Catalog Service Team - 1
Final Project Update

The Catalog Service

ARCHITECTURE OVERVIEW
‘li_"‘i_t_. Front-end {L -

Intermediate
Representation

Database Binder

Meta-Data Planner Rewriter

Optimizer + Cost Models

C ll) Intermediate
at g Representation

Lomggrr:; SCheduler

s Plan Fragments
Statistics

Data Discovery

Execution Engine

Data

Architecture
[
|

database Config file
interaction layer

Catalog

data model service layer

Catalog
controller layer config

retrieve

RocksDB

Using RocksDB

Concurrency Control

Flexibility

Scalability

Supports high-frequency reads _4 ‘

Using Axum

e Asynchronous Capabilities

e Scalability and Minimal Overhead %

e Build on top of Tokio and Hyper

Testing

e Unit test coverage: 84% v/
e Performance Testing

o Support for multiple clients ¢/
o Mixed Workloads v

o Large Schema or Datasets x

Performance Testing Results

Latency and Throughput

Operation Mean Latency Throughput
Get namespace 182.686us 50.10
Get table 159.402us 50.10
List Namespace 188.989us 50.10
List Tables 267.312us 50.10
Random requests 129.312us 50.02

Latency - Get Namespace

Vegeta Plot Vegeta Plot

{ms)

Latency

Download as PNG Download as PNG

Milestones

W 75%: Basic API support

W 100%: Support for concurrent requests

125% (targetted) : Performance test against Iceberg
Catalog

W Actual completion: Performance testing

(Thanks to Catalog Team 2 for the benchmarking script)

Future Work

Support for true parallelism using thread pool
Performance tuning of RocksDB

Add Regression Tests

Test with large Schema or Datasets

Thank you

