
Query Optimization Team
Avery Qi, Benjamin Owad, Ritu Pathak



Overview - Implementation

- New rules use isolated unit testing by running a heuristic optimizer with a 
single rule on a handcrafted plan.

- Code quality is good overall, documentation can be improved and better 
testing for rules (old and new) should be implemented.

- Plan quality has been manually evaluated by comparing to Umbra.



Overview - Goals

75%: Add basic logical→logical rules and support partial exploration.

100%: Multi-stage optimizer (rewriting + heuristic rule wrapper), add advanced 
logical→logical rules, improve testing.

125%: Support unnesting arbitrary queries, add physical properties.



Overview - Progress

- Partial exploration is supported.
- Multi-stage optimizer is fully supported.
- Many new logical→logical rules have been added, including filter pushdown 

and partial projection pushdown.
- Isolated unit testing has been introduced.
- Many bugs have been fixed throughout the semester.
- Physical Properties and Subquery unnesting are a work in progress.



Projection Pushdown



Projection Pushdown



Physical Properties Framework - Design

- All expressions within one group are logically equivalent.



Physical Properties Framework - Design

- What if we have physical requirements? Eg. Column Order, Data Distribution 

- One group have multiple 
subgroups, exprs within each 
subgroup satisfy the same physical 
property requirement

- Each subgroup has a winner
- Subgroup 0 has all expressions and 

has no physical property 
requirement

- Children are represented as 
(GroupId, SubGroupId)



Physical Properties Framework - Design



Physical Properties Framework - Design



Physical Properties Framework - Design



Physical Properties Framework - Design



Physical Properties Framework - Design
- In OptimizeInputTask, Physical properties requirement are separated to 

two parts: handled_by_enforcer, handled_by_child
- Three situations:

- Can provide by expr itself, eg. SortMergeJoin
- Cannot provide cannot pass down, eg. HashJoin, Union
- Cannot provide can pass down, eg. Projection, Filter

- For multiple physical properties, we provide a framework to traverse all 
the possible combinations the registered physical properties provide to 
separate their requirements into two parts.



Physical Properties Interface - TO Be Review
- Change 30% of the optd-core, 

need everybody’s agreement to 
make it nice and clean



Unnesting Arbitrary Queries - Status

- Somewhere between a proof of concept and a draft—work still heavily in 
progress.

- Parses and fully unnests a subset of correlated and uncorrelated 
subqueries.

- TODO
- Formal testing and bugfixes
- EXISTS clauses, IN clauses, ANY/ALL
- Correctness issue with COUNT(*) (requires adding left outer join to plan)
- Move some/all of this to rewriting stage to support multiple subqueries/ordering 

operations
- “Sideways information passing” (subplans are duplicated now instead of making a DAG)
- Optimizations from the paper are all missing
- Pushing dependent joins past regular joins



Unnesting Arbitrary Queries - Demo

Parsed by DataFusion, 
Converted to optd

Dependent join 
eliminated

Executed by DataFusion



Future Work

● Supporting Anti Join + Semi Join
● Rule Priorities
● Physical Properties Implementation
● Verify opt-d Correctness
● Projection Transpose Rules
● Filter Pull Up Rules
● Unnesting Arbitrary Subqueries


