
ISTZIIO
Final Update



Core Idea

Do we have 
cache?

request_data

Distributed hash slot mapping

Other does: Go ask them

Yes: Here’s the file

No: Fetch from S3 and here you 

go



Goals

Phase 1 (75% goal): Implement the single-node version with correct functionalities. 

Phase 2 (100% goal): Distributed cache, Benchmark [Finished]

Phase 3 (125% goal) : Predicate pushdown, advanced caching, advanced 
load-balancing, more APIs, etc 



Testing Correctness

- Unit test
- CI/CD setup
- Have ran benchmarks a lot of times



Code Quality Discussion

Strong:
- Core client logic (from request to record batches)
- Trust on redis and tokio
- Simple and correct distributed logic

More work to do:
- Local benchmark 
- Profiling



Code Quality Discussion



Benchmark Design - setting



Benchmark Design - setting



Benchmark environment

● Instance:  C5.xlarge (both server and client)
● Cache capacity: 1GB
● Avg. ping: 124 ms
● Bandwidth: 2.5 Gbps



Benchmark Design - workload







Result - single server instance

Trace Avg. Response File Fetch Decoding Server Time*

1MB 116.6 ms +8% 94.9 ms 20.5 ms 30.25ms

100MB 14203.6 ms +104% 10944.1 ms 1919.8 ms 532.475ms

Parallel 2508.5 ms +13% 2301.5 ms 191.1 ms 60.3 ms

Serial 1055.1 ms +2% 556.1 ms 427.5 ms 452ms

*approximated



Result - three server instance

Trace Avg. Response File Fetch Decoding Server time*

1MB 121.5 ms 94.9 ms 20.2 ms 27.25ms

100MB 9572.5 ms 7962.5 ms 1950 ms 502.475ms

Parallel 2648.6 ms 2056.7 ms 188.1ms 56.3 ms

Serial 1021.7 ms 904.9 ms 667 ms 407ms

*approximated



Finding–Client side network bottleneck 

~13 s 1 server machine & 1 client machine

~5 s 1 server machine & 3 client machine



Finding–HTTP Redirection pitfall 

Send request

Redirect to 
node 3

Actual file

Send request again

Expectation



Finding–HTTP Redirection pitfall 

Send request

Redirect to 
node 3

Actual file

Send request again

TrafficTraffic!

Reality



Future Direction

- More efficient architecture: client side cache for routing(almost complete!)
- Streaming between client and server
- lockfree lru on server side or dynamic tuning hash bucket size or steal from 

other bucket
- More control over the scheduling of the request threads other than relying on 

tokio
- Bring back auto scaling


