining catalog
about data files in an object store.
→ Keeps track of partitioning, versioning, and schema

changes.
→ Provides catalog service for runtime lookups and pruning 

of meta-data.

Snowflake added support for ingesting, creating, 
and querying Iceberg files in 2021.

25

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023


15-721 (Spring 2023)

SNOWFLAKE HYBRID TABLES (2022)

26

New service called Unistore to support OLTP 
workloads directly in Snowflake
→ Customer declares a table as "hybrid" (row + columnar)
→ Write updates to row-based storage with strong 

transactional guarantees.
→ Background jobs merge them into micropartition files.

OLAP queries retrieve data from row-based and 
columnar storage and then merges the results.

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023
https://resources.snowflake.com/external-content/snowflakes-new-unistore-workload-and-hybrid-tables-demo


15-721 (Spring 2023)

FOUNDATIONDB

Transactional key-value store used
by Snowflake for its catalog service
early in its design.

When Apple bought FoundationDB in 2015, 
Snowflake maintained their own fork.

Apple then open-sourced FoundationDB in 2018 
and works closely with Snowflake dev team.

27

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023


15-721 (Spring 2023)

PARTING THOUGHTS

Snowflake created the roadmap on how to build a 
scalable cloud-based OLAP DBMS as a service.

Andy still considers it a state-of-the-art system but 
there is a lot of things about how it is implemented 
that is not public.

28

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023


15-721 (Spring 2023)

NEXT CLASS

DuckDB Guest Lecture

29

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023

	Introduction
	Slide 1: Snowflake
	Slide 2: ADMINISTRIVIA

	History
	Slide 3: HISTORICAL CONTEXT
	Slide 4: HISTORICAL CONTEXT

	Architecture
	Slide 5: SNOWFLAKE
	Slide 6: SNOWFLAKE
	Slide 8: SNOWFLAKE: ARCHITECTURE
	Slide 9: SNOWFLAKE: EXECUTION ARCHITECTURE
	Slide 10: SNOWFLAKE: VECTORIZED QUERY PROCESSING
	Slide 11: SNOWFLAKE: WORK STEALING
	Slide 12: SNOWFLAKE: FLEXIBLE COMPUTE
	Slide 13: SNOWFLAKE: FLEXIBLE COMPUTE

	Storage
	Slide 14: SNOWFLAKE: DATA STORAGE
	Slide 15: SNOWFLAKE: STORAGE FORMAT
	Slide 16: SNOWFLAKE: STORAGE FORMAT
	Slide 17: SNOWFLAKE: CONSISTENT HASHING

	Optimizer
	Slide 18: SNOWFLAKE: QUERY OPTIMIZER
	Slide 19: SNOWFLAKE: STATISTICS COLLECTION
	Slide 20: SNOWFLAKE: PRUNING

	Benchmarks
	Slide 21: DATABRICKS VS. SNOWFLAKE (2021)
	Slide 22: DATABRICKS VS. SNOWFLAKE (2021)
	Slide 23: DATABRICKS VS. SNOWFLAKE (2021)

	Miscellaneous
	Slide 24: OBSERVATION
	Slide 25: APACHE ICEBERG (2017)
	Slide 26: SNOWFLAKE HYBRID TABLES (2022)
	Slide 27: FOUNDATIONDB

	Conclusion
	Slide 28: PARTING THOUGHTS
	Slide 29: NEXT CLASS


