\'|‘% Gungnir

Y Patrick Wang, David Guo, Alexis Schlomer

Previously, on Gungnir

Goal: Estimate query run time statically.

Recioe | 7) |
e c I pe 8 @ Physical Plan : b : Logical Plan
=] OPTD]

1. Extract Statistcs T x77

2. Estimate Cardinality

3. Infer Query Cost @ @ :
oA = : CARDINALITY ESTIMATION
'

ADAPTOR \

—_—

"4: Done, . : Doing,): Not Started Today

75% 100% 125%

T-Digest Parallelize T-Digest)

HLL [Y4 McVs HLL X Mmcvs X
Group Cardinality
Caching X
Filter (% Limit Join (%4 Aggregation
Cardinality Cardinality
Semantic Correlation
X

Getting TPC-H Cardinality

to run

benchmarking

—_—

{"4: Done, _ : Doing,){: Not Started Tod ay

75% 100% 125%

T-Digest Parallelize T-Digest

HLL %4 MCVs HLL {4 MCVs
Group Cardinality
Caching
Filter ("3 Limit Join [Y4 Aggregation
Cardinality Cardinality
Semantic Correlation

Getting TPC-H Cardinality

to run benchmarking

Statistics

Motivation: processors are not getting faster!

1. Building statistics is CPU bound.
2. OLAP systems must support

+16 PB of data (Redshift).
Solutions:
1. Sampling (ex. only use 1% of data).
2. Parallel sketching algorithms.

= OUR FOCUS!

42 Years of Microprocessor Trend Data

A
N4
Y

7 - -
10 = Transistors
& S (thousands)
106 - : AA A N
A A ‘A ® .
10° ‘u:h s Single-Thread
s qo,:," Performance _
10* o s 00?70 | (SpecINT x 10%)
AA ‘A‘A
oo | e ..c;\g,l!*“-‘ A | Frequency (MHz)
. .
i F * Typical Power
102 ™ = 2.. & .v- v "'";v' .‘;‘"v"‘*. :0: 41 (Watts)
1 5 - o 4 ¥y B T ¢ Number of
10° 1 v R ¥R 7 -
A s = . : Logical Cores
Y o a = Y v Y5V ew P *
10° —‘ . . o B 0o W nm wmenonn oo .
L L L L
1970 1980 1990 2000 2010 2020

Year

Original data up 1o the year 2010 collected and plotted by M. Horowitz, F. Labonte, O, Shacham, K, Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2017 by K. Rupp

v
Output

A new ANALYZE paradigm: fold-reduce associativity!

e Goal 1: inter-node parallelism. @
e Goal 2: intra-node parallelism. ‘ b
Reduce Reduce
e Goal 3: flexible linear scaling w/ nodes. - -
= B @ W
Problems: -
ZSRONCHNO
1. How/on what do you combine?
2. Arrow poorly exploits parallelism! ‘\® b
Reduce Reduce
Identity‘(b Identity‘(‘E
value value

Statistics

Roadmap: unleashing the power of modern processors.

1. Find sketches that satisfy the fold fold/reduce paradigm: HLL (n-distinct),
TDigest (distribution), MisraGries (most-common-values).

2. Implement these algorithms from scratch.

3. Expose more parallelism from Arrow to have parallel scanners.

4. Rely on a modular thread-pool to split the tasks into smaller jobs (Rayon).

Results: single node +10 Gbps throughput (on SOTA hardware).

or... +1PB/day with only 10 nodes.

Cardinality Formulas

- Filter selectivity
- tl.colA [=, 5#, <, <, >, =] constant
- AND/OR/NOT
- colA IN (“advanced”, “database”, “systems”)
- colA LIKE “%abc%” using MCVs
- CAST

- Join selectivity
- Join types (Inner, Outer, Cross)
- Join conditions vs. join filters
- tl.colA = t2.colB vs. tl.colA < 2
- Detects semantic correlation

- Aggregation, Limit

Detect Semantic Correlation

These are the SAME

column t id = mi.tid

t1d—mc tid |

/\

Detect Semantic Correlation

Conceptually, it's a
‘multi-equality”

N t.id = mi.tid = mc.tid

N\

t mc mi

Detect Semantic Correlation

By contrast, these are
NOT the same N

mc.kid = mk.1id

mc id = mc.mid k

/\

%
Detect Semantic Correlation |
Y

Semantic correlation distinguishes between
these two cases

N mc.kid = mk.1id

N t.id = mi.tid = mc.tid / \
‘ \ mc.id = mc.mid mk

t me mi / \

&
Detect Semantic Correlation |
Y

This one feature decreased our Q-Error on
JOB by 100x

N mc.kid = mk.1id

N t.id = mi.tid = mc.tid / \
‘ \ mc.id = mc.mid mk

t me mi / \

[} [l - - - \ %
Adaptivity through Group Cardinality Caching
v

- JOB-light Q27a Q-Error: 10k — 600, 17x
SELECT *
FROM title t,

movie_info mi,

movie_companies mc,

cast_info ci,

movie_keyword mk
WHERE t.id=mi.movie_id P T h

AND t.id=mc.movie_id yslf,ﬁ,‘d;éqte"

AND t.id=ci.movie id Cast { cast_to: Int64, expr: #2 }

. .. 7084(164)
AND t.id=mk.movie_1id cost: weighted=45420266.24 |row_cnt=21.63|compute=40896336.24,10=4523930.00
AND ci.role id=2 PhysicalScan { table: movie_keyword, cost: weighted=4523930.00,row_cnt=4523930.00,

AND mi.info_type_1id=16 . -
AND t.production_year>2000 |S 414 rows in reallty

AND t.production_year<2010 We underestimate by 20x
AND mk.keyword_id=7084%;

Adaptivity through Group Cardinality Caching

Y
- JOB-light Q27a Q-Error: 10k — 600, 17x SELECT =
FROM movie_keyword mk

SELECT =* WHERE mk.keyword_id=7084;
FROM title t,

movie_info mi, Run this first!

movie_companies mc,

cast_info ci,

movie_keyword mk
WHERE t.id=mi.movie_id e —

AND t.id=mc.movie_id ysz;zd;éq o

AND t.id=ci.movie id Cast { cast_to: Int64, expr: #2 }

° : = 7084(164)
AND t.id=mk.movie_ 1id cost: weighted=45420256.20|r'ow_cnt=414.%Icompute=40896327.20,io=4523929.00
AND ci.role id=2 PhysicalScan { table: movie_Keyword, cost. weighted=4523929.00,row_cnt=4523929.00,

AND mi.info_type_id=16 . .
AND t.production_year>2000 No Ionger undereStlmatlng

AND t.production_year<2010 Leads to 17x better Q-Error
AND mk.keyword_id=7084%;

Results - Cardinality Estimation Accuracy

TPC-H (SF1) JOB*
PG Optd PG Optd
Better | 1 3 # Better | 21 39
Tied 9 9 #Tied | 33 33
p50 3.50 1.00 p50 209.33 | 80.00
p90 1203.0 | 100.00 p90 8546.2 | 128548
p99 1517.5 | 31250 p99 42963 | 4.0e11

operator variety

Shows we do well in...

complex predicates

JOB-light
PG Optd
Better | 7 51
Tied 0 0
p50 5.73 3.10
p90 69.31 13.28
p99 7887.4 | 73821

pure join estimation

*with stats from Python csv2parquet script

A

-
. . NIr
Detect Semantic Correlation |
Y
Solution: Keep track of equal columns as a group’s
logical property with Union-Find E ig - mé mig

{mc.mid, mi.mid} / \

{mc.mid, mi. m1d}N
mc.mid = mi.mid

N

A

-
. . NIr
Detect Semantic Correlation |
Y
Solution: Keep track of equal columns as a group’s
logical property with Union-Find J1E: ﬂ - mé mig L

{mc.mid, mi.mid, t.id} / \

{mc.mid, mi. m1d}N
mc.mid = mi.mid

N

Detect Semantic Correlation

Solution: Keep track of equal columns as a group’s
logical property with Union-Find N t.id

t.1d
{mc.mid, mi.mid, t.id} /////////

{mc.mid, mi.mid}N . ..
mc.mid = mi.mid

Wk *

P
Y
mi.mid
MC.Mid <
t

Selectivity Adjustment Factor

s.t. total selectivity = 1 / (product of # distinct of N - 1 most selective columns)

Benchmarking

- Made TPC-H and JOB queries not crash opt-d
- internal repr for more data types and exprs
- Robust, fast, and easy-to-use framework

- Ergonomic CLI and detailed output
- Robust caches for data+queries, truecard, optd stats, and pgdata
- Compatible with Postgres in a container or a different machine

Getting TPC-H, JOB, JOB-light to run

Getting TPC-H, JOB, JOB-light to not crash optd

- More data types
Various Int types
Date
Serialized
IntervalMonthDateNano

- More expressions
Like
InList
Cast

Result: 13 / 22 for TPC-H, 93 / 113 for JOB, 58 / 70 for JOB-light

Row count with EXPLAIN

Display estimated cost with EXPLAIN VERBOSE

PhysicalSort
exprs:SortOrder { order: Desc }
L—#m
cost: weighted=34061549.96,row_cnt=25.00, compute=26400304.96,10=7661245.00
PhysicalProjection { exprs: [#0, #1 1, cost: weighted=34061466.46,row_cnt=25.00,compute
=26400221.46,10=7661245.00 }
L PhysicalAgg
— aggrs:Agg(Sum)
L— Mmul
#0
Sub
1
#1
— groups: [#2]
—— cost: weighted=34061465.16,row_cnt=25.00,compute=26400220.16,10=7661245.00
L— PhysicalProjection { exprs: [#@, #1, #2 1, cost: weighted=34055530.75, row_cnt=1
00.34,compute=26394285.75,10=7661245.00 }
L— PhysicalProjection { exprs: [#O, #1, #4, #5, #6 1, cost: weighted=34055523.
65, row_cnt=100.34, compute=26394278.65,10=7661245.00 }
L— PhysicalProjection { exprs: [#2, #3, #5, #6, #7, #8, #9 1, cost: weight
ed=34055512.50, row_cnt=100.34, compute=26394267.50,10=7661245.00 }
L— PhysicalProjection { exprs: [#O, #3, #4, #5, #6, #7, #8, #9, #10, #
11 1, cost: weighted=34055497.30, row_cnt=100.34,compute=26394252.30,10=7661245.00 }
L— PhysicalProjection { exprs: [#1, #2, #4, #5, #6, #7, #8, #9, #1
0, #11, #12, #13 1, cost: weighted=34055476.02, row_cnt=100.34,compute=26394231.02,10=7661245.00

A

N7

Ergonomic & Robust Benchmarking Framework \|(
'

Query 27b
. . | DBMS | Q-Error | Est. Card. | True Card. |
= Ergonomlc: 8 CLI, detalled Outputs | DataFusion | 3310.7654320987654 | 81 | 268172 |

| Postgres | 7887.411764705882 | 34 | 268172

- Al CLI options have sensible defaults ' ‘ + + +
Aggregate Q-Error Information
- Outputs: per-query, aggregate, and i i e,

| DBMS | Median | P90 | P95 | P99 | # Inf | Mean | Min | Max |
comparative Q-ETTOF | DataFusion | 3.10 | 13.28 | 152.55 | 7382.12 | @ | 350.17 | 1.02 | 9202.55 |
]) .| Postgres | 5.73 | 69.31 | 107.62 | 7887.41 | 0 | 436.41 | 1.06 | 10166.63
- Robust: consistent caches in all partial
Comparative Q-Error Information
failure scenarios | DB | # Best | # Tied Best |

| DataFusion | 51 | |

- Caching gives 70x speedup on TPC-H SF1 || pesteres 17 1 |

Usage: optd-perftest cardtest [OPTIONS] [BENCHMARK_NAME]

Arguments:
[BENCHMARK_NAME] [default: tpch] [possible values: tpch, job, joblight]

Options:
--scale-factor <SCALE_FACTOR> [default: 0.01]
--seed <SEED> [default: 15721]
--query-ids <QUERY_IDS>... The queries to get the Q-error of
—-rebuild-cached-optd-stats Whether to use the cached optd stats/cache generated stats
--adaptive Whether to enable adaptivity for optd
--pguser <PGUSER> The name of a user with superuser privileges [default: default_user]
—-pgpassword <PGPASSWORD> The name of a user with superuser privileges [default: password]

-h, --help Print help

X
Results - Benchmark Subsystem Performance

Compares Q-Error with PostgreSQL

Caches statistics and true cardinalities — 70x speedup

PG load tables PG stats
(63.245s) (40.41s)

DF build stats (150.45s)

f

DF & PG Trug |
cost models cardinalities
(4.25s)

(3.71s)

| . W
Code Quality - Modularity

Y
- Pluggable cost model, stats, and DBMSs in benchmarking framework via traits

pub trait Distribution: 'static + Send + Sync {
// Give the probability of a random value sampled from the distribution being <= ‘value®

pub trait CostModel<T: RelNodeTyp>: 'static + Send + Sync { fn cdf(sself, value: &Value) —> f64;

fn compute_cost(4
&self,
node: &T, pub trait MostCommonValues: 'static + Send + Sync {
data: &Option<Value>, // it is true that we could just expose freq_over_pred() and use that for freq() and total_freq()
children: &[Costl, // however, freq() and total_freq() each have potential optimizations (freq() is 0(1) instead of
context: Option<RelNodeContext>, // 0(n) and total_freq() can be cached)
// one reason we need the optimizer is to traverse children nodes to build up an expression tree // additionally, it makes sense to return an Option<f64> for freq() instead of just @ if value doesn't exist
optimizer: Option<&CascadesOptimizer<T>>, // thus, I expose three different functions
) —> Cost; fn freq(&self, value: &ColumnCombValue) —> Option<f64>;
fn total_freq(&self) —> f64;
fn compute_plan_node_cost(&self, node: &RelNode<T>) —> Cost; fn freq_over_pred(&self, pred: Box<dyn Fn(&ColumnCombValue) —> bool>) —> f64;
Tn explain(8self, cost: &Cost) -> String; // returns the # of entries (i.e. value + freq) in the most common values structure
fn cnt(&self) —> usize;

fn accumulate(&self, total_cost: &mut Cost, cost: &Cost); 3

fn sum(&self, self_cost: &Cost, inputs: &[Cost]) —> Cost {
let mut total_cost = self_cost.clone();
for input in inputs {
self.accumulate(&mut total_cost, input);

pub trait CardtestRunnerDBMSHelper {
// get_name() has &self so that we're able to do Box<dyn CardtestRunnerDBMSHelper>
fn get_name(&self) —> &str;

}
total_cost // The order of queries in the returned vector has to be the same between all databases,
} // and it has to be the same as the order returned by TruecardGetter.
async fn eval_benchmark_estcards(
fn zero(&self) —> Cost; smut self,

benchmark: &Benchmark,

) —> anyhow: :Result<Vec<usize>>;

Code Quality - Readability

/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17

- Tons of comments

A predicate set defines a "multi-equality graph", which is an unweighted undirected graph. The
nodes are columns while edges are predicates. The old graph is defined by ‘past_eq_columns®
while the ‘predicate’ is the new addition to this graph. This unweighted undirected graph
consists of a number of connected components, where each connected component represents columns
that are set to be equal to each other. Single nodes not connected to anything are considered
standalone connected components.

The selectivity of each connected component of N nodes is equal to the product of 1/ndistinct of

the N-1 nodes with the highest ndistinct values. You can see this if you imagine that all columns
being joined are unique columns and that they follow the inclusion principle (every element of the
smaller tables is present in the larger tables). When these assumptions are not true, the selectivity
may not be completely accurate. However, it is still fairly accurate.

However, we cannot simply add ‘predicate’ to the multi-equality graph and compute the selectivity of
the entire connected component, because this would be "double counting" a lot of nodes. The join(s)
before this join would already have a selectivity value. Thus, we compute the selectivity of the
join(s) before this join (the first block of the function) and then the selectivity of the connected
component after this join. The quotient is the "adjustment" factor.

NOTE: This function modifies ‘past_eq_columns’ by adding ‘predicate’ to it.

11/
/
11/
11/
17/
11/
177
11/
11/
111
11/

~
~

/17 A

11/

The expr_tree input must be a "mixed expression tree".

- An "expression node" refers to a RelNode that returns true for is_expression()

- A "full expression tree" is where every node in the tree is an expression node

- A "mixed expression tree" is where every base-case node and all its parents are expression nodes
- A "base-case node" is a node that doesn't lead to further recursion (such as a BinOp(Eq))

The schema input is the schema the predicate represented by the expr_tree is applied on.

The output will be the selectivity of the expression tree if it were a "filter predicate".

“filter predicate" operates on one input node, unlike a "join predicate" which operates on two input nodes.

This is why the function only takes in a single schema.

117
/11
/11
11/
117
/17
/7
11/
111
/11
/7
/11

<

<

The core logic of join selectivity which assumes we've already separated the expression
into the on conditions and the filters.

Hash join and NLJ reference right table columns differently, hence the
“right_col_ref_offset' parameter.

For hash join, the right table columns indices are with respect to the right table,
which means #0 is the first column of the right table.

For NLJ, the right table columns indices are with respect to the output of the join.
For example, if the left table has 3 columns, the first column of the right table
is #3 instead of #0.

111
11/
/17
/17
11/
11/
11/
/117
11/
11/
/17
/17
11/
11/
/117

Get a dbname that deterministically describes the "data" of this benchmark.

Note that benchmarks consist of "data" and "queries". This name is only for the data

For instance, if you have two TPC-H benchmarks with the same scale factor and seed
but different queries, they could both share the same database and would thus
have the same dbname.

This name must be compatible with the rules all databases have for their names, which
are described below:

Postgres' rules:

- The name can only contain A-Z a-z @-9 _ and cannot start with 0-9.

- There is a weird behavior where if you use CREATE DATABASE to create a database,
Postgres will convert uppercase letters to lowercase. However, if you use psql to
then connect to the database, Postgres will *not* convert capital letters to
lowercase. To resolve the inconsistency, the names output by this function will
not contain uppercase letters.

/// This trait defines helper functions to enable cardinality testing on a DBMS

/// The reason "get true card" is not a function here is because we don't need to call
"get true card" for all DBMSs we are testing, since they'll all return the same
answer. We also cache true cardinalities instead of executing queries every time
since executing OLAP queries could take minutes to hours. Due to both of these
factors, we conceptually view getting the true cardinality as a completely separate
problem from getting the estimated cardinalities of each DBMS.

When exposing a "get est card" interface, you could do it on the granularity of
a single SQL string or on the granularity of an entire benchmark. I chose the
latter for a simple reason: different DBMSs might have different SQL strings

11/
1117
11/
11/
11/
11/
117
11/
11/
117
/17

for

the same conceptual query (see how gqgen in tpch-kit takes in DBMS as an input).

When more performance tests are implemented, you would probably want to extract
get_name() into a generic "DBMS" trait.

Code Quality - Rustic

- Functional style

let (hlls, mgs, null_cnts) = receiver
.into_iter()
.par_bridge()
.fold(Self::first_pass_stats_id(nb_stats), |local_stats, batch| {
let mut local_stats = local_stats?;

match batch {
Ok(batch) => {
let (hlls, mgs, null_cnts) = &mut local_stats;
let comb = Self::get_column_combs(&batch, &comb_stat_types);
Self::generate_partial_stats(&comb, mgs, hlls, null_cnts);
Ok(local_stats)

}
Err(e) => {
printin!("Err: {:?},, {:?}", e, comb_stat_types.len());
Err(e.into())
}
}
2l
. reduce(

Self::first_pass_stats_id(nb_stats),

| final_stats, local_stats| {
let mut final_stats = final_stats?;
let local_stats = local_stats?;

let (final_hlls, final_mgs, final_counts) = &mut final_stats;
let (local_hlls, local_mgs, local_counts) = local_stats;

for i in @..nb_stats {
final_hlls[i].merge(&local_hlls[il);
final_mgs[i].merge(&local_mgs([i]);
final_counts[i] += local_counts[il;

Ok(final_stats)
Y,

let (distrs, cnts, row_cnts) = receiver
.into_iter()
.par_bridge()
.fold(
Self::second_pass_stats_id(&comb_stat_types, &mgs, nb_stats),
| local_stats, batch| {
let mut local_stats = local_stats?;

match batch {
Ok(batch) => {
let (distrs, cnts, row_cnts) = &mut local_stats;
let comb = Self::get_column_combs(&batch, &comb_stat_types);
Self::generate_full_stats(&comb, cnts, distrs, row_cnts);
Ok(local_stats)

¥

Err(e) => Err(e.into()),

}
)
. reduce(
Self::second_pass_stats_id(&comb_stat_types, &mgs, nb_stats),
|final_stats, local_stats| {
let mut final_stats = final_stats?;
let local_stats = local_stats?;

let (final_distrs, final_cnts, final_counts) = &mut final_stats;
let (local_distrs, local_cnts, local_counts) = local_stats;

for i in @..nb_stats {
final_cnts[il.merge(&local_cnts[i]);
if let (Some(final_distr), Some(local_distr)) =
(&mut final_distrs[i], &local_distrs[i])

final_distr.merge(local_distr);
final_distr.norm_weight += local_distr.norm_weight;

final_counts[i] += local_counts([i];

¥
base_col_refs
Ok(final_stats) .into_iter()
h .map(|base_col_ref| {
)75 | match self.get_column_comb_stats(&base_col_ref.table, &[base_col_ref.col_idx]) {

Some(per_col_stats) => per_col_stats.ndistinct,
None => DEFAULT_NUM_DISTINCT,

}H
.map(|ndistinct| 1.0 / ndistinct as f64)
.sorted_by(]a, b| {

a.partial_cmp(b)

.expect("No floats should be NaN since n-distinct is never @")

b
.take(num_base_col_refs - 1)
.product()

Code Quality - Testing

- Unit tests

53 for selectivity

15 for stats

2.5k testing LoC

90% coverage over 5.4K feature LoC

- Integration tests

SQL planner tests
Automated test for benchmarking

running 15 tests

test
test
test
test
test
test
test
test
test
test
test
test
test
test
test

stats::hyperloglog::tests::hll_small_strings ... ok

stats::misragries::tests::aggregate_double ... ok
stats::counter::tests::aggregate ... ok
stats::hyperloglog::tests::hll_small_ubé4 ... ok

stats::misragries::tests::aggregate_simple ... ok
stats::murmur2::tests::murmur_string ... ok
stats::counter::tests::merge ... ok
utils::arith_encoder::tests::encode_tests ... ok
stats::tdigest::tests::weighted_merge ... ok
stats::tdigest::tests::uniform_merge_sequential ... ok
stats::tdigest::tests::uniform_merge_parallel ... ok
stats::misragries::tests::aggregate_zipfian ... ok
stats::misragries::tests::merge_zipfians ... ok
stats::hyperloglog::tests::hll_big ... ok
stats::hyperloglog::tests::hll_massive_parallel ... ok

Running unittests src/lib.rs (target/debug/deps/optd_datafusion_repr-cf772101246a0024)

running 53 tests

test cost::base_cost est_cast_colref_eq_colref ... ok
test est_cast_colref_eq_value ... ok
test est_colref_eq_constint_in_mecv ... ok
test est _colref_eq_cast_value ... ok

test cost::base_cost
test cost::base_cost
test cost::base_cost
test cost::base_cost
test cost::base_cost
test cost::base_cost
test
test
test
test
test
test
test cost::base_cost
test cost::base_cost
test cost::base_cost
test cost::base_cost

. ok

s OK

s test_cnlref_eq_constint_not_in_mcv_no_nulls ve. OK
est_colref_eq_constint_not_in_mcv_with_nulls ... ok
est_colref_geq_constint_no_nulls ... ok
test_colref_geq_constint_with_nulls ... ok

test

test test_colref_lt_constint_with_mcvs_in_range_not_at_border ... ok
test est_colref_neq_constint_in_mcv ... ok

test est_const ... ok

test est_not_no_nulls ... ok

test est_not_with_nulls ... ok

test test_or ... ok

test test_inner_colref_eq_colref_same_table_is_not_oncond ... ok
test cost::base_cost test_inner_and_of_filters ... ok

test : :base_cost test_inner_const ... ok

test test_inner_and_of_oncond_and_filter ... ok

test test_inner_oncond ... ok

test test_inner_and_of_onconds ... ok

test test_join_which_connects_two_components_together ... ok

test test_outer_nonunique_oncond_inner_sometimes_lt_rowcnt ... ok
test test_outer_nonunique_oncond_inner_always_geq_rowent ... ok
test ::base_cost test_outer_unique_oncond_filter ... ok

test cost::base_cost 3 test_outer_unique_oncond ... ok

test cost::base_cost::join:: test_three_table_join_for_. initial _join_on_conds:

test plan_nodes::macros: test :test_explain_complex_ data aes 0K

test cost::base_cost
test cost::base_cost:
test properties::

test cost::base_cost::
test
test
test
test
test

test_three_table_join_for_initial_join_on_cond
test_three_table_join_for_initial_join_on_conds:
:test_eq_base_table_column_sets .
test_three_table_join_for_initial_join_on_conds:
test_three_table_join_for_initial_join_on_conds:
ilter_merge .
test_three_table_join_for_initial_join_on_conds:
test_three_table_join_for_initial_join_on_conds:
:push_past_agg ... ok

cost::base_cost:
cost::base_cost:

:_1_2_expects ...
0_2_expects ...

test ::push_past_sort ... ok

test ests::push_past_proj_basic ... ok

test ests::push_past_proj_adv ... ok

test ::filter_pushdown::tests::push_past_join_conjunction ... ok

test result: ok. 53 passed; @ failed; © ignored; @ measured; @ filtered out; finished in @.81s

. ok

. ok

. OK

. ok

. Ok

ok
ok

N4
Y

Code Quality - Improvements

- Repetitive code for downloading/loading benchmark data
- Stats should be a logical property for stats propagation
- Robust Parquet generation

Future Tasks

- Stats propagation

- Multi-column stats (halfway supported)

- Sampling

- Integration: generate stats with ANALYZE + store in catalog
- Expression inlining, e.g. YEAR(col) < 2001

- Update statistics when data changes

