
Execution Engine Team #2

Christos Laspias
Hyoungjoo Kim

Yash Kothari
1

Goals

2

75% 100% 125%

Pull-Based Push-Based Multithreading

Basic Operators More Operators DB Integration

Vectorized
Execution TPCH-Support Optimizations

Unit Tests End-to-End
Correctness Performance

What we did

3

Implemented our own Operators

Push-Based, Vectorized Execution

Execute Multiple pipelines (end-to-end queries)

Translate Datafusion Physical Plans to our
internal format (visitor)

Push-Based Pipelined Execution

4

How do we create pipelines ?

Where do pipelines store data ?

How does the next pipeline find the data
produced by previous pipelines ?

Push-Based Pipelined Execution

5

Break the plan into pipelines1.
Execute pipelines in order2.
Each sink in each pipeline stores the
intermediate results in a hash map

3.

Next pipeline retrieves intermediate results
from hash map and continues execution.

4.

Pipeline 2
{Source, Vec<Operator>, Sink}

Pipeline 1
{Source, Vec<Operator>, Sink}

Store

System Design

6

Datafusion
ExecutionPlan Exec & Store id:1

Retrieve id : 1

User

Exec

ParquetScan
Projection
Filter
Hash Join Build/Probe
Hash Aggregation
Limit
Sort

Operators Supported

7

Utilize Datafusion library
ParquetScan + filter/projection pushdown
Filter, Sort

Straightforward
Projection, Limit

Custom Hashmap
HashAggregate, HashJoinBuild/Probe

Operator Implementation

8

ID Name Grade

7 foo A

8 bar B

9 baz A

ID Name Grade

10 fux C

11 rab A

12 zab B

Key List <(batch_id, row_idx)>

A (0, 0), (0, 2), (1, 1)

B (0, 1), (1, 2)

C (1, 0)

Custom Hashmap

9

batch 0

batch 1

Alternatives?
Concat_batches & List<row_idx>1.

Memcpy required
List<List<row_idx>>2.

If each key exists at 1-2 rows, wastes memory

Testing

10

Unit tests for individual opreators1.
End-to-end test2.

SQL → Datafusion frontend + optimizera.
Execute the plan on “Our EE” & “Datafusion EE”b.
Compare the result & runtimec.

TPC-H Result

11

Out of 22 TPC-H queries,
16 runs without panic
3 produces correct result

TPC-H Performance

12

Correct
Result

Different
Result

Strengths / Weaknesses

13

Strengths
Efficient push-based model
Our own specialized operators

Weaknesses
Not fully compatible with Datafusion Execution Plan (e.g.
unsupported nodes & options)
Some of our operations on Arrow are not optimal

Intra Query Parallelism (In Progress)

Future Works

14

Compatibility with other microservices1.
More plan nodes, More tests2.
Intra query parallelism3.
Faster kernels on Arrow RecordBatch4.
Profile & Optimize5.

Thank you!

15

