
Final Presentation: Scheduler 2
Makoto, Mingkang, Aidan

May 2, 2024

Project Goals

● Break down optimized query plans. ✅
● Dispatch fragments to enable correct execution. ✅
● Provide job status ✅
● Able to abort/cancel a query ✅
● Facilitate both inter-query and intra-query parallelism. ✅
● Implement cost-based, dynamic scheduling. ✅
● File-granularity Morsel-driven parallelism.

● NUMA-aware locality optimizations.

● Scheduler fault tolerance and scalability.

● Work Stealing.

75%

100%

125%

Progress

● Expanded on integration testing

● Full integration of query graph parser and pipelined execution

● More intelligent scheduling policy (Task FIFO -> Stride)

● Developed profiling and benchmarking tools

● Testing on TPC-H queries

● Removed global scheduler lock in favor of lock-free data structures and

finer-grained locking

Architectural Components:
API and Internals

Item 1: Architectural Components – Internal

● Fundamental Internal Components and Interfaces
○ DAG Parser

■ Serialization/Deserialization ✅
■ Parsing DAG into pipelined stages ✅

● Identify operators that are designated pipeline breakers (JOIN, LIMIT, …) ✅
● Split plan and replace with operators with PlaceholderExec containing

metadata with pointer to intermediate data ✅

Item 1: Architectural Components – Internal

● Fundamental Internal Components and Interfaces
○ QueryID Table

■ Concurrent table and task structures, interfaces

○ Query Queue

■ Query-based stride scheduling

■ Per-query task queue (FIFO)

○ Pull-based task scheduling framework, EE-facing API

Item 2: Architectural Components – Executor-side

● Fundamental Internal Components and Interfaces
○ Interface for communicating intermediate results

■ Thread-safe HashMap<TaskKey, Vec<RecordBatch>

■ TaskKey = query ID + stage ID

■ Final results sent (Mock EE -> Scheduler -> Mock Frontend)

■ Blocking pull-based task assignment

Workflow – Query Setup

Workflow – Task Dispatch

Testing:
Overview and Architecture

Testing Framework – Internal Components

● Component/Integration tests for core and auxiliary structures

○ Task queue, intermediate result table, DAG parser, query graph soundness

● Concurrency/Stress tests for concurrent structures

● Tests correct behavior of scheduling policy

E2E Testing Framework

● Complete system with frontend, scheduler, mock executors, optimizer and catalog

● Supports end-to-end query execution and result verification

● Includes profiling and performance visualization tools

● Highly modular for future component integration

E2E Testing: Architecture

E2E Testing: Architecture

E2E Testing: Architecture

E2E Testing: Architecture

E2E Testing Features: Result Verification

● Query results compared against

reference Datafusion executor

● Logs query submission/completion times

● Tracks executor client activity (busy/idle)

● Python tool for visualization

E2E Testing Features: Profiling

E2E Testing Features: Modularity

● Easily replaceable optimizer and executor functions

○ optimize (p: &LogicalPlan) -> Result<Arc<dyn ExecutionPlan>>

○ execute (e: Arc<dyn ExecutionPlan>) -> Result<Vec<RecordBatch>>

● Framework supports future integration

E2E Testing: Interactive Mode Demo

https://docs.google.com/file/d/1VswOfIQbuAAmlXXjsFaVzjYcrrmjVPQi/preview

E2E Testing: Batch Submission/Profiling Demo

https://docs.google.com/file/d/1HW_ItN9TWGpdxw8at2w9gZcJFN2Evakg/preview

Benchmark Results

● Batch submitted all 22 TPC-H queries (scale factor: 2) on AWS EC2 with 32

vCPUs

● Tested with 1, 2, 4, 8, 16, 32 executors

● Complete data/graphs available here

https://drive.google.com/drive/folders/1g6TCX6kWFWnOwmE_KCgGf76QU89Q_Chk?usp=sharing

Busy/Idle Time Visualization (8 Executors)

Busy/Idle Time Visualization (16 Executors)

Query Timeline (8 Executors)

Query Timeline (16 Executors)

Code Quality Assessment

Strong Areas:

- Core scheduling data structures and business logic
- E2E testing framework

Weak Areas:

- Error handling -> Should use more uniform approach
- Unittesting -> Suffered due to convenience of E2E framework
- General Robustness -> Presumes client familiarity

Future work

● Address less robust areas of the codebase

● More advanced scheduling policy

● Explore intra-query task ordering strategies

● NUMA-aware locality optimizations

● Morsel-based intra-operator parallelism

● Integration with other components

