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Goals
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75% 100% 125%

Pull-Based Push-Based Multithreading

Basic Operators More Operators DB Integration

Vectorized
Execution TPCH-Support Optimizations

Unit Tests End-to-End
Correctness Performance



What we did 
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Implemented our own Operators

Push-Based, Vectorized Execution

Execute Multiple pipelines (end-to-end queries)

Translate Datafusion Physical Plans to our
internal format (visitor) 



Push-Based Pipelined Execution
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How do we create pipelines ?

Where do pipelines store data ? 

How does the next pipeline find the data
produced by previous pipelines ?  



Push-Based Pipelined Execution
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Break the plan into pipelines1.
Execute pipelines in order2.
Each sink in each pipeline stores the
intermediate results in a hash map

3.

Next pipeline retrieves intermediate results
from hash map and continues execution.

4.



Pipeline 2
{Source, Vec<Operator>, Sink}

Pipeline 1
{Source, Vec<Operator>, Sink}

Store

System Design
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Datafusion
ExecutionPlan Exec & Store id:1

Retrieve id : 1

User

Exec



ParquetScan
Projection
Filter
Hash Join Build/Probe 
Hash Aggregation
Limit 
Sort

Operators Supported
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Utilize Datafusion library
ParquetScan + filter/projection pushdown
Filter, Sort

Straightforward
Projection, Limit

Custom Hashmap
HashAggregate, HashJoinBuild/Probe

Operator Implementation
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ID Name Grade

7 foo A

8 bar B

9 baz A

ID Name Grade

10 fux C

11 rab A

12 zab B

Key List <(batch_id, row_idx)>

A (0, 0), (0, 2), (1, 1)

B (0, 1), (1, 2)

C (1, 0)

Custom Hashmap
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batch 0

batch 1

Alternatives?
Concat_batches & List<row_idx>1.

Memcpy required
List<List<row_idx>>2.

If each key exists at 1-2 rows, wastes memory



Testing
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Unit tests for individual opreators1.
End-to-end test2.

SQL → Datafusion frontend + optimizera.
Execute the plan on “Our EE” & “Datafusion EE”b.
Compare the result & runtimec.



TPC-H Result
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Out of 22 TPC-H queries,
16 runs without panic
3 produces correct result



TPC-H Performance
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Correct
Result

Different
Result



Strengths / Weaknesses
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Strengths
Efficient push-based model
Our own specialized operators

Weaknesses
Not fully compatible with Datafusion Execution Plan (e.g.
unsupported nodes & options)
Some of our operations on Arrow are not optimal



Intra Query Parallelism (In Progress) 



Future Works
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Compatibility with other microservices1.
More plan nodes, More tests2.
Intra query parallelism3.
Faster kernels on Arrow RecordBatch4.
Profile & Optimize5.



Thank you!
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