
Patrick Wang, David Guo, Alexis Schlomer

Gungnir

Previously, on Gungnir

Goal: Estimate query run time statically.

Recipe 📝
1. Extract Statistics

2. Estimate Cardinality

3. Infer Query Cost

T-Digest ✅

HLL ✅ MCVs ✅
Parallelize T-Digest ❌

HLL ❌ MCVs ❌

 Getting TPC-H
to run ✅

Cardinality
benchmarking ⌛

 Filter ✅ Limit ✅
Cardinality

Join ✅ Aggregation ✅
Cardinality

75% 100% 125%

Group Cardinality
Caching ❌

Semantic Correlation
❌

✅: Done, ⌛: Doing, ❌: Not Started Today

T-Digest ✅

HLL ✅ MCVs ✅
Parallelize T-Digest ✅

HLL ✅ MCVs ✅

 Getting TPC-H
to run ✅

Cardinality
benchmarking ✅

 Filter ✅ Limit ✅
Cardinality

Join ✅ Aggregation ✅
Cardinality

75% 100% 125%

Group Cardinality
Caching ✅

Semantic Correlation
✅

✅: Done, ⌛: Doing, ❌: Not Started Today

Statistics
Motivation: processors are not getting faster!

1. Building statistics is CPU bound.
2. OLAP systems must support

+16 PB of data (Redshift).

Solutions:

1. Sampling (ex. only use 1% of data).
2. Parallel sketching algorithms.

⇒ OUR FOCUS!

Statistics
A new ANALYZE paradigm: fold-reduce associativity!

● Goal 1: inter-node parallelism.
● Goal 2: intra-node parallelism.
● Goal 3: flexible linear scaling w/ nodes.

Problems:

1. How/on what do you combine?
2. Arrow poorly exploits parallelism!

Statistics
Roadmap: unleashing the power of modern processors.

1. Find sketches that satisfy the fold fold/reduce paradigm: HLL (n-distinct),
TDigest (distribution), MisraGries (most-common-values).

2. Implement these algorithms from scratch.
3. Expose more parallelism from Arrow to have parallel scanners.
4. Rely on a modular thread-pool to split the tasks into smaller jobs (Rayon).
5. Optimize like a German.

Results: single node +10 Gbps throughput (on SOTA hardware).

or… +1PB/day with only 10 nodes.

Cardinality Formulas

- Filter selectivity
- t1.colA [=, !=, <, <=, >, >=] constant
- AND/OR/NOT
- colA IN (“advanced”, “database”, “systems”)
- colA LIKE “%abc%” using MCVs
- CAST

- Join selectivity
- Join types (Inner, Outer, Cross)
- Join conditions vs. join filters

- t1.colA = t2.colB vs. t1.colA < 2
- Detects semantic correlation

- Aggregation, Limit

Detect Semantic Correlation

t

mi⨝ t.id = mc.tid

mc

⨝t.id = mi.tid

These are the SAME
column

Detect Semantic Correlation

mc mit

⨝ t.id = mi.tid = mc.tid

Conceptually, it’s a
“multi-equality”

Detect Semantic Correlation

mc

mk⨝ mc.id = mc.mid

mi

⨝ mc.kid = mk.id

By contrast, these are
NOT the same

Detect Semantic Correlation

mc mit

⨝ t.id = mi.tid = mc.tid

mc

mk⨝ mc.id = mc.mid

mi

⨝ mc.kid = mk.id

Semantic correlation distinguishes between
these two cases

Detect Semantic Correlation

mc mit

⨝ t.id = mi.tid = mc.tid

This one feature decreased our Q-Error on
JOB by 100x

mc

mk⨝ mc.id = mc.mid

mi

⨝ mc.kid = mk.id

Adaptivity through Group Cardinality Caching

- JOB-light Q27a Q-Error: 10k → 600, 17x

SELECT *
FROM title t,
 movie_info mi,
 movie_companies mc,
 cast_info ci,
 movie_keyword mk
WHERE t.id=mi.movie_id
 AND t.id=mc.movie_id
 AND t.id=ci.movie_id
 AND t.id=mk.movie_id
 AND ci.role_id=2
 AND mi.info_type_id=16
 AND t.production_year>2000
 AND t.production_year<2010
 AND mk.keyword_id=7084;

Is 414 rows in reality
We underestimate by 20x

Adaptivity through Group Cardinality Caching

- JOB-light Q27a Q-Error: 10k → 600, 17x

SELECT *
FROM title t,
 movie_info mi,
 movie_companies mc,
 cast_info ci,
 movie_keyword mk
WHERE t.id=mi.movie_id
 AND t.id=mc.movie_id
 AND t.id=ci.movie_id
 AND t.id=mk.movie_id
 AND ci.role_id=2
 AND mi.info_type_id=16
 AND t.production_year>2000
 AND t.production_year<2010
 AND mk.keyword_id=7084;

SELECT *
FROM movie_keyword mk
WHERE mk.keyword_id=7084;

Run this first!

No longer underestimating
Leads to 17x better Q-Error

Results - Cardinality Estimation Accuracy

PG Optd

Better 1 3

Tied 9 9

p50 3.50 1.00

p90 1203.0 100.00

p99 1517.5 31250

TPC-H (SF1)

operator variety complex predicates pure join estimation

Shows we do well in…

PG Optd

Better 21 39

Tied 33 33

p50 209.33 80.00

p90 8546.2 128548

p99 42963 4.0e11

JOB*

PG Optd

Better 7 51

Tied 0 0

p50 5.73 3.10

p90 69.31 13.28

p99 7887.4 7382.1

JOB-light

*with stats from Python csv2parquet script

Detect Semantic Correlation
Solution: Keep track of equal columns as a group’s
logical property with Union-Find

mc

t⨝mc.mid = mi.mid

mi

⨝t.id = mi.mid
t.id = mc.mid

{mc.mid, mi.mid}

{mc.mid, mi.mid}

Detect Semantic Correlation
Solution: Keep track of equal columns as a group’s
logical property with Union-Find

mc

t⨝mc.mid = mi.mid

mi

⨝t.id = mi.mid
t.id = mc.mid

{mc.mid, mi.mid}

{mc.mid, mi.mid, t.id}

Detect Semantic Correlation
Solution: Keep track of equal columns as a group’s
logical property with Union-Find

mc

t⨝mc.mid = mi.mid

mi

⨝t.id = mi.mid
t.id = mc.mid

{mc.mid, mi.mid}

{mc.mid, mi.mid, t.id}

Selectivity Adjustment Factor

s.t. total selectivity = 1 / (product of # distinct of N - 1 most selective columns)

Benchmarking

- Made TPC-H and JOB queries not crash opt-d
- internal repr for more data types and exprs

- Robust, fast, and easy-to-use framework
- Ergonomic CLI and detailed output
- Robust caches for data+queries, truecard, optd stats, and pgdata
- Compatible with Postgres in a container or a different machine

Getting TPC-H, JOB, JOB-light to run

Getting TPC-H, JOB, JOB-light to not crash optd

- More data types
- Various Int types
- Date
- Serialized
- IntervalMonthDateNano

- More expressions
- Like
- InList
- Cast

Result: 13 / 22 for TPC-H, 93 / 113 for JOB, 58 / 70 for JOB-light

Row count with EXPLAIN

Display estimated cost with EXPLAIN VERBOSE

Ergonomic & Robust Benchmarking Framework

- Ergonomic: 8 CLI, detailed outputs
- All CLI options have sensible defaults
- Outputs: per-query, aggregate, and

comparative Q-Error
- Robust: consistent caches in all partial

failure scenarios
- Caching gives 70x speedup on TPC-H SF1

Results - Benchmark Subsystem Performance

Compares Q-Error with PostgreSQL

Caches statistics and true cardinalities → 70x speedup

DF build stats (150.45s)

DF & PG
cost models

(3.71s)

PG load tables
(63.24s)

PG stats
(40.41s)

Gen
TPC-H

(35.76s)

True
cardinalities

(4.25s)

Code Quality - Modularity

- Pluggable cost model, stats, and DBMSs in benchmarking framework via traits

Code Quality - Readability

- Tons of comments

Code Quality - Rustic

- Functional style

Code Quality - Testing

- Unit tests
- 53 for selectivity
- 15 for stats
- 2.5k testing LoC
- 90% coverage over 5.4K feature LoC

- Integration tests
- SQL planner tests
- Automated test for benchmarking

Code Quality - Improvements

- Repetitive code for downloading/loading benchmark data
- Stats should be a logical property for stats propagation
- Robust Parquet generation

Future Tasks

- Stats propagation
- Multi-column stats (halfway supported)
- Sampling
- Integration: generate stats with ANALYZE + store in catalog
- Expression inlining, e.g. YEAR(col) < 2001
- Update statistics when data changes

