
Catalog Service Team - 1
Final Project Update

The Catalog Service

Architecture

Using RocksDB

● Concurrency Control

● Flexibility

● Scalability

● Supports high-frequency reads

Using Axum

● Asynchronous Capabilities

● Scalability and Minimal Overhead

● Build on top of Tokio and Hyper

Testing

● Unit test coverage: 84% ✔
● Performance Testing

○ Support for multiple clients ✔
○ Mixed Workloads ✔
○ Large Schema or Datasets 𐄂

Performance Testing Results

Latency and Throughput

Operation Mean Latency Throughput

Get namespace 182.686µs 50.10

Get table 159.402µs 50.10

List Namespace 188.989µs 50.10

List Tables 267.312µs 50.10

Random requests 129.312µs 50.02

Latency - Get Namespace

Milestones

● ✅ 75%: Basic API support

● ✅100%: Support for concurrent requests

● 125% (targetted) : Performance test against Iceberg

Catalog

● ✅Actual completion: Performance testing

(Thanks to Catalog Team 2 for the benchmarking script)

Future Work

- Support for true parallelism using thread pool
- Performance tuning of RocksDB
- Add Regression Tests
- Test with large Schema or Datasets

\

Thank you

