4
N

Final Presentation: Scheduler 2

Makoto, Mingkang, Aidan

May 2, 2024

Project Goals

75% e Break down optimized query plans.
e Dispatch fragments to enable correct execution.
e Provide job status
100% e Ableto abort/cancel a query
e Facilitate both inter-query and intra-query parallelism.
e Implement cost-based, dynamic scheduling.
125% e File-granularity Morsel-driven parallelism.
e NUMA-aware locality optimizations.

e Scheduler fault tolerance and scalability.

Work Stealing.

Progress

e Expanded on integration testing

e Fullintegration of query graph parser and pipelined execution

e More intelligent scheduling policy (Task FIFO -> Stride)

e Developed profiling and benchmarking tools

e Testing on TPC-H queries

e Removed global scheduler lock in favor of lock-free data structures and

finer-grained locking

4

Architectural Components: ‘
APl and Internals

Item 1: Architectural Components — Internal

e Fundamental Internal Components and Interfaces
o DAG Parser

m Serialization/Deserialization
m Parsing DAG into pipelined stages
e Identify operators that are designated pipeline breakers (JOIN, LIMIT, ...)

e Split plan and replace with operators with PlaceholderExec containing

metadata with pointer to intermediate data

Item 1: Architectural Components — Internal

e Fundamental Internal Components and Interfaces
o QuerylD Table

m Concurrent table and task structures, interfaces
o Query Queue
m Query-based stride scheduling

m Per-query task queue (FIFO)

o Pull-based task scheduling framework, EE-facing API

Item 2: Architectural Components — Executor-side

e Fundamental Internal Components and Interfaces

o Interface for communicating intermediate results
m Thread-safe HashMap<TaskKey, Vec<RecordBatch>
m TaskKey = query ID + stage ID

m Final results sent (Mock EE -> Scheduler -> Mock Frontend)

m Blocking pull-based task assignment

Workflow — Query Setup

gRPC requests from
frontend

v

Graph builder ?
- Deserialize plan

- Build pipelined stages

add query

e)
Query Table

register query] Query queue
query graph
query id —> per-query task queue

query status

- Priority heap of available queries
- Running task list

LI T T T I T ITTT1]

Workflow — Task Dispatch

Executor

dispatch(next_task)

Done(task)
scheduler

update graph and
stride of
task.query_id

Query has
more
tasks?

remove query from
queue

Notify waiters

while queue.next()
is None:
wait()

4
N

Testing:
Overview and Architecture

Testing Framework — Internal Components

e Component/Integration tests for core and auxiliary structures
o Task queue, intermediate result table, DAG parser, query graph soundness

e Concurrency/Stress tests for concurrent structures

e Tests correct behavior of scheduling policy

E2E Testing Framework

e Complete system with frontend, scheduler, mock executors, optimizer and catalog
e Supports end-to-end query execution and result verification

e Includes profiling and performance visualization tools

e Highly modular for future component integration

E2E Testing: Architecture

y

[Scheduler }-

7/ AN

E2E Testing: Architecture

v intermediate_results.rs

intermediate
results
hashmap

Scheduler

read/write

executor_client.rs

mock_executor.rs

Datafusion Datafusion
Executor Executor

E2E Testing: Architecture

P — r \

intermediate_results.rs

intermediate
results
hashmap

read

Scheduler

Executors +

Scheduler addresses
n conpiﬂ P‘n|e

read/write

mock_catalog.rs

executor_client.rs
load

gRPC ent POP
executor

cli
Q!
=3

Datafusion
Executor

mock_executor.rs

Lload

E2E Testing: Architecture

-updo{te_s resu lts
-verifies correctness

B #
) ST T T Tt T T ~
\ intermediate_results.rs

intermediate
read (o e_SUltS
hashmap

{ gRPC scheduler client 3

[= SUL’M?tS/'tf‘QQkS 3055 frontend.rs
.'

|

\

Schedule,r

Executors +
Sche_dule_r addresses
n conPig {-\nle

read/write

mock_catalog.rs

executor_client.rs

\
Datafusion Datafusion :
Executor Executor | mock_executor.rs

Tload

Ve
I
|
|
\
~
/

e T e man

interactive
mode

i 3RPC scheduler client \|
| s Su‘:wﬁtS/'tf‘c\CkS JOLS : frontend.rs
: :
:]

-updates results
-verifies correctness

load

intermediate_results.rs

intermediate
results
hashmap

read

Executors +

Scheduler addresses
n cov\{-‘ng ﬁle

read/write

mock_catalog.rs l

executor_client.rs

Datafusion :
Executor | mock_executor.rs

load

Datafusion
Executor

Lload

E2E Testing Features: Result Verification

e Query results compared against (1]

reference Datafusion executor

E2E Testing Features: Profiling

(} job_summary.json

e Logs query submission/completion times

e Tracks executor client activity (busy/idle)

e Python tool for visualization A lvisuame

E2E Testing Features: Modularity

e Easily replaceable optimizer and executor functions

0 optimize (p: &LogicalPlan) -> Result<Arc<dyn ExecutionPlan>>

0 execute (e: Arc<dyn ExecutionPlan>) -> Result<Vec<RecordBatch>>

e Framework supports future integration

E2E Testing: Interactive Mode Demo

M mingkang@mingkang-desktop: ~/private/15721-s24-scheduler2

(base) mingkang@mingkang-desktop: $./target/release/mock interactive
Entering interactive mode. Type your SQL queries or 'exit' to quit:
IScheduler listening on 0.0.0.0:15721

onnecting to scheduler at http://0.0.0.0:15721

[Executor1]: Connecting to Scheduler at 0.0.0.0:15721
[Executor2]: Connecting to Scheduler at 0.0.0.0:15721
[Executor3]: Connecting to Scheduler at 0.0.0.0:15721
[Executor4]: Connecting to Scheduler at 0.0.0.0:15721
[Executor5]: Connecting to Scheduler at 0.0.0.0:15721

sql> i

https://docs.google.com/file/d/1VswOfIQbuAAmlXXjsFaVzjYcrrmjVPQi/preview

E2E Testing: Batch Submission/Profiling Demo

https://docs.google.com/file/d/1HW_ItN9TWGpdxw8at2w9gZcJFN2Evakg/preview

Benchmark Results

e Batch submitted all 22 TPC-H queries (scale factor: 2) on AWS EC2 with 32
vCPUs

e Testedwith 1,2, 4, 8, 16, 32 executors

e Complete data/graphs available here

https://drive.google.com/drive/folders/1g6TCX6kWFWnOwmE_KCgGf76QU89Q_Chk?usp=sharing

Speedup vs. Number of Executors

—e— Actual Speedup 5

cie] | e Ideal Speedup (y = x) s

25

20

Speedup

10

0_ I I 1 I I I
12 4 8 16 32

Number of Executors

Busy/Idle Time Visualization (8 Executors)

Normalized Timeline of Executor Busy/ldle Times

Executor 1 A

Executor 2 A

Executor 3 |

Executor 4 |

Executor ID

Executor 5 |

Executor 6 A

Executor 7 | =

Executor 8 A

T T T T

0 i tll 6 8 10 12 1‘4 1‘6
Time (seconds from first query submission)

Busy/Idle Time Visualization (16 Executors)

Normalized Timeline of Executor Busy/ldle Times

Executor 1

Executor 2 4

Executor 3

Executor 4 4 — T T

Executor 5 4 1 -

Executor 6 —

Executor 7

Executor 8

Executor 9 4 — —

Executor ID

Executor 10 A

Executor 11 A : T

Executor 12 A

Executor 13 4 O S—

Executor 14 |

Executor 15 | T —

Executor 16

0 2 4 6 8
Time (seconds from first query submission)

Query Timeline (8 Executors)

Normalized Timeline of TPC-H Execution

Query 1

Query 2 4
Query 34

Query 4 4
Query 5+

Query 6 - —_

Query 7

Query 84

Query 9

9 Query 10
qz; Query 11
8 Query 12
Query 13 A
Query 14
Query 154
Query 16
Query 17 A
Query 18
Query 19
Query 20

Query 21 A

10 12 14

0 2 3 6 8
Time (seconds from first query submission)

Query Timeline (16 Executors)

Normalized Timeline of TPC-H Execution

Query 1
Query 2 -
Query 3 -
Query 4 -

Query 5 -
Query 6
Query 7 A
Query 8

Query 9
9 Query 10
g Query 11

8 Query 12 -
Query 13
Query 14 4
Query 15 A
Query 16 A
Query 17 A
Query 18
Query 19
Query 20 -
Query 21

0 2 a 6 8
Time (seconds from first query submission)

Code Quality Assessment

Strong Areas:

- Core scheduling data structures and business logic
- E2E testing framework

Weak Areas:

- Error handling -> Should use more uniform approach
- Unittesting -> Suffered due to convenience of E2E framework
- General Robustness -> Presumes client familiarity

Future work

e Address less robust areas of the codebase
e More advanced scheduling policy

e Explore intra-query task ordering strategies
e NUMA-aware locality optimizations

e Morsel-based intra-operator parallelism

Integration with other components

