ISTZIIO

Final Update



Core Idea

| request_data

Do we have
cache?
Other does: Go ask them ~_|
Yes: Here’s the file —

No: Fetch from S3 and here you

VAR

]
(]

o

. = .

go

Distributed hash slot mapping




Goals

Phase 1 (75% goal): Implement the single-node version with correct functionalities.

Phase 2 (100% goal): Distributed cache, Benchmark [Finished]

Phase 3 (125% goal) : Predicate pushdown, advanced caching, advanced
load-balancing, more APls, etc



Testing Correctness

- Unit test
- CI/CD setup
- Have ran benchmarks a lot of times



Code Quality Discussion

Strong:
- Core client logic (from request to record batches)
- Trust on redis and tokio
- Simple and correct distributed logic

More work to do:
- Local benchmark
- Profiling



Code Quality Discussion

error: failed to publish to registry at https://crates.io

Caused by:
the remote server responded with an error (status 429 Too Many Requests): You have publi
shed too many versions of this crate in the last 24 hours




Benchmark Design - setting

@ Start self-hosted EC2r... 1m 10s

@ start self-hosted EC2 run... 59s

Matrix: Start self-hosted EC2 ...
@ start self-hosted EC2 run... 59s

@ start self-hosted EC2 ru... 1m 2s

@ sStart the ISTZIIO server 3m 15s

@ Run Benchmark

@ start the Parpulse server 5m 51s

@ Run Benchmark 5m 47s

@ Sstop self-hosted EC2 runner 9s

@ Stop self-hosted EC2 runner 5s




Benchmark Design - setting

@ start self-hosted EC2 ru... @ start the ISTZIIO serve... @ Sstop self-hosted EC2 runn... 12s
@ start self-hosted EC2 ru... @ sStart the ISTZIIO serve...

@ start self-hosted EC2 ru... @ start the ISTZIIO serve...

@ start self-hosted EC2 ru... @ Run Benchmark




Benchmark environment

Instance: C5.xlarge (both server and client)
Cache capacity: 1GB

Avg. pilng: 124 ms

Bandwidth: 2.5 Gbps



Benchmark Design - workload



15000

10000

5000

B 1sTzIIO @ Parpulse

1 MB

100 MB

trace

Mixed

Sequential



I/O time

15000

10000

time (ms)

5000

1 MB

100 MB

trace

M 1sTZIO W Parpulse

Mixed

Sequential



Result - single server instance

Trace
1MB
100MB
Parallel

Serial

Avg. Response
116.6 ms
14203.6 ms
2508.5 ms

1055.1 ms

@ Start self-hosted EC2 ... 1m 10s

@ start self-hosted EC2 run... 59s

File Fetch

94.9 ms

10944.1 ms

2301.5 ms

556.1 ms

@ start the ISTZIIO server 3m

@ Run Benchmark

Decoding Server Time*
20.5ms 30.25ms
1919.8 ms 532.475ms
191.1 ms 60.3 ms
427.5 ms 452ms

15s @ stop self-hosted EC2 runner 9s

*approximated



Result - three server instance

Trace Avg. Response File Fetch Decoding Server time*
1MB 121.5 ms 94.9 ms 20.2 ms 27.25ms
100MB 9572.5 ms 7962.5 ms 1950 ms 502.475ms
Parallel 2648.6 ms 2056.7 ms 188.1ms 56.3 ms
Serial 1021.7 ms 904.9 ms 667 ms 407ms

@ start self-hosted EC2 ru... 1m 0s @ start the ISTZIIO serve... 3m 24s @ Stop self-hosted EC2 runn... 12s

@ start self-hosted EC2 ru... 1m 8s @ start the ISTZIIO serve... 3m 265

@ start self-hosted EC2 ru... 1m 9s @ Start the ISTZIIO serve... 3m 47s

@ start self-hosted EC2 ru... 1m 3s @ Run Benchmark

*approximated




Finding—Client side network bottleneck

~1 3 S 1 server machine & 1 client machine

N

~5 S 1 server machine & 3 client machine



Finding—HTTP Redirection pitfall

Send request Expectation
>
end request again
>
Redirect to
node 3

Actual file



Finding—HTTP Redirection pitfall
Reality

Send request Send request again

Redirect to
node 3

Actual file



Future Direction

- More efficient architecture: client side cache for routing(almost complete!)

- Streaming between client and server

- lockfree Iru on server side or dynamic tuning hash bucket size or steal from
other bucket

- More control over the scheduling of the request threads other than relying on
tokio

- Bring back auto scaling



