Execution Engine Team #2

b

Christos Laspias
Hyoungjoo Kim
Yash Kothari



DB Integration

Optimizations

End-to-End
Correctness




What we did

Implemented our own Operators

Push-Based, Vectorized Execution
Execute Multiple pipelines (end-to-end queries)

Translate Datafusion Physical Plans to our
internal format (visitor)



Push-Based Pipelined Execution

 How do we create pipelines ?
e Where do pipelines store data ?

e How does the next pipeline find the data
produced by previous pipelines ?



Push-Based Pipelined Execution

1.Break the plan into pipelines

2.Execute pipelines in order

3.Each sink in each pipeline stores the
in a hash map

4.Next pipeline retrieves

from hash map and continues execution.



System Design

Exec & Store id:1

Pipeline 2

{Source, Vec<Operator>, Sink} @
\ “



Operators Supported

e ParquetScan
 Projection

e Filter

e Hash Join Build/Probe
» Hash Aggregation
o Limit

 Sort




Operator Implementation

o Utilize Datafusion library

> ParquetScan + filter/projection pushdown
> Filter, Sort

e Straightforward

> Projection, Limit

e Custom Hashmap
- HashAggregate, HashJoinBuild/Probe




batch O

ID

batch 1
ID

10
1"

12

Name

foo

bar

baz

Name

fux

rab

zab

Custom Hashmap

Grade

A

Key List <(batch_id, row_idx)>

—\ A

ﬂ B (0, 1), (1, 2)
/, C (1, O)
Alternatives?

1. Concat_batches & List<row_idx>
- Memcpy required

2.List<List<row_idx>>
o If each key exists at 1-2 rows, wastes memory

(0, 0), (O, 2), (1, 1)

9



Testing

1.Unit tests for individual opreators
2.End-to-end test

a.SQL — Datafusion frontend + optimizer
b.Execute the plan on “Our EE” & “Datafusion EE”
c. Compare the result & runtime

10



TPC-H Result

Out of 22 TPC-H queries,

¢ 16 runs without panic

« 3 produces correct result

11



TPC-H Performance

Speedup of Our EE over Datafusion EE (1-core)

2.0

Correct
Result

1.5

1.0

Speedup

Different
Result

7 8 9 10 12 13 14 15 17 19

TPC-H Query Number

12



Strengths / Weaknesses

Strengths

o Efficient push-based model
» Our own specialized operators

Weaknesses

 Not fully compatible with Datafusion Execution Plan (e.g.
unsupported nodes & options)

» Some of our operations on Arrow are not optimal
13



Intra Query Parallelism (In Progress)

main thread fn get_pipeline(id) -> Poll<DatafusionPipeline>

—_ scheduler
fn ack_pipeline(id)

fn submit_request(source) -> request_id

| i rvi
pending fn poll_response() -> Poll<(request_id,RecordBatch)> O S€rvice
pipelines

fn check_if_pipeline_done()-> Poll<(thread_id,pipeline_id)

completion queue
store

fn assign_work(DatafusionPipeline,RecordBatch)

free fn assign_work(DatafusionPipeline,RecordBatch)

workers

fn assign_work(DatafusionPipeline,RecordBatch)




Future Works

1. Compatibility with other microservices
2.More plan nodes, More tests

3.Intra query parallelism

4.Faster kernels on Arrow RecordBatch

S.Profile & Optimize

14



Thank you!



