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DB Integration

Optimizations

End-to-End
Correctness




What we did

Implemented our own Operators

Push-Based, Vectorized Execution
Execute Multiple pipelines (end-to-end queries)

Translate Datafusion Physical Plans to our
internal format (visitor)



Push-Based Pipelined Execution

 How do we create pipelines ?
e Where do pipelines store data ?

e How does the next pipeline find the data
produced by previous pipelines ?



Push-Based Pipelined Execution

1.Break the plan into pipelines

2.Execute pipelines in order

3.Each sink in each pipeline stores the
in a hash map

4.Next pipeline retrieves

from hash map and continues execution.



System Design
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Operators Supported

e ParquetScan
 Projection

e Filter

e Hash Join Build/Probe
» Hash Aggregation
o Limit

 Sort




Operator Implementation

o Utilize Datafusion library

> ParquetScan + filter/projection pushdown
> Filter, Sort

e Straightforward

> Projection, Limit

e Custom Hashmap
- HashAggregate, HashJoinBuild/Probe
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Alternatives?

1. Concat_batches & List<row_idx>
- Memcpy required

2.List<List<row_idx>>
o If each key exists at 1-2 rows, wastes memory

(0, 0), (O, 2), (1, 1)
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Testing

1.Unit tests for individual opreators
2.End-to-end test

a.SQL — Datafusion frontend + optimizer
b.Execute the plan on “Our EE” & “Datafusion EE”
c. Compare the result & runtime
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TPC-H Result

Out of 22 TPC-H queries,

¢ 16 runs without panic

« 3 produces correct result
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TPC-H Performance

Speedup of Our EE over Datafusion EE (1-core)
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Strengths / Weaknesses

Strengths

o Efficient push-based model
» Our own specialized operators

Weaknesses

 Not fully compatible with Datafusion Execution Plan (e.g.
unsupported nodes & options)

» Some of our operations on Arrow are not optimal
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Intra Query Parallelism (In Progress)

main thread fn get_pipeline(id) -> Poll<DatafusionPipeline>

—_ scheduler
fn ack_pipeline(id)

fn submit_request(source) -> request_id

| i rvi
pending fn poll_response() -> Poll<(request_id,RecordBatch)> O S€rvice
pipelines

fn check_if_pipeline_done()-> Poll<(thread_id,pipeline_id)

completion queue
store

fn assign_work(DatafusionPipeline,RecordBatch)

free fn assign_work(DatafusionPipeline,RecordBatch)

workers

fn assign_work(DatafusionPipeline,RecordBatch)




Future Works

1. Compatibility with other microservices
2.More plan nodes, More tests

3.Intra query parallelism

4.Faster kernels on Arrow RecordBatch

S.Profile & Optimize
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Thank you!



