Query Optimization Team

Avery Qi, Benjamin Owad, Ritu Pathak

Overview - Implementation

- New rules use isolated unit testing by running a heuristic optimizer with a

single rule on a handcrafted plan.
- Code quality is good overall, documentation can be improved and better

testing for rules (old and new) should be implemented.
- Plan quality has been manually evaluated by comparing to Umbra.

Overview - Goals

75%: Add basic logical->logical rules and support partial exploration.

100%: Multi-stage optimizer (rewriting + heuristic rule wrapper), add advanced
logical-logical rules, improve testing.

125%: Support unnesting arbitrary queries, add physical properties.

Overview - Progress

- Partial exploration is supported.

- Multi-stage optimizer is fully supported.

- Many new logical-logical rules have been added, including filter pushdown
and partial projection pushdown.

- Isolated unit testing has been introduced.

- Many bugs have been fixed throughout the semester.

- Physical Properties and Subquery unnesting are a work in progress.

Projection Pushdown

feat: projection merge and projection filter transpose rule
Swee =

etsuro merged 72 cor s into in from
Sweetsuro commented 2 weeks ago ¢ edited ~
This PR implements a part of the projection transpose series of rules. It also includes a fair amount of refactoring.

Projection Merge Rule

e This rule matches on two projection nodes and combines the two nodes into one.

e |t is added to the heuristic optimizer pass before the cascades optimizer. In the future, it should also be added to a pass after
the cascades optimizer.

Projection Filter Transpose Rule

e This rule matches pushes a projection node passed a filter node. If the filter node contains columns that are not in this
projection node, the top most projection node is also kept.

e |tis added as a cascades rule.

Refactoring

Relevant functions for projection transpose rules can be found in 'project_transpose_common.rs . Rules are implemented in
separate files as a part of the projection_transpose module rather than in all one file. Similarly, FilterProjectTransposeRule and
ProjectionPullupJoin were moved into this module.

Testing

Unit tests using the dummy heuristic optimizer were implemented.

Projection Pushdown

[WIP] Projection Push Down Join, Projection Remove, and Projection Agg Transpose Rules
Ir ants to merg cor ts into ma Y ect L

DO NOT MERGE. This PR implements the remainder of the projection transpose series of rules.

List of Necessary Fixes Prior to Merge

Projection Push Down Join Rule can still apply on the top-level proj -> join, even if it's just generating redundant projection
nodes beneath the join node. Need to find a way to avoid applying the rule in cascade's core logic (and in heuristic code
path).

Join enumeration is not possible with cyclic memo nodes. Need to implement a better join enumeration algorithm that is not
brute forcing through everything in the memo table.

Need a way to match on Scan nodes. Currently, ProjectRemoveRule is only possible in the Heuristic Optimizer pass because of
this.

Projection Agg Transpose Rule remains unimplemented.
Projection Push Down Join Rule

e This rule pushes a projection past a join node. It may still have a top most projection node, and in most cases creates a
projection node above the left join child and a projection node above the right join child.

¢ This rule is commented out but intended to be a heuristic wrapper rule
Projection Remove Rule

¢ This rule matches on a projection node followed by a scan node.

e |tis added in the preliminary heuristic pass

Testing

Unit tests using the dummy heuristic optimizer were implemented.

Physical Properties Framework - Design

~

cascades Framework

Op‘tim‘-zeé-,r‘oup

= thldren group u‘l}

Optimize_Expr‘

Exploreé;roup

ApplyRule

- 67r~oupInPo:
Optivizelnput Winner: ExprLel

A J

- All expressions within one group are logically equivalent.

Physical Properties Framework - Design

- What if we have physical requirements? Eg. Column Order, Data Distribution

Expri

Exprd

/==

SubG,roup 0

=L

O

SubG-,r*ouP 2

Fubéwoup 3

Sulaéwoup 11-—]

a ordered, b
ordered

lc/‘ ner: Epro(

One group have multiple
subgroups, exprs within each
subgroup satisfy the same physical
property requirement

Each subgroup has a winner
Subgroup 0 has all expressions and
has no physical property
requirement

Children are represented as
(Groupld, SubGroupld)

Physical Properties Framework - Design

optd

cascades framework

Op‘t?mize_é;roup j

OptimizeExpr

(ApplyRule '
[Op'timizdinpu‘t]

Exploreé;r‘oup

\

J

optd

cascades framework

Optimizeéproup

OptimizeExpr

(Applt/Rule '
[Op‘timizelnpu't]

Explor‘eé;r‘oup

J

Physical Properties Framework - Design

optd

cascades framework

Op‘t?mizeé;roup j

OptimizeExpr

(ApplyRule '
[Op'timizdinpu‘t]

Exploreé;r‘oup

\

J

optd

cascades Framework

Op‘timizeé;roup

OptimizeExpr

(ApplyRule]
[Op‘timizelnpu‘t]

Exploreé;roup

J

Physical Properties Framework - Design

~ ~

cascades Framework cascades framework

Op‘t?mizeé;roup j

OptimizeExpr

(ApplyRule '
[Op'timizdinpu‘t]

N Y, _ Y,

Exploreé;r‘oup

Physical Properties Framework - Design

optd

cascades framework

Op‘t?mizeé;roup j

OptimizeExpr

(ApplyRule '
[Op'timizdinpu‘t]

Exploreé;r‘oup

\

J

optd

cascades framework

Explore,é;roup

OptimizeExpr

N

C
Op'timiz&'[npu‘t
J

Physical Properties Framework - Design

- In OptimizelnputTask, Physical properties requirement are separated to
two parts: handled_by_enforcer, handled_by_child

- Three situations:
- Can provide by expr itself, eg. SortMerge)oin
- Cannot provide cannot pass down, eg. Hashjoin, Union
- Cannot provide can pass down, eg. Projection, Filter

- For multiple physical properties, we provide a framework to traverse all
the possible combinations the registered physical properties provide to
separate their requirements into two parts.

Physical Properties Interface - TO Be Review

PhysicalPropsBuilder<T: RelNodeTyp> c + Send + Sync{

PryeseaProgas!tatmtee s Seu) Syne Stema Ctone ¥ benug £ 3 partiaieq s nasn - Change 30% of the optd-co re,
T S need everybody’s agreement to
make it nice and clean

hysicalProps;
™n

typ: &T,
data: &Option<Value>,
required: & PhysicalProps

) => bool;

fn build_children_properties(

typ: &T,
data: &Option<Value>,
children_len: usize,
] PhysicalProps
PhysicalProps>;

fr
RelNodeRef<T>,

required: & f::PhysicalProps
) —> RelNodeRef<T>;

fn separate_physical_props(

: &Option<Value>,
required: &S PhysicalProps,
children_len: usize,
) —> Vec<(:PhysicalProps, Sel self::PhysicalProps>)>;
it Physi Bui r

Unnesting Arbitrary Queries - Status

- Somewhere between a proof of concept and a draft—work still heavily in
progress.

- Parses and fully unnests a subset of correlated and uncorrelated
subqueries.

- TODO

- Formal testing and bugfixes

- EXISTS clauses, IN clauses, ANY/ALL

- Correctness issue with COUNT(*) (requires adding left outer join to plan)

- Move some/all of this to rewriting stage to support multiple subqueries/ordering
operations

- “Sideways information passing” (subplans are duplicated now instead of making a DAG)

- Optimizations from the paper are all missing
- Pushing dependent joins past regular joins

Unnesting Arbitrary Queries - Demo

Parsed by DataFusion, Dependent join Executed by DataFusion
Converted to optd eliminated

LogicalProjection { exprs: [#1, #13] } LogicalProjection { exprs: [#1, #13] }
L— LogicalFilter L— LogicalFilter
cond:Eq cond:Eq s s e R +
ol " | col@ | coll |
LogifalpepigdgntJoin { join_type: Cross, cond: true, extern_cols: [Extern(#0)] } LogicalJoin O IO o +
ogred Jotn — join_type: Inner
joiz,;ype: Inner —2ond:A)r<z | Customerl | Low |
cond:Eq 5
0 s | Customer2 | Medium |
#9 g
LogicalScan { table: customer } . #U | CUStomePS I ngh l
LogicalScan { table: orders } i Logu?a'!.Joln fmmmmm————— o ——— +
LogicalProjection { exprs: [#0] } join_type: Inner
— LogicalAgg cond:Eq
exprs :Agg(Max) #0
[#0] #9
groups: [] LogicalScan { table: customer }
LogicalFilter LogicalScan { table: orders }
cond:Eq '— LogicalProjection { exprs: [#0, #1] }
Extern(#0) L LogicalAgg
#1 exprs:Agg(Max)
LogicalScan { table: orders } L [#0]
groups: [#0]
LogicalFilter
cond:Eq
#0
#2

LogicalJoin { join_type: Inner, cond: true }
LogicalAgg { exprs: [], groups: [#0] }
Logicalloin
join_type: Inner
cond:Eq
#0
#9
LogicalScan { table: customer }
LogicalScan { table: orders }
LogicalScan { table: orders }

Future Work

Supporting Anti Join + Semi Join
Rule Priorities

Physical Properties Implementation
Verify opt-d Correctness

Projection Transpose Rules

Filter Pull Up Rules

Unnesting Arbitrary Subqueries

