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Project Goals



75% e Break down optimized query plans.
e Dispatch fragments to enable correct execution.
e Provide job status
100% e Ableto abort/cancel a query
e Facilitate both inter-query and intra-query parallelism.
e Implement cost-based, dynamic scheduling.
125% e File-granularity Morsel-driven parallelism.
e NUMA-aware locality optimizations.

e Scheduler fault tolerance and scalability.

Work Stealing.



Progress

e Expanded on integration testing

e Fullintegration of query graph parser and pipelined execution

e More intelligent scheduling policy (Task FIFO -> Stride)

e Developed profiling and benchmarking tools

e Testing on TPC-H queries

e Removed global scheduler lock in favor of lock-free data structures and

finer-grained locking
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Architectural Components: ‘
APl and Internals




Item 1: Architectural Components — Internal

e Fundamental Internal Components and Interfaces
o DAG Parser

m Serialization/Deserialization
m Parsing DAG into pipelined stages
e Identify operators that are designated pipeline breakers (JOIN, LIMIT, ...)

e Split plan and replace with operators with PlaceholderExec containing

metadata with pointer to intermediate data




Item 1: Architectural Components — Internal

e Fundamental Internal Components and Interfaces
o  QuerylD Table

m Concurrent table and task structures, interfaces
o  Query Queue
m Query-based stride scheduling

m Per-query task queue (FIFO)

o Pull-based task scheduling framework, EE-facing API




Item 2: Architectural Components — Executor-side

e Fundamental Internal Components and Interfaces

o Interface for communicating intermediate results
m Thread-safe HashMap<TaskKey, Vec<RecordBatch>
m TaskKey = query ID + stage ID

m Final results sent (Mock EE -> Scheduler -> Mock Frontend)

m Blocking pull-based task assignment




Workflow — Query Setup
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Workflow — Task Dispatch

Executor

dispatch(next_task)

Done(task)
scheduler

update graph and
stride of
task.query_id

Query has
more
tasks?

remove query from
queue

Notify waiters

while queue.next()
is None:
wait()
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Testing:
Overview and Architecture



Testing Framework — Internal Components

e Component/Integration tests for core and auxiliary structures
o Task queue, intermediate result table, DAG parser, query graph soundness

e Concurrency/Stress tests for concurrent structures

e Tests correct behavior of scheduling policy




E2E Testing Framework

e Complete system with frontend, scheduler, mock executors, optimizer and catalog
e Supports end-to-end query execution and result verification

e Includes profiling and performance visualization tools

e Highly modular for future component integration




E2E Testing: Architecture
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E2E Testing: Architecture
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E2E Testing: Architecture
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E2E Testing: Architecture
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E2E Testing Features: Result Verification

e Query results compared against ( 1 ]

reference Datafusion executor




E2E Testing Features: Profiling

(} job_summary.json

e Logs query submission/completion times

e Tracks executor client activity (busy/idle)

e Python tool for visualization A lvisuame




E2E Testing Features: Modularity

e Easily replaceable optimizer and executor functions

0 optimize (p: &LogicalPlan) -> Result<Arc<dyn ExecutionPlan>>

0 execute (e: Arc<dyn ExecutionPlan>) -> Result<Vec<RecordBatch>>

e Framework supports future integration




E2E Testing: Interactive Mode Demo

M mingkang@mingkang-desktop: ~/private/15721-s24-scheduler2

(base) mingkang@mingkang-desktop: $ ./target/release/mock interactive
Entering interactive mode. Type your SQL queries or 'exit' to quit:
IScheduler listening on 0.0.0.0:15721

onnecting to scheduler at http://0.0.0.0:15721

[Executor1]: Connecting to Scheduler at 0.0.0.0:15721
[Executor2]: Connecting to Scheduler at 0.0.0.0:15721
[Executor3]: Connecting to Scheduler at 0.0.0.0:15721
[Executor4]: Connecting to Scheduler at 0.0.0.0:15721
[Executor5]: Connecting to Scheduler at 0.0.0.0:15721

sql> i



https://docs.google.com/file/d/1VswOfIQbuAAmlXXjsFaVzjYcrrmjVPQi/preview

E2E Testing: Batch Submission/Profiling Demo



https://docs.google.com/file/d/1HW_ItN9TWGpdxw8at2w9gZcJFN2Evakg/preview

Benchmark Results

e Batch submitted all 22 TPC-H queries (scale factor: 2) on AWS EC2 with 32
vCPUs

e Testedwith 1,2, 4, 8, 16, 32 executors

e Complete data/graphs available here



https://drive.google.com/drive/folders/1g6TCX6kWFWnOwmE_KCgGf76QU89Q_Chk?usp=sharing

Speedup vs. Number of Executors
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Busy/Idle Time Visualization (8 Executors)
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Busy/Idle Time Visualization (16 Executors)

Normalized Timeline of Executor Busy/ldle Times
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Query Timeline (8 Executors)
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Query Timeline (16 Executors)
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Code Quality Assessment

Strong Areas:

- Core scheduling data structures and business logic
- E2E testing framework

Weak Areas:

- Error handling -> Should use more uniform approach
- Unittesting -> Suffered due to convenience of E2E framework
- General Robustness -> Presumes client familiarity




Future work

e Address less robust areas of the codebase
e More advanced scheduling policy

e Explore intra-query task ordering strategies
e NUMA-aware locality optimizations

e Morsel-based intra-operator parallelism

Integration with other components



