Catalog Service Team - 1
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Using RocksDB

Concurrency Control

Flexibility

Scalability

Supports high-frequency reads  _4 ‘




Using Axum

e Asynchronous Capabilities

e Scalability and Minimal Overhead %

e Build on top of Tokio and Hyper



Testing

e Unit test coverage: 84% v/
e Performance Testing

o Support for multiple clients ¢/
o Mixed Workloads v

o Large Schema or Datasets x



Performance Testing Results



Latency and Throughput

Operation Mean Latency Throughput
Get namespace 182.686us 50.10
Get table 159.402us 50.10
List Namespace 188.989us 50.10
List Tables 267.312us 50.10
Random requests 129.312us 50.02
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Milestones

W 75%: Basic API support

W 100%: Support for concurrent requests

125% (targetted) : Performance test against Iceberg
Catalog

W Actual completion: Performance testing

(Thanks to Catalog Team 2 for the benchmarking script)



Future Work

Support for true parallelism using thread pool
Performance tuning of RocksDB

Add Regression Tests

Test with large Schema or Datasets



Thank you



