
Parpulse: I/O Service for Modern OLAP
Database System

Yuanxin Cao, Lan Lou, Kunle Li

2
2
2

2Current Status
● 🟠 75% Goal – Build a functional I/O Service

✅ Support reading data from the underlying storage (e.g. S3)

✅ Implement a local cache with different cache policies on the Storage Node for fast data retrieval

✅ Send requests from storage client to storage node

● 🟢 100% Goal – Optimization

✅ Add memory cache for small data

✅ Add more parallelism with async and fine-grained lock

■ Handle 2 requests with the same key at the same time efficiently

■ Pull next data and push current data at the same time

✅ Set up an E2E automatic benchmark pipeline

● 🔥125% Goal – More optimizations…...

✅ Optimize the storage reader for high-performance reading (I/O request merging)

🔲 Develop extra features such as prefetching, kernel bypassing for data reading

3
3
3

3

Architecture

4
4
4

4

Storage Client

5
5
5

5

Storage Client

trait StorageClient

ParpulseStorageClientImpl
(I/O Service Team 1)

IstziioStorageClientImpl
(I/O Service Team 2)

Same basic logics:
● Send request to server and get data back (Parquet)
● Decode Parquert -> Arrow
● Stateless!

6
6
6

6

Mem-Disk Data Store Cache

Fine-grained Lock

Serve Parallel Requests!

7
7
7

7

Sqlite Data Store Cache

1 Parquet ⇔ 1 Sqlite Blob

Cache Key: row_id

8
8
8

8

Benchmark
● Dataset

○ Self-generated parquet files
○ 20 columns each, all floating point numbers (~5500 rows = 1Mb)
○ Two sizes: 1Mb, 100Mb

● Trace file
○ csv file
○ | Arrival Time | File Index |

● Metric
○ E2E time for client and server

● Access Pattern
○ Zipfian

● Machine
○ AWS EC2 (ubuntu 22.04, C5.xlarge → 4vCPU, 8GB memory, 32G disk)

9
9
9

9

Whole process is triggered in GitHub Action!

● No redundant manual effort!

● Stable!

10
10
10

10

Benchmark (1Mb)

11
11
11

11

Benchmark (100Mb)

12
12
12

12

Benchmark (Parallel mix)

13
13
13

13

Discoveries

● Server time (Server E2E time, including polling data from S3, storing it into local cache,

return receiver channel) decreases significantly when cache hits

● Bottleneck

○ Big data: data transfer

○ Small data: HTTP setup

● When there are too many requests at the same time

○ Data transfer time will be long → B/W not enough

○ If TOO MANY → Wait time will be long → server cannot handle, requests stuck in

client

14
14
14

14

Benchmark
Trace Average time

(ms)
Network
Time (ms)

Server
Time
(ms)

Data
Transfer
Time (ms)

Decode
Time
(ms)

Result
Link

1m 105.569877 45 34 2 21 link

100m 5913.843632 714 631 2668 1862 link

Parallel 1958.889723 1168 162 320 182 link*

Serial 765.985548 40 244 63 409 link

100m trace for multiple runs: 5.924315929s, 6.683559418s, 6.004198074s (6-7s)
* From benchmark result, it is parallel test, but we wrongly set the commit message : (

https://github.com/cmu-db/15721-s24-cache-benchmark/actions/runs/8925125383/job/24513530464
https://github.com/cmu-db/15721-s24-cache-benchmark/actions/runs/8924939625/job/24512510360
https://github.com/cmu-db/15721-s24-cache-benchmark/actions/runs/8924839741/job/24512134211
https://github.com/cmu-db/15721-s24-cache-benchmark/actions/runs/8924718751/job/24511731554

15
15
15

15

Benchmark

● Where we get our result:

https://github.com/cmu-db/15721-s2

4-cache-benchmark/actions/workflow

s/benchmark_group_1.yml

https://github.com/cmu-db/15721-s24-cache-benchmark/actions/workflows/benchmark_group_1.yml
https://github.com/cmu-db/15721-s24-cache-benchmark/actions/workflows/benchmark_group_1.yml
https://github.com/cmu-db/15721-s24-cache-benchmark/actions/workflows/benchmark_group_1.yml

16
16
16

16

Avg Server Time: 1.795651s

Single 100M Request Parallel Multiple 100M
Request

Server Time: 1.663519s

(screenshot from serial trace)

All requests are
cache miss!
(timestamp unit: ms,
arrive time for each
request)

Fanout cache num = 3 link

Avg Server Time: 2.053836s
Fanout cache num = 1 link

https://github.com/cmu-db/15721-s24-cache-benchmark/actions/runs/8924410541/job/24510753221
https://github.com/cmu-db/15721-s24-cache-benchmark/actions/runs/8925552015/job/24514518669

17
17
17

17

 Memory Cache Basic Server Logic

● > 10 mb (large file) -> disk
● <= 10 mb (small file) -> memory
● don’t need to send extra S3

request to get size
● eviction -> write to disk cache

● First get from cache -> hit?
● If hit, read & return
● If miss, …

○ put data to cache
■ poll from s3
■ write data to cache

○ get data from cache again
○ return receiver channel

 Disk Cache
Server Time

18
18
18

18

Fine-grained Lock + Unlock Disk Manager

write read evict

● Write & Write: Complete Status for keys + notify waiters
○ “status_of_key”: hashmap with completed/uncompleted status for each key
○ when requests come into put_data, see uncompleted, sleep to be notified
○ see nothing, insert incompleted, put_data, then notify all waiters

● Get & Put Atomicity: Get -> Put (but data in cache) -> Get (but data evicted)
○ status_of_keys also record all the keys in mem_replacer + disk_replacer
○ when requests come into put_data, see completed, pin data, directly return

19
19
19

19

Fine-grained Lock + Unlock Disk Manager

write read evict

● Evict & Read: pin & unpin data in replacer
○ Pin data when using (transfer to network, between put & get)

● Write & Evict: correctly update “status_of_keys”
○ Mem evict: lock “status_of_keys”
○ Disk evict: remove from “status_of_keys”

● Write & Read: First write to cache, then write to replacer
○ no need to lock replacer when writing data to mem/disk
○ if putting to replacer fails, then clean the mem/disk
○ “optimistic put”

20
20
20

20

Other Optimizations

● Fanout Cache (Benchmark is set to 9)

● Write current data to disk and poll next data from S3 at the same time

21
21
21

21

Code Coverage Report

22
22
22

22

Future work

● Predicate pushdown to storage node

● Kernel bypass when reading data (io_uring)

● Eliminate disk I/O on Storage Client

● Network improvement…

Thank You!

