
Eggstrain
Vectorized Push-Based inspired Execution Engine
Asynchronous Buffer Pool Manager

Authors: Connor, Sarvesh, Kyle

1



Original Proposed Goals
75%: First 7 operators working + integration with other components
100%: All operators listed above working
125%: TPC-H benchmark working

2



Design Goals
Robustness
Modularity
Extensibility
Forward Compatibility

We made heavy use of tokio  and rayon  in our implementation.

3



Refresher on
Architecture

4



Refresher on operators
TableScan

Filter

Projection

HashAggregation

HashJoin  ( HashProbe  + HashBuild )

OrderBy

TopN

5



Example
Operator
Workflow

6



Progress Towards Goals
100%: All operators implemented, excluding HashJoin

125%: TPC-H benchmark working for Q1

7



Execution Engine Benchmarks
Hardware:

M1 Pro, 8 cores, 16GB RAM

8



9



Correctness Testing and Code Quality
Assessment
We tested correctness by comparing our results to the results of the same queries
run in DataFusion.

Our code quality is high with respect to documentation, integration tests, and
code review.

However, we lack unit tests for each operator. We instead tested operators
integrated inside of queries.

10



Problem: In Memory?
We found that we needed to spill data to disk to handle large queries.

However, to take advantage of our asynchronous architecture, we needed to
implement an asynchronous buffer pool manager.

11



Recap: Buffer Pool Manager
A buffer pool manager manages synchronizing data between volatile memory and
persistent storage.

In charge of bringing data from storage into memory in the form of pages
In charge of synchronizing reads and writes to the memory-local page data
In charge of writing data back out to disk so it is synchronized

12



Traditional Buffer
Pool Manager
Traditional BPMs will use a global
hash table that maps page IDs to
memory frames.

Source: LeanStore: In-Memory
Data Management Beyond Main
Memory (2018)

13



Recap: Blocking I/O
Additionally, traditional buffer pool managers will use blocking reads and writes to
send data between memory and persistent storage.

Blocking I/O is heavily reliant on the Operating System.

The DBMS can almost always manage memory better than the OS

Source: 15-445 Lecture 6 on Buffer Pools

14



Recap: I/O System Calls
What happens when we issue a pread()  or pwrite()  call?

We stop what we're doing
We transfer control to the kernel
We are blocked waiting for the kernel to finish and transfer control back

A read from disk is probably scheduled somewhere
Something gets copied into the kernel
The kernel copies that something into userspace

We come back and resume execution

15



Blocking I/O for Buffer Pool Managers
Blocking I/O is fine for most situations, but might be a bottleneck for a DBMS's
Buffer Pool Manager.

Typically optimizations are implemented to offset the cost of blocking:
Pre-fetching
Scan-sharing
Background writing
O_DIRECT

16



Non-blocking I/O
What if we could do I/O without blocking? There exist a few ways to do this:

libaio

io_uring

SPDK
All of these allow for asynchronous I/O

17



io_uring

This Buffer Pool Manager is going
to be built with asynchronous I/O
using io_uring .

Source: What Modern NVMe
Storage Can Do, And How To
Exploit It... (2023)

18



Asynchronous I/O
Asynchronous I/O really only works when the programs running on top of it
implement cooperative multitasking.

Normally, the kernel gets to decide what thread gets to run
Cooperative multitasking allows the program to decide who gets to run
Context switching between tasks is a much more lightweight maneuver
If one task is waiting for I/O, we can cheaply switch to a different task!

19



Eggstrain
The key thing here is that our Execution Engine eggstrain  fully embraces
asynchronous execution.

Rust has first-class support for asynchronous programs
Using async  libraries is almost as simple as plug-and-play

The tokio  crate is an easy runtime to get set up

We can easily create a buffer pool manager in the form of a Rust library crate

20



Goals
The goal of this system is to fully exploit parallelism.

NVMe drives have gotten really, really fast
Blocking I/O simply cannot match the full throughput of an NVMe drive
They are completely bottle-necked by today's software
If we can fully exploit parallelism in software and hardware...

We can actually get close to matching the speed of in-memory
systems, while using persistent storage

21



22



Proposed Design
The next slide has a proposed design for a fully asynchronous buffer pool
manager. The full (somewhat incomplete) writeup can be found here.

Heavily inspired by LeanStore
Eliminates the global page table and uses tagged pointers to data

Even more inspired by this paper:
What Modern NVMe Storage Can Do, And How To Exploit It: High-Performance
I/O for High-Performance Storage Engines (2023)

Gabriel Haas and Viktor Leis
The goal is to eliminate as many sources of global contention as possible

23

https://github.com/Connortsui20/async-bpm


24



BPM Benchmarks
Hardware:

Cray/Appro GB512X - 32 Threads Xeon E5-2670 @ 2.60GHz, 64 GiB DDR3 RAM,
1x 240GB SSD, Gigabit Ethernet, QLogic QDR Infiniband
We will benchmark against RocksDB as a buffer pool manager

25



26



27



28



29



30



31



Future Work
Asynchronous BPM ergonomics and API
Proper io_uring  polling and batch evictions

Shared user/kernel buffers and file descriptors (avoiding memcpy )

Multiple NVMe SSD support (Software-implemented RAID 0)
Optimistic hybrid latches

32


