DuckDB

In-Process Analytical
Database System

-®
Mark Raasveldt DuckDB Labs

Who Am |?

Mark Raasveldt
CTO of DuckDB Labs

Previously at CWI, Database Architectures

$-‘— -~

< - -
e

e TR L T L S

What is DuckDB?

e DuckDB
e In-Process OLAP DBMS
e “The SQLite for Analytics”

e Free and Open Source (MIT)
e duckdb.org

http://duckdb.org

DuckDB

Carnegie Mellon University

Quarantine 2020
o Database Talks

Mark Raasveldt

(DUCkDB, CW')

DuckDB

Jul 8, 2018 - Apr 18, 2023 Contributions: Commits ¥

Contributions to master, excluding merge commits and bot accounts

250
200
150
100

50

October 2019 April July October 2020 Aprii July October 2021 April July October 2022 Aprii July October 2023 April

CMU Talk 2020

DuckDB

Hannes Muhleisen

Richard Wesley

Tania Bogatsch

Tom Ebergen

Alex Monahan

Lars Verdoes

Mark Raasveldt

Laurens Kuiper

Thijs Bruineman

Max Gabrielsson

Marie Wiener

Pedro Holanda

Sam Ansmink

Elliana May

Carlo Piovesan

Alina Stiben

o

System Overview

DuckDB - Overview

Column-Store

Date Store Product Price Customer

Vectorized Processing
Table Result

A

Single-File Storage

4KB 256KB

database.db

ART Index

MVCC

Latest

V2

)
c

. Parser

DuckDB - Vectors

e DuckDB uses a vectorized push-based model

e \ectors flow through the operators

e \ectors are the bread and butter of the engine
e DuckDB has a custom vector format

e Similar to Arrow - but designed for execution

Vectorized Processing

o Co-designed with Velox team Table t Result

DuckDB - Vectors

e \ectors hold data of a single type
e For scalar types vectors are logically arrays
o VectorType determines physical representation

¢ Allows us to push compressed data into the engine!

Vector
Integer

OOk~ PN =

DuckDB - Vectors @

Flat Constant Dictionary Sequence

Uncompressed array All rows have the same value Map of indexes to dictionary Base and increment

2 1 1 b b 2

Base

3 1 O Dict d 3

4 1 0 a 1 4

5 1 1 b Increment 5

Slstosl & Laaiesl Physicl Logical SelectionVector

| Physical Logical Physical Logical

DuckDB - Vectors

e \ectors can be processed as-is (compressed execution)
e Problem: combinatorial explosion!

e Giant code footprint

e Flatten - Convert vector into Flat Vector (i.e. decompress)

e Need to move/copy data around!

e ToUnified - Convert vector to unified format

Flat
Uncompressed array

NGO RN\

5

Physical & Logical

DuckDB - Vectors

Unified Format

Flat

A~ W=

Ol

Physical & Logical

OO b W=

Data

=~ O =0

Selection

Constant Dictionary
1 1 0 1 1
1 1 2 2
1 O Dict 1
1 0 1
1 1 2
SelectionVector
Physical Logical
| Physical Logical
0
1 0 1 0
0 2 1
0 0
0 0
1
Data Selection Data Selection

No data copy or data movement required!

DuckDB - Vectors :

—

— 4 byte —+— 4 byte : 8 byte
short string (length string data

long string (length prefix offset or pointer

e Strings are stored in the same format as Umbra

e 16 bytes

e Short strings are inlined (= 12 bytes)

Umbra: A Disk-Based System with In-Memory Performance

Thomas Neumann, Michael Freitag
Technische Universitat Minchen
{neumann freitagm}@in.tum.de

e Long strings have a prefix + pointer

the Last years, and their
e mecand, Thi

el that dispea
= 1 be kept
of main. memory

2 bandwiceh has increased 10 gigabytes

Ee < the pust years. A modemn 2TB M2 SSD can re
about 3.5 GDYs, while costing amly S, In compasisoa. 2TB of
server DRAM cosix alwar $240 AN e,
olacing eltiple SSDs into oae mackms we ca: get excelient reed
Sandwidths o 0 fractica of the o AM solution.
Becanse of this, Lamel angues that pure in-meemory DBMSS arc
uecanomical |13]. They ofter the best
course, but they do moe seale bayond &
00 expeasive foe most use cases. Combizing large main memory
waflen s with Fast ST, in conteast, i
cost 15 much Jower nd performance caz bs

We whaleheartediy agroe with this notice, and prasent cur novel

ures the best of b

the coched woekieg

a disk-based syster
n U35 paper we proscat ¢
y Hybe

» bandle the out-of-memary ¢4
offering msights intc
system.

Unhra system which sisnultaneossly fe:
wodds: Genuine in-nx
sot, s transparent sc

Aol wd with
] [= e g man ey vt g
1. INTRODUCTION p o HyPe
Hardware traeds greatly affected the developmes: axd evolu . g -
o6 o one scically, £ ess. Umbea is a fully fezctionsl
- the dits wis stred 00 (rotaing) disks, o cely sivall faxtons oral- DAMS that & sctivel 1 fe t
of the data could be kept i RAM iz a beffer poal. As main memeey . J L -

ary perfoemance

. up to terzkytes of RAM, this perspective ted und evalusted witxin this weeking system. While Umbea
be and HyPer share

) design choices Eke 2 oompiling qu

performance sdvunts;
nemory datsbase s;
‘er |9). These

companeats of te system and highlig

epeseary 10 suppart arhitrsry dits

éoes net fit o memary.

er, we curently alserve wo Turdware

wit oo the viahility of pur ¥
RAM sizes are nct increasing significezzly any me

10 0 tnditom! disk-basd syste
the major advantage that they can do away wid
both climizales overhesd and greatl

e sywiems, comenan wisck
with fived-size pages. Howe
ager itsel, it makes using |

sri 25 well as eBowing o : B
he eriginal week in e oeaplex ané expensive mechamisms are thus

and bod qui
over the database i oeder to handle Lirge objects. We ar-

[1] Umbra: A Disk-Based System with In-
Memory Performance

DuckDB - Vectors

e Nested types - important for analytics

e Possible solution: store as blobs or strings

e Slow!
e Nested types are stored recursively using vectors

e Allows for highly efficient processing

¢ Two main nested types: structs and lists

{'item': pants, 'price': 42} [1, 2, 3]

NULL []
{'item': t-shirt, 'price': 20} [4, NULL, 6, 7, 8]
{'item': shoes, 'price': NULL} NULL

DuckDB - Vectors

e Structs store their child vectors and a validity mask

pants 42
B . . {'item': pants, 'price': 42}
t-shirt 20 NULL
shoes : {'item': t-shirt, 'price': 20}
1'item': shoes, 'price': NULL}

Validity item price

DuckDB - Vectors ‘

o Lists are stored as combination of offset/lengths and a child vector

e The child vector can have a different length!

1
struct list entry t { ”
uinté4 t offset; 3
uinté4 t length; 0-13 4
3 _ O | {?ll.’ 2’ 3]
3-9 6 [4, NULL, 6, 7, 8]
7 NULL
8

Offset - Length Child Vector

o

Query Execution

DuckDB - Pull-Based Model

e DuckDB started as a pull-based system
e “Vector Volcano”
e Every operator implements GetChunk
e Query starts by calling GetChunk on the root

e Nodes recursively call GetChunk on children

DuckDB - Pull-Based Model

e Simplified Hash Join Example

void HashJoin::GetChunk(DataChunk &result) {
if ('build finished) {

while(right_child->GetChunk(child_chunk)) {
BuildHashTable(child chunk);
}

build finished = true;

}

left child->GetChunk(child chunk);
ProbeHashTable(child chunk, result);

DuckDB - Pull-Based Model

e Inthis model:
e Single-threaded execution is straightforward

e Multi-threaded not so much...

e |In CURRENT_TIMESTAMP, multi-threaded execution is required!

DuckDB - Parallelism Model

Instance Size vCPU Memory (GIiB)
cba.large 2 4
e AWS instances go up to 192 cores — 4 8
cba.2Zxlarge 8 16
e Multi-threading = potential two-orders of =™) :
magnitude speed-up! e i -
c6a.12xlarge 48 96
c6a.16xlarge 64 128
c6a.24xlarge 96 192
c6a.32xlarge 128 256
c6a.48xlarge 192 384

c6a.metal 192 384

DuckDB - Parallelism Model

192 cores

Multi- Threaded

@ 1 sec
@ 1 min

Single-Threaded

@ > 3 minutes
@ > 3 hours

DuckDB - Parallelism Model

e Exchange operator
e Optimizer splits plan into multiple partitions

e Partitions are executed independently

e Operators do not need to be parallelism aware!

Xchg (3:1)

/ \
\\/

XchgHashSplit(3:3)

DuckDB - Parallelism Model

e (Great for bolting parallelism onto a single-threaded system
e But has many problems!

e Plan explosion

e Load imbalance issues

e Added materialization costs

DuckDB - Parallelism Model

e Morsel driven parallelism
e |ndividual operators are parallelism-aware
e |nput data is distributed adaptively

e Parallelism is not baked into the plan

Morsel-Driven Parallelism: A NUMA-Aware Query
Evaluation Framework for the Many-Core Age

[2014] Morsel-Driven
Parallelism: A NUMA-Aware
Query Evaluation Framework for
the Many-Core Age

Viktor Leis et al.

DuckDB - Pipelines

GROUP BY cid
FIRST (name), SUM(rev+tax)

HASH JOIN
cust.cid=sale.c1d

Pipeline 1 (HT Build)

HASH JOIN
cust.cid=sale.c1d

Scan
sale

Pipeline 2 (HT Probe + Aggregate)

GROUP BY cid
FIRST (name), SUM(rev+tax)
HASH JOIN
cust.cid=sale.cid
Scan
cust

DuckDB - Pull-Based Model

¢ How do we implement this in a pull-based volcano model?

e Everythingis entangled!

void HashJoin::GetChunk(DataChunk &result) {
if ('build finished) {

while(right_child->GetChunk(child_chunk)) {
BuildHashTable(child chunk);
}

build finished = true;

}

left child->GetChunk(child chunk);
ProbeHashTable(child chunk, result);

DuckDB - Push-Based Execution

e Switch to push-based model
e Separate interfaces for sink, source and operator

e Source and sink are parallelism aware!

Source Operator Sink

void GetDatal
DataChunk &chunk, OperatorResultType Execute(

GlobalSourceState &gstate, DataChunk &input,

void Sink(
GlobalSinkState &gstate,
LocalSinkState &lstate,

L LS State &lstate); , .
ocalSourceState &lstate) DataChunk &chunk DataChunk &input):

OperatorState &state);

void Combine(
GlobalSinkState &gstate,
LocalSinkState &lstate):
void Finalize(
GlobalSinkState &gstate);

DuckDB - Pipelines

GROUP BY cid
FIRST (name), SUM(rev+tax)

HASH JOIN
cust.cid=sale.c1d

Pipeline 1 (HT Build)

Sink
HASH JOIN
cust.cid=sale.c1d

Source

Pipeline 2 (HT Probe + Aggregate)

Sink
GROUP BY cid
FIRST (name), SUM(rev+tax)

Operator

HASH JOIN
cust.cid=sale.c1d

Source

DuckDB - Push-Based Execution

e Pull-based: the control flow lives insides the operator
e Very flexible!

e Built on recursive calls - the call stack holds all state
Volcano

void Projection::GetChunk(DataChunk &result) {

child->GetChunk(child_chunk);

if (child chunk.size() == 0) {
return;

I3

HashAggregate: :GetChunk(DataChunk &result)
HashJoin: :GetChunk(DataChunk &result)

Projection: :GetChunk(DataChunk &result)
Table: :GetChunk(DataChunk &result)

executor.Execute(child chunk, result);

}

DuckDB - Push-Based Execution

e Push-based: control flow happens in a central location

e This has a number of advantages

Push-Based

void Projection::Execute(DataChunk &input, DataChunk &result) {
executor.Execute(input, result);

}

PipelineState {

vector<unique_ptr<DataChunk>>

}

DuckDB - Push-Based Execution ‘®

¢ Handling control flow in a central location enables optimizations

Vector Cache Scan Sharing
Add small caches between operators We can push results of one scan

iInto multiple sinks
GROUP BY 1item
SUM(rev+tax)

AGGREGATE
SUM(rev)
FILTER
sale >= 90% GROUP BY item
SUM(rev+tax)
Scan
sale

DuckDB - Push-Based Execution

e Storing state in a central location allows us to pause execution

Backpressure Async I/O
Pa}JSG pipeline when bgﬁer s full Pause pipeline while HTTP request is in progress
Resume when buffer is empty Resume when data is available
BUEFER HASH JOIN
10MB cust.cid=sale.cid

HASH JOIN
cust.cid=sale.c1d

HTTP Scan
sale

o

Storage

DuckDB - Table Storage

e DuckDB uses a single-file block-based storage format
e WAL is stored as a separate file

e Support for ACID using headers

BLOCK_SIZE = 256KB

4K 4K 4K BLOCK_SIZE

HEADER_ONE HEADER_TWO

block id 0 block id 1

DuckDB - Table Storage

e [ables are partitioned into row groups
e Eachrow group has 120K~ rows

e Row groups are the parallelism and checkpoint unit

taxi.db

Row Group 1 Row Group 2

pickup_at dropoff at pickup_at dropoff_at

Rows 0-120K Rows 120K-240K

DuckDB - Table Storage e

e Compression works very well with columnar storage
e Speedsup /O
e Can speed up execution (see vectors!)

e Compression can make data smaller and queries faster

DuckDB - Table Storage

e (General-purpose, heavy-weight compression

e gz1p, zstd, snappy, lLz4

e Finds patterns in bits

e Special purpose, lightweight compression
e RLE, bitpacking, dictionary, FOR, delta, ...

e Finds specific patterns in data

DuckDB - Table Storage

e (General-purpose compression is simple to apply
e \Works great for space saving!
e However...
e Higher (de)compression speed slows down execution

e Need to decompress in bulk - no random seeks or compressed
execution!

DuckDB - Table Storage

e Lightweight compression detects specific patterns
e \Very fast!
e Patterns can be exploited during execution

e Downside: No effect if the patterns are not there!

e We need to implement/use multiple different algorithms

DuckDB - Table Storage

_ Row Group 1
e Compression works per-column per row-group

pickup_at

e Two phases:

e Analyze
e Figure out which compression method is best
e Compress

e Use the best compression method to compress the column

DuckDB - Table Storage

Version

On Time

Lineitem

DuckDB v0.2.8

DuckDB v0.2.9

DuckDB v0.3.2

DuckDB v0.3.3

DuckDB v0.5.0

DuckDB dev

CSV

Parquet (Uncompressed)
Parquet (Snappy)
Parquet (ZSTD)

15.3GB
11.2GB
10.8GB
6.9GB
6.6GB
4.8GB
17.0GB
4.5GB
3.2GB
2.6GB

1.73GB
1.25GB
0.98GB
0.23GB
0.21GB
0.21GB
1.11GB
0.12GB
0.11GB
0.08GB

0.85GB
0.79GB
0.56GB
0.32GB
0.29GB
0.17GB
0.72GB
0.31GB
0.18GB
0.15GB

Uncompressed July 2021
RLE + Constant September 2021
Bitpacking February 2022
Dictionary April 2022

FOR September 2022

FSST + Chimp November 2022

duckdb.org/2022/10/28/lightweight-compression.html

o

Lightning Round

DuckDB - Buffer Manager

e Custom lock-free buffer manager
¢ |nspired by lean-store

e Granularity: 256KB blocks

e [raditional buffer manager functionality:
e Set memory limit
e Pin blocks to fix them in memory

e Unpin blocks to tell the system it is alright to release them

DuckDB - Out-Of-Core

e DuckDB supports larger-than-memory execution
e Streaming engine

e Special join, sort & window algorithms

e Goal: Gracefully degrade performance

e Avoid performance cliff!

Out-Of-Core Hash Join

Memory limit (GB)

10

b N w S O o)) ~ 00 (o)

Time (s)
1.96
1.97
2.22
2.44
2.39
2.32
2.45
3.20
3.28

4.35

DuckDB - Transactions

e DuckDB supports ACID transactions
e Based on HyPer MVCC model
e Optimized for vectorized processing

e DuckDB supports snapshot isolation

e Optimistic concurrency control

¢ Changes to the same rows - transaction abort

Latest

Fast Serializable Multi-Version Concurrency Control
for Main-Memory Database Systems

Thomas Neumann

Tobias Mihlbauer

Alfons Kemper

Technische Universitat Mdnchen
{neumann, muehlbau, kemper}@in.tum.de

ABSTRACT
Multi-Version Concurrency Control (MVCC) is a widely em-
ployed concurrency control mechanism, as it allows for exe-
cution modes where readers never block writers. However,
most systems implement only snapshot isolation (SI) instead
of full serializability. Adding serializability guarantees to ex-
isting SI implementations tends to be prohibifively ezpensive.
We present a novel MVCC implementation for main-mem-
ory database systems that has very little overhead compared
to serial execution with single-version concurrency control,
even when maintaining serializability guarantees. Updating
data in-place and storing versions as before-image deltas in
undo buffers not only allows us to retain the high scan per-
formance of single-version systems but also forms the ba-
sis of our cheap and fine-grained serializability validation
mechanism. The novel idea is based on an adaptation of
precision locking and verifies that the (extensional) writes
of recently committed transactions do not intersect with the
(intensional) read predicate space of a committing transac-
tion. We experimentally show that our MVCC model allows
very fast processing of transactions with point accesses as
well as read-heavy transactions and that there is little need
to prefer SI over full serializability any longer.

Categories and Subject Descriptors

H.2 [Database Management|: Systems

Keywords

Multi-Version Concurrency Control; MVCC; Serializability

1. INTRODUCTION

Transaction isolation is one of the most fundamental fea-
tures offered by a database management system (DBMS). It
provides the user with the illusion of being alone in the da-
tabase system, even in the presence of multiple concurrent
users, which greatly simplifies application development. In
the background, the DBMS ensures that the resulting con-
current access patterns are safe, ideally by being serializable.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita
tian on the first page. Copyrights for components of this wark owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re
publish, to post on servers or to redistribute to lsts, requires prior specific permission
andlor a fee. Request permissions from permissions @ acm, org.

SIGMOD'15, May 31-June 4, 2015, Melbourne, Victoria, Australia.
Copyright is held by the owner/author(s). Publication rights licensed to ACM
ACM 978-1.4503.2758-9/15/05 .. 515.00.
hitp-/idx.doiorg/10.1145/2723372.2749436

Serializability is a great concept, but it is hard to im-
plement efficiently. A classical way to ensure serializability
is to rely on a variant of Two-Phase Locking (2PL) [42].
Using 2PL, the DBMS maintains read and write locks to
ensure that conflicting transactions are executed in a well-
defined order, which results in serializable execution sched-
ules. Locking, however, has several major disadvantages:
First, readers and writers block each other. Second, most
transactions are read-only [33] and therefore harmless from
a transaction-ordering perspective. Using a locking-based
isolation mechanism, no update transaction is allowed to
change a data object that has been read by a potentially
long-running read transaction and thus has to wait until the
read transaction finishes. This severely limits the degree of
concurrency in the system.

Multi- Version Concurrency Control (MVCC) [42, 3, 28]
offers an elegant solution to this problem. Instead of up-
dating data objects in-place, each update creates a new ver-
sion of that data object, such that concurrent readers can
still see the old version while the update transaction pro-
ceeds concurrently. As a consequence, read-only transac-
tions never have to wait, and in fact do not have to use
locking at all. This is an extremely desirable property and
the reason why many DBMSs implement MVCC, e.g., Ora-
cle, Microsoft SQL Server 8, 23], SAP HANA [10, 37], and
PostgreSQL [34]. However, most systems that use MVCC do
not guarantee serializability, but the weaker isolation level
Snapshot Isolation (SI). Under SI, every transaction sees
the database in a certain state (typically the last committed
state at the beginning of the transaction) and the DBMS
ensures that two concurrent transactions do not update the
same data object. Although SI offers fairly good isolation,
some non-serializable schedules are still allowed [1, 2]. This
is often reluctantly accepted because making SI serializable
tends to be prohibitively expensive [7]. In particular, the
known solutions require keeping track of the entire read set
of every transaction, which creates a huge overhead for read-
heavy (e.g., analytical) workloads. Still, it is desirable to
detect serializability conflicts as they can lead to silent data
corruption, which in turn can cause hard-to-detect bugs.

In this paper we introduce a novel way to implement
MVCC that is very fast and efficient, both for SI and for full
serializability. Our SI implementation is admittedly more
carefully engineered than totally new, as MVCC is a well un-
derstood approach that recently received renewed interest in
the context of main-memory DBMSs [23]. Careful engineer-
ing, however, matters as the performance of version main-
tenance greatly affects transaction and query processing. It

MVCC

V1

V2

DuckDB - External Formats

e DuckDB supports querying directly over many formats

e Parquet, CSV, JSON, Arrow, Pandas, SQLite, Postgres, ...

$ duckdb
D FROM lineitem.parquet;

L_comment
varchar

L _shipmode
varchar

L_shipinstruct
varchar

L_suppkey
1nt32

L_orderkey
1nt32

L_partkey
int32

155190 7706 | .. | DELIVER IN PERSON | TRUCK
67310 7311 | .. | TAKE BACK RETURN MAIL
63700 3701 | .. | TAKE BACK RETURN REG AIR

2132 4633 | .. | NONE AIR
24027 1534 | .. | NONE FOB

to beans x-ray car..
according to the ..
ourts cajole above..
s cajole busily ab..
the reqular, regu..

5999975
5999975
5999975
6000000
6000000

71272
6452
37131
32255
90127

2273
1453
2138
2256
6128

COLLECT COD
DELIVER IN PE
DELIVER IN PE
TAKE BACK RET
\[0)\|=

REG AIR
SHIP
FOB
MAIL
AIR

ld deposits aga
ffily along the sly
counts cajole even..
riously pe

pecial excuses nag..

6001215 rows (10

shown)

16 columns (6 shown)

DuckDB - Pluggable Catalog

e DuckDB supports attaching multiple databases and has a fully
pluggable catalog

¢ duckdb
D ATTACH 'sqlite.db' (TYPE sqlite);
D SELECT database_name, path, type FROM duckdb_databases();

database_name path type
varchar varchar varchar

sglite sglite.db sglite

memory NULL duckdb

D USE sqlite;
D CREATE TABLE lineitem AS FROM ‘lineitem.parquet’;
D CREATE VIEW lineitem_subset AS
SELECT l_orderkey, 1l _partkey, Ll _suppkey, 1l _comment FROM lineitem;

$ sqlite3 sqlite.db
sglite> SELECT x FROM lineitem_subset LIMIT 3;

155190 to beans x—-ray carefull
67310 according to the final foxes. quil
63700 ourts cajole above the furiou

DuckDB - Pluggable File System + HT TP/Object Store Reads

e DuckDB has a pluggable file system
e Used for querying over HT TP/S3/object stores

$ duckdb
D LOAD httpfs;
D FROM 'https://github.com/duckdb/duckdb-data/releases/download/v1.0/yellowcab.parquet’;

VendorID | tpep_pickup_datetime | tpep_dropoff_datet.. . | tolls_amount improvement_surcha.. total_amount
int32 varchar varchar varchar varchar varchar

2016-01-01 00:00:00 2016-01-01 00:00:00 e : 8.8
2016-01-01 00:00:00 2016-01-01 00:00:00 - : 19.3
2016-01-01 00:00:00 2016-01-01 00:00:00 - : 34.3
2016-01-01 00:00:00 2016-01-01 00:00:00 e : 17.3

2016-01-01 00:00:00 2016-01-01 00:00:00 - : 8.8

2016-01-01
2016-01-01
2016-01-01
2016-01-01
2016-01-01

2016-01-01
2016-01-01
2016-01-01
2016-01-01
2016-01-01

7.8
13.33
98.8
6.36
NULL

234118 rows

(10 shown)

19 columns (6 shown)

DuckDB - Extensions

e DuckDB offers support for extensions

e Distributed through INSTALL and LOAD commands

e Can be loaded as a shared library

e Many of our core features are implemented as extensions

fts
httpfs
1cu
json

parquet
postgres_scanner
sglite_scanner
substrait

tpcds

tpch

(BUILT-IN)

(BUILT-IN)

(BUILT-IN)

support for Full-Text Search Indexes

support for reading and writing files over a HTTP(S) connection
support for time zones and collations using the ICU library
support for JSON operations

support for reading and writing parquet files

support for reading from a Postgres database

support for reading SQLite database files

support for the Substrait integration

TPC-DS data generation and query support

TPC-H data generation and query support

DuckDB - WASM

- e- DuckDB Shell

€& —> (C @& shell.duckdb.org

DuckDB Web Shell

e DuckDB has a WASM build Database: v0.7.2-dev1987
Package: @duckdb/duckdb-wasm@1.25.1-dev1.0
¢ Runs InSIde the browser Connected to a local transient in-memory database.

Enter .help for usage hints.

e And itis actually fast!
duckdb> SELECT 42;:

DuckDB - Conclusion

e DuckDB is free and open source
e Contributions are welcome!

e We have awebsite - https://duckdb.org/

e Sourcecode-https://github.com/duckdb/duckdb

https://duckdb.org/
https://github.com/duckdb/duckdb

Thanks for having me!

Any questions?

L J &

@duckdb duckdb.org discord.gg/tcvwpjfnZx

http://duckdb.org

