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2Current Status
● 🟠 75% Goal – Build a functional I/O Service

✅ Support reading data from the underlying storage (e.g. S3)

✅ Implement a local cache with different cache policies on the Storage Node for fast data retrieval

✅ Send requests from storage client to storage node

● 🟢 100% Goal – Optimization

✅ Add memory cache for small data

✅ Add more parallelism with async and fine-grained lock

■ Handle 2 requests with the same key at the same time efficiently

■ Pull next data and push current data at the same time

✅ Set up an E2E automatic benchmark pipeline

● 🔥125% Goal – More optimizations…...

✅ Optimize the storage reader for high-performance reading ( I/O request merging)

🔲 Develop extra features such as prefetching, kernel bypassing for data reading
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Architecture
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Storage Client
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Storage Client

trait StorageClient

ParpulseStorageClientImpl 
(I/O Service Team 1)

IstziioStorageClientImpl   
(I/O Service Team 2)

Same basic logics:
● Send request to server and get data back (Parquet)
● Decode Parquert -> Arrow
● Stateless!
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Mem-Disk Data Store Cache

Fine-grained Lock

Serve Parallel Requests!
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Sqlite Data Store Cache

1 Parquet ⇔ 1 Sqlite Blob

Cache Key: row_id
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Benchmark
● Dataset

○ Self-generated parquet files
○ 20 columns each, all floating point numbers (~5500 rows = 1Mb)
○ Two sizes: 1Mb, 100Mb

● Trace file
○ csv file
○ | Arrival Time | File Index |

● Metric
○ E2E time for client and server

● Access Pattern
○ Zipfian

● Machine
○ AWS EC2 (ubuntu 22.04, C5.xlarge → 4vCPU, 8GB memory, 32G disk)
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Whole process is triggered in GitHub Action!

● No redundant manual effort!

● Stable!
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Benchmark (1Mb)
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Benchmark (100Mb)
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Benchmark (Parallel mix)
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Discoveries

● Server time (Server E2E time, including polling data from S3, storing it into local cache, 

return receiver channel) decreases significantly when cache hits

● Bottleneck

○ Big data: data transfer

○ Small data: HTTP setup

● When there are too many requests at the same time

○ Data transfer time will be long → B/W not enough

○ If TOO MANY → Wait time will be long → server cannot handle, requests stuck in 

client
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Benchmark
Trace Average time 

(ms)
Network 
Time (ms)

Server 
Time 
(ms)

Data 
Transfer 
Time (ms)

Decode 
Time 
(ms)

Result 
Link

1m 105.569877 45 34 2 21 link

100m 5913.843632 714 631 2668 1862 link

Parallel 1958.889723 1168 162 320 182 link*

Serial 765.985548 40 244 63 409 link

100m trace for multiple runs: 5.924315929s, 6.683559418s, 6.004198074s (6-7s)
* From benchmark result, it is parallel test, but we wrongly set the commit message : (

https://github.com/cmu-db/15721-s24-cache-benchmark/actions/runs/8925125383/job/24513530464
https://github.com/cmu-db/15721-s24-cache-benchmark/actions/runs/8924939625/job/24512510360
https://github.com/cmu-db/15721-s24-cache-benchmark/actions/runs/8924839741/job/24512134211
https://github.com/cmu-db/15721-s24-cache-benchmark/actions/runs/8924718751/job/24511731554
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Benchmark

● Where we get our result: 

https://github.com/cmu-db/15721-s2

4-cache-benchmark/actions/workflow

s/benchmark_group_1.yml 

https://github.com/cmu-db/15721-s24-cache-benchmark/actions/workflows/benchmark_group_1.yml
https://github.com/cmu-db/15721-s24-cache-benchmark/actions/workflows/benchmark_group_1.yml
https://github.com/cmu-db/15721-s24-cache-benchmark/actions/workflows/benchmark_group_1.yml
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Avg Server Time: 1.795651s

Single 100M Request Parallel Multiple 100M 
Request

Server Time: 1.663519s

(screenshot from serial trace)

All requests are 
cache miss!
(timestamp unit: ms, 
arrive time for each 
request)

Fanout cache num = 3 link

Avg Server Time: 2.053836s
Fanout cache num = 1 link

https://github.com/cmu-db/15721-s24-cache-benchmark/actions/runs/8924410541/job/24510753221
https://github.com/cmu-db/15721-s24-cache-benchmark/actions/runs/8925552015/job/24514518669


17
17
17

17

 Memory Cache  Basic Server Logic

● > 10 mb (large file) -> disk
● <= 10 mb (small file) -> memory
● don’t need to send extra S3 

request to get size
● eviction -> write to disk cache 

● First get from cache -> hit?
● If hit, read & return
● If miss, …

○ put data to cache
■ poll from s3
■ write data to cache

○ get data from cache again
○ return receiver channel

 Disk Cache
Server Time
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Fine-grained Lock + Unlock Disk Manager

write read evict

● Write & Write: Complete Status for keys + notify waiters
○ “status_of_key”: hashmap with completed/uncompleted status for each key
○ when requests come into put_data, see uncompleted, sleep to be notified
○ see nothing, insert incompleted, put_data, then notify all waiters

● Get & Put Atomicity: Get -> Put (but data in cache) -> Get (but data evicted)
○ status_of_keys also record all the keys in mem_replacer + disk_replacer
○ when requests come into put_data, see completed, pin data, directly return
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Fine-grained Lock + Unlock Disk Manager

write read evict

● Evict & Read: pin & unpin data in replacer
○ Pin data when using (transfer to network, between put & get)

● Write & Evict: correctly update “status_of_keys”
○ Mem evict: lock “status_of_keys”
○ Disk evict: remove from “status_of_keys”

● Write & Read: First write to cache, then write to replacer
○ no need to lock replacer when writing data to mem/disk
○ if putting to replacer fails, then clean the mem/disk
○ “optimistic put”



20
20
20

20

Other Optimizations

● Fanout Cache (Benchmark is set to 9) 

● Write current data to disk and poll next data from S3 at the same time
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Code Coverage Report
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Future work

● Predicate pushdown to storage node

● Kernel bypass when reading data (io_uring)

● Eliminate disk I/O on Storage Client

● Network improvement…



Thank You!


